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Abstract
Java provides security and robustness by building a high-
level security model atop the foundation of memory protec-
tion. Unfortunately, any native code linked into a Java pro-
gram – including the million lines used to implement the
standard library – is able to bypass both the memory pro-
tection and the higher-level policies. We present a hardware-
assisted implementation of the Java native code interface,
which extends the guarantees required for Java’s security
model to native code.

Our design supports safe direct access to buffers owned
by the JVM, including hardware-enforced read-only access
where appropriate. We also present Java language syntax
to declaratively describe isolated compartments for native
code.

We show that it is possible to preserve the memory safety
and isolation requirements of the Java security model in C
code, allowing native code to run in the same process as Java
code with the same impact on security as running equivalent
Java code. Our approach has a negligible impact on perfor-
mance, compared with the existing unsafe native code inter-
face. We demonstrate a prototype implementation running
on the CHERI microprocessor synthesized in FPGA.

1. Introduction
Java was designed as a high-level language with strong type-
safety guarantees and an integrated security model [9, 10].
The Java security model starts from a set of memory safety
guarantees and supporting infrastructure such as bytecode
verification, to ensure that running Java bytecode respects
these guarantees. These guarantees are then used for build-
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ing higher-level policies – for example, preventing any code
that is not part of the java.lang package from directly in-
voking Java Virtual Machine (JVM) services. Other code
must instead call methods on java.lang.Runtime, which
will check the current SecurityManager and invoke the JVM
services only if the calling code is permitted to do so.

These invariants are enforced while executing Java byte-
code, but the JVM also includes standard interfaces for
calling ‘native’ (typically C) code. The Java Native In-
terface (JNI) design document contains the following dis-
claimer [1]:

The JNI does not check for programming errors such as
passing in NULL pointers or illegal argument types. Most C
library functions do not guard against programming errors.
For example, the printf() function usually causes a run-
time error when it receives an invalid address, rather than
returning an error code. Forcing C library functions to check
for all possible error conditions would likely result in such
checks being duplicated – once in the user code, and then
again in the library. The programmer must not pass illegal
pointers or arguments of the wrong type to JNI functions.
Doing so could result in arbitrary consequences, including
a corrupted system state or VM crash.

As such, any security and robustness guarantees provided
by the JVM are lost when running software that contains,
or depends on, native code. This is particularly unfortunate,
as the reference implementation of the Java standard library
includes around a million lines of C code exposed via the
JNI [30].

A survey of the Google Play app store for Android found
that 86% of the top 50 apps shipped native code [28]. A
number of these (for example, Skype) use native code for
a common core that is shared between multiple platforms –
which presents an interesting target for attackers, as a vul-
nerability present in this code will be shared with iOS and
Android (and possibly also desktop) versions of the same
applications. A security study of the reference implementa-
tion of Java 1.6 [28] used static analysis to find 59 security
flaws in native code, any one of which could bypass the Java
security model.
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Multiple attempts have been made to sandbox native code
(Section 4), using either separate processors or Software
Fault Isolation (SFI) techniques [17]. These approaches ei-
ther have high overhead or place significant restrictions on
the functionality of the native code.

Given the importance of native code in the Java ecosys-
tem, we propose than native code in an ideal JVM would:

• Run at the speed expected of native code.
• Be able to access any and all CPU features and do any-

thing within its own memory space.
• Directly access buffers shared with the JVM without

copying or interposition.
• Be constrained by the Java SecurityManager when ac-

cessing operating-system resources.
• Be unable to violate any of the memory safety guarantees

expected by Java code.

We propose to use the hardware support for memory ca-
pabilities found in the CHERI ISA [39] (and present a pro-
totype implementation) to support native code with these
constraints and capabilities. CHERI’s memory capability
model provides support for fine-grained (object granularity)
memory safety [6] and coarser-grained compartmentaliza-
tion [34]. We use this to extend the Java security guarantees
from Java code to native code running in the same process.

Our approach has several key advantages over prior tech-
niques that have focused solely on sandboxing:

• Native code can safely include traditionally unsafe ac-
tivities, such as run-time code generation and stack un-
winders.

• We support efficient fine-grained robust sharing.
• We expose native-code sandboxing policy in Java, giv-

ing declarative control over sandbox lifetimes and state
sharing.

• We support numerous sandboxes with diverse lifetimes.

We demonstrate that CHERI’s primitives can be used to
retrofit security to interfaces where it was explicitly not a
design goal, and that the CHERI ISA supports compart-
mentalization models beyond those described in our prior
work [34]. Figure 1 provides an overview of how sharing
and communication are accomplished in our system.

2. Java Native Interface
The JNI is a mechanism to implement Java methods in C
(or languages that implement the C ABI). When the native
method is invoked, the JVM arranges a call frame containing
C versions of the parameters, plus a pointer to a pointer
to a structure that contains an array of function pointers
for calling back into the JVM. Functions exposed via this
interface include object creation, field and method access,
and reflection.

Sandboxed native code

Java VM

❶ Call native 
method

❷ Call 
JNIEnv 
function

❸ JNIEnv 
function

return

❹ Native 
method 
return

CHERI cross-domain calls
Unsealed capabilities
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Object

Integer Array

Direct Buffer
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Figure 1. An overview of the CHERI JNI system.

Objects (including Java arrays) are passed to native code
as an opaque jobject C-language type. The JVM specifica-
tion makes no guarantees about object layout; if jobject is
implemented as a pointer, native code must not use it to di-
rectly access object fields. When passed a reference to a Java
array, the native code may request direct access to the under-
lying memory. The JNI is permitted to copy the data if the
JVM does not support memory pinning (preventing specific
allocations from being moved by the garbage collector).

The following example shows how the JNI provides a
trivial native method that sums the elements of an array. In
the Java code, the method must be declared with the native

keyword:
class HasNative {

native int sumArray(int[] arr , int len);

}

When this method is invoked, the JVM will search for a
native function with a name that corresponds to an encoding
of the class and method name (and types if it is overloaded),
arrange the arguments in accordance with the calling con-
vention defined by JNICALL (generally the normal C call-
ing convention), and then jump to the function. This method
might be implemented by the following C code:
JNIEXPORT jint JNICALL

Java_HasNative_sumArray

(JNIEnv *e, jobject o, jintArray arr ,

jint len) {

jboolean isCopy;

jint *a = (*e)->GetIntArrayElements(e,

arr , &isCopy);

jint sum = 0;

for (jint i=0 ; i<len ; i++)

sum += a[i];

(*e)->ReleaseIntArrayElements(e, arr , a,

0);

return sum;

}
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Even this simple example shows the fragility of conven-
tional JNI implementations. If this method is invoked with
a length greater than the length of the array, then a Java
equivalent of this method would simply raise an exception.
In contrast, this will read past the end of the array, potentially
crashing the process. If the author of this C code had omit-
ted the ReleaseIntArrayElements call, then the array object
would be leaked. In slightly more complex C, a memory-
safety error that involved writing through an out-of-bounds a
-derived pointer would be likely to corrupt the Java heap. Er-
rors of these forms and more have been found in native code
included with the reference implementation of Java [28].

Java 1.4 introduced interfaces that expose access to the
java.nio.ByteBuffer class, and guarantees that native code
can directly access buffers [2]. This is a very important fea-
ture for Java scalability, because it is the underlying mecha-
nism used with system calls for scalable non-blocking I/O –
such as select, poll, epoll, and kqueue [2].

Java supports native code in Java applications for sev-
eral reasons. In some cases, native code allows faster per-
formance. In other cases, there are existing libraries in other
languages; it is considered better practice to use them di-
rectly than to reimplement them. Cryptographic algorithms
fit into both categories: they are often hand-tuned assembly
or C code that is carefully designed to avoid timing vulnera-
bilities. Finally, some things are simply not possible in pure
Java. For example, issuing system calls requires construct-
ing a stack frame with a specific layout, and then issuing a
special instruction – neither of which is permitted by pure
Java code.

3. Threat model
Native code, such as many libraries used by the Oracle or
Android Java stacks, is frequently used in place of Java
code for performance reasons. This includes compression
libraries, image and video decoders, and so on – as in C
code written with performance as the overriding goal. Well-
intentioned C code may contain memory safety vulnerabili-
ties that enable an attacker to inject arbitrary code [29]. An
attacker that is able to exploit vulnerabilities is able to run ar-
bitrary code with the same permissions as the native code. In
stock JNI implementation, the attacker has full control over
the process. She can issue any system calls that the JVM is
allowed to issue, or can stealthily corrupt Java objects.

In contrast, all Java code runs with a subset of this privi-
lege controlled by the SecurityManager class. Before per-
forming any action that should require privilege, the cor-
responding part of the Java class libraries will query the
current SecurityManager, which will throw an exception
if the current context does not have the required permis-
sion. This mechanism allows Java applications to run in-
dividual parts with reduced privilege. For example, when
deleting a file from Java, the code that invokes the system’s
unlink system call will first call checkDelete on the cur-

rent SecurityManager. In contrast, native code may simply
invoke the unlink system call. This is also the case for An-
droid apps, where setting a new SecurityManager will throw
an exception, requiring the entire application to run with the
same privileges.

Much native code requires significantly less privilege
than would be useful to an attacker. For example, a native
method decoding a PNG or JPEG image requires access to
the input and output buffers and nothing else. The stock JNI
does not provide a mechanism for enforcing the principle
of least privilege. This includes both privileges that relate to
access to parts of the process (may the code write to this bit
of memory?) and external privileges (may the code write to
files?).

4. Existing sandboxing approaches
Security was explicitly a non-goal for the JNI design. This
has deterred attempts to retrofit security onto this model.

4.1 Process-based isolation
Sun Labs [7] moved native code into a separate process and
communicated via RPC. This showed a desire for better se-
curity in native code, but had high overheads for production
use. The cost of process creation is high, and the costs of
copying data to and from the remote process were also high
– in some cases an overhead of over 800%.

More recently, NativeGuard [28] provided tools for split-
ting Android applications into two separate processes. One
process contains the Java code, and runs with the privileges
that the application requires. The other contains the native
code, and runs with a restricted set of privileges. These two
communicate via an IPC channel. NativeGuard protects the
Java program and the set of operating-system permissions
that it holds from bugs in the native code (although the re-
sult may still be vulnerable to confused-deputy attacks). By
supporting only a single sandbox process that has the same
lifetime as the parent, the overheads of sandbox creation are
amortized.

4.2 SFI techniques
The Robusta [26] and Arabica [27] projects are the state of
the art in JNI sandboxing, and are very close to the best
isolation possible with conventional hardware. Arabica pro-
vides a JVM-agnostic implementation of the techniques that
the Robusta implemented as part of the JVM. Robusta uses
Google Native Client (NaCl) [40] to provide a sandboxing
substrate; it achieved low overhead (3-5% in the best cases,
and 1,647% in the worst case invoking functions that exe-
cuted very few instructions).

Robusta integrates Java security-manager checks into
system call access for sandboxed code.

This work has several limitations inherited from NaCl
sandboxing. NaCl relies on load-time verification of na-
tive code, and restricts the running binary to instruction se-
quences that are amenable to this verification. Some of the
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overhead arises from this, as the native code is prevented
from using more complex addressing modes and idioms
that would break the verification. To avoid an unfair com-
parison of MIPS and x86 implementations of a NaCl-like
mechanism, we use a baseline for performance measurement
that assumes the isolation guarantees of NaCl with no over-
head other than the requirement to copy (rather than share)
buffers. These limitations also prevent certain kinds of code
from being run in the sandbox – for example, Just-in-Time
(JIT) compilers and stack unwinders.

The most serious limitation is the lack of support for
direct buffers. NaCl verifies that no memory accesses in the
sandboxed code can reach outside of the sandbox. It cannot
allow constrained accesses outside of the sandbox.

Finally, neither approach allows multiple sandboxes, nor
any control over sandboxing policy from the Java code. A
compromise in one native method therefore allows access
to all data structures used by all native methods (including
their stacks), and therefore can be used to subvert any native
code. In addition, unsandboxed and sandboxed JNI methods
use the same native keyword; it is very difficult to statically
determine the sandboxing that has been applied.

5. CHERI
The CHERI Instruction-Set Architecture (ISA) [39] requires
that all memory accesses are via memory capabilities, which
extend 64-bit virtual addresses with metadata controlling
their use: lower and upper bounds, permissions (read, write,
execute, and so on), and a 1-bit tag that protects their prove-
nance and integrity, coming to a total of 257 bits. Instructions
to manipulate capabilities enforce a monotonic non-increase
in rights (e.g., allowing removal of permissions or decreas-
ing the range). Capabilities can be held in registers or mem-
ory; if store instructions overwrite a portion of a capability
with non-capability data, the tag bit will be cleared, prevent-
ing further dereferencing.

All memory accesses are explicitly relative to a capabil-
ity (using it as a pointer) or implicitly so (via the program
counter capability for instruction fetches, or via the default
data capability for loads and stores). This simple model al-
lows us to define regions within a user address space where
native code can run unrestricted, as long as it does not at-
tempt to touch any memory outside of the bounded region.

CHERI also provides a sealing mechanism: a capability
can be made immutable and non-dereferenceable (sealed)
using another capability as a key. The sealed capability can-
not be used to access memory until it has been unsealed
with the same capability that was used to seal it. This is
the foundation for CHERI’s cross-domain call mechanism,
which uses a pair of a code capability and a data capabil-
ity, sealed with the same key, to describe a closure that can
be invoked – without permitting the caller direct access to
the code or data memory. This is sufficient to implement a
NaCl-like model, without requiring static verification. Seal-

ing allows pointers to be passed efficiently into native code
and then be verified when passed back, but not dereferenced
by the native code.

5.1 Memory-safe C
As described in our prior work [6], the CHERI C compiler
supports two modes. In the pure-capability mode, all point-
ers (including function pointers) are represented as memory
capabilities. In the hybrid mode, only specifically annotated
pointers are represented as capabilities, and the rest are rep-
resented as 64-bit integers that are implicitly relative to one
of the default capabilities. Code that lacks these annotations
is binary-compatible with unmodified MIPS code (the native
ISA).

Pure-capability bounds checking and pointer integrity
provide some mitigation by themselves. Code-reuse attacks
are difficult when the return address is protected by a tag
bit. Attacks on the higher-level logic, or those that depend
on temporal memory safety bugs, are still possible. Recom-
piling native code in this mode and using an existing JNI
implementation would still allow the native code to damage
the JVM.

We utilize the pure-capability mode in sandboxes, as it
provides the greatest opportunity for exposing aspects of
the Java security model to C. The protections afforded by
CHERI will allow closer integration between high- and low-
level languages, without sacrificing the guarantees afforded
by the former. We can safely pass pointers to arrays on the
Java heap directly to C code, yet prevent access to any of the
rest of the Java heap. We can then use the tag bit to accurately
find all pointers to the Java heap retained by a sandbox.

We use the hybrid mode for the JVM itself. Most JVMs
perform a pointer-compression trick for object pointers on
64-bit systems, relying on the Java heap being within a
contiguous range in the virtual address space. Java objects
must typically be (at least) pointer aligned, meaning that
the low three bits are implicitly zero – which allows a 32-
bit integer to represent a 35-bit offset in a 16GB heap. We
expect that a JVM designed for CHERI would use this trick,
with object pointers within the JVM being offsets into a heap
capability.

5.2 CHERI compartmentalization
CheriBSD, the CHERI adaptation of FreeBSD [18], includes
libcheri – a library that manages compartments within a user
address space [34]. Libcheri provides a class-based model
for compartments. A libcheri class defines the layout of
a compartment’s address space, the set of functions that
are exposed by it for cross-domain calls, and the set of
functions that it expects the “system” object to expose for
cross-domain calls. After a libcheri class has been loaded,
libcheri objects may be instantiated from it. These object can
then be used as targets for cross-domain calls.

Libcheri provides the cheri_invoke function and other
bits of architecture-specific userspace code required for
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cross-domain calls. It also fills a role similar to the run-time
linker with respect to cross-domain symbol resolution, cre-
ating vtables inside objects for dispatching incoming calls
and assigning vtable indexes to method names for the caller.

The CHERI model provides a trusted stack of cross-
domain calls. Every cross-domain call adds a record to the
trusted stack, enforcing call-semantics. If a protection or
segmentation violation signal is delivered inside a sandbox,
then libcheri in combination with the kernel unwinds the
trusted stack and allows the caller to recover.

6. Applying capabilities to the JNI
We use capabilities to provide an implementation of the JNI
where native code can be placed into compartments in which
it must respect all of the invariants of the Java memory and
security model. Our prototype implementation uses JamVM,
which is a simple bytecode interpreter; it works on big-
endian 64-bit MIPS, the base architecture on which CHERI
is an extension. Although this results in the Java code be-
ing slow, we do not consider this to be a problem for our
evaluation, because we are investigating a standard interface
between native and Java code, and believe that the lessons
learned would apply to other JNI implementations.

6.1 Integration with the language model
The native keyword is adequate to describe native methods
when there is no isolation, but lacks any description of policy
for an implementation that provides compartmentalization.
Java 1.5 introduced annotations, allowing arbitrary metadata
to be associated with the methods (among other things). We
declare a new @Sandbox annotation that describes a native

method as being sandboxed. This annotation includes the
libcheri class and the scope of the sandbox as attributes.

Libcheri provides a coarse-grained object model for
CHERI compartmentalization. Libcheri classes are libraries
that are loaded and instantiated to provide libcheri objects,
with public functions (methods) that can be invoked using a
cross-domain call. The SandboxClass attribute of the anno-
tation tells the JVM which libcheri class to use.

The scope attribute is an enumerated type indicating a
choice of method, object, or global scope for the sandbox.
Global scope is the weakest and corresponds to the Robusta
/ Arabica model of a single sandbox for all native code using
this libcheri class. Object scope means that a single sand-
box exists for this pair (Java object and libcheri class); mul-
tiple native methods with the same libcheri class will share
a sandbox when invoked on the same Java object, but meth-
ods invoked on different instances or with different libcheri
classes will be isolated). Finally, method scope means that
a sandbox is created for each invocation of the method, and
destroyed (or, at least, reset) at the end of the invocation.

The global scope allows quick porting of existing JNI
code. Both global and object scope methods allow state to
be preserved between invocations (see Section 6.6).

Our earlier example, modified to use a method-scoped
sandbox provided by the “sum” libcheri class would be as
follows:

@Sandbox(scope=Global ,SandboxClass="sum"

)

native int sumArray(int[] arr , int len);

The C code would be unmodified. When executing, the C
code from Page 2 would be invoked by a cross-domain call.
It would then issue another cross-domain call back into the
JVM via the GetIntArrayElements function, which would
return a memory capability that grants access to the region
of the Java heap containing the array elements.

If native code triggers a signal (e.g., a segmentation fault)
that causes the trusted stack to unwind, then the JVM trans-
lates this into a Java exception and throws it. Similarly, if the
native code calls the JNI with invalid parameters (e.g., re-
questing access to array elements in an object that is not an
array), then the JVM unwinds two trusted stack frames (to
return to the call from the JVM to native code) and raises an
exception. In both cases, the JVM resets the sandbox state,
as the sandbox is assumed to be in an undefined state.

We also extend the java.lang.Runtime object to include
methods for explicit sandbox reset and revocation in global
sandboxes. These can potentially leave sandboxes in an un-
defined state, and so are restricted by a security manager
check.

The access to state between sandboxes depends on both
the libcheri class and the sandbox scope. The Java access-
control model permits objects to access the private data of
other objects of the same class. With our model, you use
a global sandbox with a libcheri class that provided only
methods for a single Java class. You then have a single
sandbox instance shared between all objects of the class,
and therefore are able to share state via the C heap – but
isolated from other Java components. Table 1 summarizes
the settings that causes native code to share a sandbox. Two
methods never share the same sandbox if they are provided
by different libcheri classes.

6.2 Cross-domain calls
We encountered our first limitation with the existing CHERI
software stack early on: it did not provide a way of ex-
pressing a C-language function pointer that permitted cross-
domain calls. To address this we adding a new cheri_ccallback

calling convention to CHERI/Clang and a new built-in to
construct a callback from a sandbox object and a function
name. This is represented as a tuple of the sealed code ca-
pability, the data capability, and the method number for the
target invocation.

Second, the strong security model from our prior com-
partmentalization work [34] implies mutual distrust for all
cross-domain calls. In our model, there is asymmetric dis-
trust: the JVM is assumed (perhaps erroneously) to be trust-
worthy, whereas the native code is not. For example, na-
tive code should be permitted to pass pointers to its stack
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Same libcheri class Different libcheri class
Global Object Method Global Object Method

Same Java Object X X × × × ×
Different Java Objects X × × × × ×

Table 1. Table of when different sandbox configurations share state.

to the JVM (although the converse should not be allowed).
We addressed this by adding a second trampoline function
and modifying the kernel’s cross-domain call trap handler to
skip the capability flow checks when invoked with a CHERI
object with the high bit set in its type. We also modified
libcheri to allocate types for system objects with this bit set,
so that only designated system objects provided by trusted
code are allowed to provide functions that bypass the checks.

6.3 JNI type safety
Accessing a field or calling a method on a Java object via
the JNI is a two-step process. First, the native code requests
a jmethodID or jfieldID from the JNI. Both of these types
are defined to be pointers by the JNI specification. Second,
the native code invokes another JNI function, passing back
this pointer. In well-behaved code, the sequence from the
native code looks something like this:
// Get the field ID for integer field x in

class c

jfieldID f = (*env)->GetFieldID(env , c, "x

", "I");

// Set that field to 42 in object r

(*env)->SetIntField(env , r, f, 42);

In most current implementations, the JVM simply deref-
erences the pointer, trusting that the native code has passed
a valid pointer of the correct type. Inside the JVM, the code
that runs is typically like:
*(jint*)((char*)r + f->offset) = 42;

The Arabica [27] implementation (line 3335 of jin-
n/c2j proxy.c) checks that the pointer is not null, but oth-
erwise simply passes it back to the JVM’s implementation.
Malicious code can write to some arbitrary memory by pro-
ducing a call like this:
struct field f = { ..., address - (long)r)

};

// Set that field to 42 in object r

(*env)->SetIntField(env , r, &f, 42);

The JVM will write the value 42 to an address chosen by
the attacker, bypassing the sandbox. This vulnerability is not
intrinsic to SFI-based sandboxing, and could be addressed
with a look-aside table indexed by jfieldID; however, this
would introduce problems related to revocation, and impose
an additional performance overhead.

We avoid this possibility by sealing each object pointer,
method ID, and field ID with a different key when we pass it
out to the native code. The hardware prevents the native code
from modifying the sealed capability (because it does not
have access to the key) and the JVM can cheaply check that

the capability has the correct type when it is passed back. We
also validate C strings passed from native code.

6.4 Array and buffer operations
The JVM provides a set of operations to request direct access
to the underlying storage of a byte buffer or array. We sup-
port these by constructing a memory capability that grants
access only to the buffer in the Java heap. The sandboxed
code can then use this as any other pointer, but will receive
a protection trap if it attempts out-of-bounds access.

We explicitly remove the load-capability and store-capability
permissions from these capabilities before passing them to
native code. This ensures that the native code may not store
pointers in these buffers that it (or another sandbox) can later
retrieve. We also remove the permission to store data from
capabilities to read-only direct buffers.

There is one exception to this mechanism. Java arrays of
Java objects may be accessed only via copy in our model.
This is because the implementation of jobject (a memory
capability) is different from the JVM’s internal representa-
tion of a Java object reference. This would not be an issue for
a JVM that used memory capabilities to represent Java ref-
erences, although the trade-off space for performance versus
robustness in doing this is beyond the scope of this paper.

6.5 System calls from sandboxed code
The CheriBSD kernel prevents sandboxed code from issu-
ing system calls directly. Instead, each system call must
be proxied by the surrounding environment. Libcheri pre-
viously supported only a cut-down libc and had manual sup-
port for a small number of system calls. We first separated
the system-call layer from FreeBSD libc, allowing it to be
replaced by a version that issued a CHERI cross-domain
call with the same arguments. We then extended libcheri to
provide implementations of these and hooks for code using
libcheri to insert checks.

Interposition is a key policy primitive in capability sys-
tems [21], but poses challenges in the presence of concur-
rent resource sharing between mutually distrusting compo-
nents [36]. To avoid race conditions, interposition policies
must compensate for concurrent sharing, such as by copy-
ing pathname system-call arguments to non-shared mem-
ory before validating them and passing them on to the ker-
nel. Similarly, where system-call arguments are references to
process-scope resources (e.g., file-descriptor numbers), the
safety and validity of those arguments must be enforced. In
future work, we intend to explore mechanisms for allowing
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the kernel to implement this directly based on an application-
provided policy.

Our sandboxes use a full libc and make system calls
subject to policy from the JVM. The default behavior for
all system calls is to return ENOSYS. We then selectively
permitted them.

We began with the list of “safe” system calls from Cap-
sicum [35]. These are not all safe in the context of sand-
boxing (for example, arbitrary use of mmap can be used to
escape), but the majority are relatively benign. We protect
these with checks for a RuntimePermission with a new
"syscall") type.

We then protect the read and write system calls with
checks for the existing "readFileDescriptor" and
"writeFileDescriptor" RuntimePermission types. We also
reuse both of these types for checking kqueue. Finally, we
protect the open system call with the
FilePermission check. In a production implementation, we
would most likely provide hooks for more detailed checks.

For example, currently we completely prevent ioctl, be-
cause you must know both the type of the file descriptor and
the operation to determine what it will do. When permit-
ting direct access to hardware devices from sandboxed code,
we would want Java programmers to provide a policy that
restricts the sandbox to specific ioctls on specific file de-
scriptors.

6.6 Revocation and garbage collection
Native code may hold references to Java objects, which must
not be garbage collected as long as they are referenced.
When attempting to extend the Java model into native code,
we must extend the Java memory safety (including garbage
collection) into native code as well. The constraints and im-
plementation are slightly different, because the Java garbage
collector does not have to support adversarial code genera-
tion: the Java interpreter and JIT cooperate with the GC.

Revocation and garbage collection are logical duals. Re-
vocation ensures that references do not remain after the ob-
ject should no longer be accessible; garbage collection en-
sures that objects do not remain after they are no longer ac-
cessible. We must provide both, because the semantics of the
JNI APIs allow references that will extend the lifetime of ob-
jects as well as references that will become invalid (and must
not remain – thus allowing use-after-free errors to corrupt the
Java heap).

The JNI describes local references (which may not be re-
tained past the current method invocation), and global refer-
ences (which may be stored between invocations). As with
the rest of the JNI design, it is the responsibility of the na-
tive programmer to ensure that these references do not per-
sist too long in the native code. This is unacceptable for safe
implementation. We support a safe version of this interface
by tracking references that have been passed to native code
and marked as no longer needed (i.e., global references that
have been explicitly released or local references after the end

of the method invocation). We also have to track references
to pinned buffers to ensure that the underlying arrays or byte
buffers are not deleted (or moved) while a sandbox has a
reference to them.

Because CHERI allows the JVM to accurately locate all
pointers to the Java heap in native code, an implementation
using CHERI is not required to support pinning as long as
the garbage collector rewrites all pointers in native code as
well as those in Java. The continuously concurrent compact-
ing collector [31] used in Azul Systems’ high-performance
Java implementation could be extended to allow fully con-
current revocation and collection in native code with our de-
sign.

A background JVM thread inspects all sandboxes that
are not currently executing and scans the memory owned by
the sandbox to find any of these that persist. By default, we
provide 16MB of virtual address space per sandbox, and the
operating system provides physical pages on demand. We
use the mincore system call to check which pages have been
touched. We thereby ignore any pages in the virtual address
space that are not yet backed by physical pages.

All pointers in the native heap can be reliably identified
by their (hardware-managed) tag bit, so a single branch can
determine if a particular capability-sized data value is a valid
pointer. We ignore anything that is not a capability or a ref-
erence to memory owned by the sandbox; we then have two
cases to handle. If the object is sealed with a key identifying
it as an object pointer, then we perform a lookup in a per-
sandbox hash table to see if it is an object pointer that should
have been removed. Alternatively, if it is unsealed and points
to a range outside of the sandbox heap, then we search a red-
black tree to find the first delegated array that starts at or
before the start of this capability. We must do this slightly
more complicated check because the native code is able to
subset unsealed memory capabilities, and so may have de-
rived capabilities to smaller ranges within an array.

If the capability that we have found matches an object
capability or an array buffer to which the native code should
no longer have access, then we revoke the capability by
overwriting it with a NULL capability – which will cause
a trap (and subsequent Java NullPointerException) if it is
used.

Direct buffers present a challenge in this regard, as the
JNI provides methods for directly accessing the memory
owned by ByteBuffer objects, but does not provide a mech-
anism for informing the JVM that this access is no longer
required. The native-code programmer is responsible for en-
suring that the object persists for longer than the pointer. We
pin these objects in memory until we have completed a scan
of the sandbox and failed to find a capability to any of their
buffer. We use the same mechanism to catch accidental re-
source leaks, where a native programmer has failed to call
the JNI function that removes its reference to an object or
array. This is implemented by a mark bit in the metadata
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for everything that we have delegated. After scanning the
sandbox, we walk the hash table and tree, removing any un-
marked entries, to implement a simplified mark-and-sweep
collector.

The revocation policy has a similar set of constraints to a
general garbage collection. We could run the revocation pass
synchronously at the end of each method invocation (and did
in our first prototype). This returns memory to the JVM as
soon as it is no longer required by the native code, but comes
with a significant penalty in the cost of a method invocation.
In our later implementation, we record the number of times
that a sandbox has been invoked and run the revocation in a
background thread once this count has passed a threshold.

In a production-quality implementation, we would expect
the revocation and garbage collection for native code to be
tightly integrated with the Java garbage collector.

6.7 Compatibility versus performance
Our prototype implementation uses pure-capability code in
the sandboxes. This gives the best security, but at the expense
of some run-time overhead related to cache pressure from
larger pointers. There are two other points on the spectrum
that are worthy of consideration.

The first is to adopt the same design choices as Arabica,
but use CHERI capabilities as the sandboxing mechanism –
with unmodified MIPS binaries inside the sandbox. Unlike
Arabica, this would allow stack unwinders and JIT compil-
ers to run inside the sandbox. We did not pursue this ap-
proach because it would provide only small improvements
over pure-software approaches. It would give us sandbox-
ing, but would make various forms of delegation harder. We
would not be able to provide direct buffer access, and object
pointers would have to be indexes into a table of capabilities.

Table-based representations for object pointers make it
difficult to spot accidental use-after-free errors. Consider the
case where one part of the code informs the JNI that it no
longer needs an object reference, but fails to zero it, and
another causes the corresponding table index to be reused
for another object. We would have no way of telling if a use
of that object reference intended to use the first object or the
second. With the pure-capability model, object references
are distinct and can be accurately located on a native heap.

We also consider fine-grained memory safety within the
C code to be advantageous, as it protects against a variety
of programming errors. Sandbox setup initially grants the
native code access to its entire heap space via the default data
capability, so the fine granularity here is advisory. It is still
possible to run code that is not memory safe with respect to
its own stack and heap, but we gain protection against several
vulnerability categories from well-intentioned yet buggy C
code.

An alternative design would be to use the hybrid ABI and
modify the JNI callbacks slightly, so that the direct buffer ac-
cesses would return __capability-qualified pointers. This
would allow JNI code to use unmodified binary libraries,

but would require source changes to the JNI portions. We
rejected this design because we considered source compati-
bility to be of primary importance. It would be worth revis-
iting for situations where native code must use binary-only
libraries, but where the JNI wrappers can be easily modified.

7. Evaluation
Our evaluation consists of both quantitative and qualitative
portions. We first present an evaluation of the functionality
and security benefits of our approach, then explore the costs.

7.1 Experimental setup
Our prototype uses JamVM, and the GNU classpath imple-
mentation of the Java standard library. The speed of Java
code will be disproportionately lower than native code, when
compared to desktop or server JVMs, which make use of
advanced JIT compilation techniques (although with sim-
ilar performance to JVMs intended for embedded IoT-like
uses). To avoid biased results from this discrepancy, we re-
strict ourselves to comparing the performance of unsand-
boxed native code and sandboxed native code – eschewing
comparisons with native-to-Java performance. This prevents
us from demonstrating macro-benchmark results, where our
overhead would appear very small as a result of the Java code
taking a disproportionately long time to execute.

Our experimental platform is the CHERI processor syn-
thesized for an Altera Stratix IV FPGA, a pipelined single-
issue in-order 64-bit MIPS compatible core running at
100MHz, with 32KiB L1 caches, a 2-way set associative
ICache and 4-way DCache, with a shared 256KiB 4-way L2
cache. The size of these caches match the L1 and L2 caches
of Intel’s Core architectures as well as the cache heirarchy of
typical ARM Cortex A53 implementations. While absolute
performance of this FPGA prototype is low compared to an
ASIC, the architecture has been designed to yield measure-
ment of representative relative overheads.

As with other JVMs, JamVM is multithreaded; thus, there
is noise in our results from other threads preempting our
benchmark thread, which we minimize through multiple
benchmark runs. The error bars for the graphs are 99% con-
fidence intervals from Welch’s t-test.

7.2 Functional evaluation
We have a set of functionality tests that check the various as-
pects of our implementation – for example, that the capabil-

JITs Stack Many Direct
Mechanism unwinders sandboxes buffers

Process X X × ×
Arabica × (X) × ×
CHERI X X X X

Table 2. Summary of the features of CHERI JNI sandbox-
ing in comparison to state of the art implementations.
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ity returned when native code requests access to a read-only
ByteBuffer does not have store permissions. All tests pass.

We next demonstrate that we can implement those parts
of the JNI that approaches focused purely on sandboxing
have struggled with – as summarized in Table 2. In partic-
ular, we support all of the features required for zero-copy
access to arrays and byte buffers, including read-only direct
access.

In common with process-based sandboxing approaches,
we support running arbitrary code inside the sandbox. This
includes JIT compilers (for example, for JavaScript scripting
in a Java application), which may generate arbitrary code.
It also includes hand-written assembly code (e.g., crypto-
graphic routines). In contrast, SFI-based approaches support
running only code that passes the native code verifier.

The same applies to stack unwinders. Modern C++ imple-
mentations emit metadata describing the stack layout where
values are spilled, which is then read by a library that walks
the stack. NaCl (in Arabica) supports this specific use of a
stack unwinder by providing a stack unwinder that runs out-
side of the sandbox (adding the cost of a domain transition
to the cost of throwing an exception). This unwinder en-
sures that the target for a cleanup or catch handler is a valid
code address. The unwind metadata format is defined by the
sandboxing framework, and cannot be changed. In contrast,
CHERI and process-based sandboxing will fault on invalid
program-counter values.

Arabica listed support for multiple sandboxes as future
work, but we have been unable to find evidence that this was
completed. Supporting multiple sandboxes in process-based
isolation runs into MMU and IPC scalability limits; it has
been shown that CHERI scales significantly better [34].

No other approaches permit direct access to buffers,
which the authors of the NIO specification [2] argued is
essential for high-performance Java.

We are also able to use the CHERI sealing mechanism
to provide efficient type checks on all pointers passed from
the JVM to native code and back again. This avoids various
type-confusion attacks that prior approaches could prevent
only by incurring the overhead of a lookup-table mechanism.

7.3 Security evaluation
We sought to know how well our implementation would
have protected the integrity of the JVM in the presence
of past bugs in the use of native code with Java. To this
end, we examined the vulnerabilities found in native code
accompanying Java 1.6 by Tan and Croft’s comprehensive
study [30]. This study relates to an old version of the Java
standard library, yet still provides some useful insight into
the categories of vulnerability that can occur in mixing Java
and native code. Their work found 126 bugs in JNI usage, of
which 59 were security critical. We have examined which of
these could have been prevented if the relevant methods had
been sandboxed with our implementation.

11 of the 59 bugs were related to mishandling exceptions
in native code. When Java code throws an exception, con-
trol is immediately transferred to the error handler. When
native code throws a Java exception, the control flow transfer
does not occur until the native code returns. We did not mod-
ify this behavior; however, the bugs in this category are no
longer security critical. These all follow the pattern of check-
ing that an operation will not overflow a buffer, throwing an
exception if it will, and then forgetting to return and doing
the unsafe operation anyway. In our implementation, these
and five other buffer overflows would have triggered a forced
unwind of the trusted stack and a NullPointerException,
rather than a buffer overflow.

The next three security-critical bugs were race conditions
in file accesses. These are all time-of-check-to-time-of-use
errors. They would not have been prevented by our imple-
mentation, but we note that it would have been possible to
produce similar errors in pure Java code – and so we do not
regard them as bugs related to language interoperability.

The remaining 40 errors are related to insufficient error
checking. Some of these are questionable, for example fail-
ing to check for malloc failure: On systems that perform
memory overcommit such as Linux malloc will fail only if
you run out of virtual address space, but may later tigger seg-
mentation violations when accessed. In this case, we provide
more robust checking, as the segmentation violation in na-
tive code would be caught and turned into a Java exception,
as would the NULL pointer dereference in an implementation
where malloc returned NULL.

The remaining 35 relate to missing NULL pointer checks
or the kind of type-confusion attacks that described in Sec-
tion 6.3. We would transform all of these into non-security-
critical recoverable errors.

As such, we would provide a defense against 56 of 59
security critical bugs described by this study.

27 of the bugs that were not classed as security critical
triggered memory leaks in Java code as a result of native
code forgetting to release access to arrays. These may not
be directly exploitable, but could lead to denial of service
attacks. In our implementation, the garbage collector will
detect that no references to the arrays remain and release
them automatically.

This taxonomy did not investigate bugs in library code.
For example, the Java version that they inspected used zlib
1.1.3, which contained a buffer overrun in the use of the
gzprintf function (CVE-2003-0107). Inputs triggering this
vulnerability would have caused a recoverable error in our
implementation instead of memory corruption.

7.4 Performance measurement
We follow the example of the Sun Labs work [7] in using
a simple microbenchmark of squaring a matrix to measure
how the cost of the domain transition scales with respect
to the amount of data and the resulting compute time. We
wished also to explore the cost of memory copying, which is
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required by any attempt to sandbox native code without fine-
grained memory safety. To explore the best possible case for
such an implementation, we provided a version that has no
sandboxing, but copies the input from the Java heap to the
C heap before processing, produces results on the C heap,
and then copies the results back to the Java heap. This shows
the performance that would be achieved by sandboxing the
native code using a hypothetical technology that had zero
overhead for both execution time and domain-crossing, but
no fine-grained memory safety.

The cost of using a global CHERI sandbox is dominated
by a significantly higher cost of each domain crossing. This
benchmark is implemented as a native method that takes
three arrays (two for the input matrices, one for the output)
and stores the cross-product of the two in the third. Each
invocation therefore performs seven cross-domain calls: one
for the JNI invocation, three each to get and release the array
data.

The non-linear access patterns of this benchmark make
it particularly susceptible to cache and TLB effects. Each
run of the benchmark invoked the multiplication method 10
times and our results are from 200 runs for each size of
matrix.

This benchmark demonstrates a high overhead (around
5×) for methods that do trivial amounts of work, which com-
pares well with the published 7.2–16.5× overhead for simi-
lar workloads with Robusta and Arabica. There is also a high
(although comparatively lower, at around 1.7×) overhead for
simply copying the data in and out.

Figure 2 shows the extra overhead in cycle count for each
run approach above the unsandboxed MIPS baseline. As the
work done by the native method increases, the relative over-
heads decrease. By the time that we’re performing a cross-
product of a 50 × 50 matrix, the overhead for CHERI is
11.3 ± 2.4%, compared to 9.9 ± 2.2% for the pure copying
approach. In other words, if another sandboxing mechanism
had zero overhead but did not provide fine-grained memory
safety, then it would not be faster than CHERI to a statisti-
cally significant degree in this benchmark.

The CHERI implementation has a theoretical O(1) over-
head from the cost of the more expensive domain crossings,
whereas copying has O(n) cost in the number of elements
in the matrix (O(n2) in the size of one side).

In real hardware, the overheads are not quite the same.
The cost of memcpy does not scale linearly with the size of
the data being copied. It has a fixed cost for the function
call and then discontinuities as the data size grows past
cache and TLB sizes. Similarly, the CHERI case has a fixed
overhead for each domain crossing, but has some secondary
effects in perturbing the TLB caused by the sandboxed code
using a stack and code in different pages to unsandboxed
code. As the data size passes two pages, the TLB aliasing
issues become more pronounced in both cases, and we see
an increase in overhead for both. We also see a speedup
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Figure 2. Matrix multiplication overhead relative to MIPS

in a small number of cases for the copying variant where
the baseline suffers from cache aliasing between instruction
fetch, the two input buffers, and the output buffers.

We next explore the costs of real-world code for which
security can be important. Zlib is a library with a less-than-
stellar security track record; it is commonly used from Java
for performance reasons. It is therefore a good candidate
for using in a more secure way. The majority of the CVEs
for zlib to date relate to the decompression path (for ex-
ample, CVE-2005-2096, CVE-2003-0107, and CVE-2002-
0059), and so we hypothesize that it is more dangerous. We
therefore choose to place the compression path in a global
(persistent) sandbox, but protect the decompression path by
placing it in a method-scoped sandbox that is automatically
reset between invocations.

Figure 3 shows the cycle overhead for compressing
buffers of varying sizes with zlib, using the default com-
pression settings. The native code requests direct access to
two byte buffers (one for the uncompressed data, and one
for the output) and their lengths, giving a total of four invo-
cations of JNI functions from within the native method. The
CHERI version uses a global (persistent) sandbox, the MIPS
(copy) line shows a version that performs a redundant copy.

For larger data sizes, the sandboxed version runs around
20% faster than the unmodified MIPS binary, although it’s
worth noting that this speedup comes primarily from im-
proved addressing modes in CHERI. Opcode space con-
straints required CHERI to have a single addressing mode
for capability-relative loads and stores. This mode computes
addresses from a capability register, an integer register, and
a small immediate. In contrast, MIPS loads and stores take
a single integer register and a (larger) immediate offset. In
capability-rich code, CHERI’s loads and stores can be more
efficient.

This shows that relatively minor changes to the ISA have
significantly more impact on performance than our sandbox-
ing model. In the worst case (compressing only 32 bytes),
we see around a 15% overhead (although there is significant
variation between runs for this small size), which quickly
drops off for larger sizes.
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The version that performs a redundant copy is not al-
ways slower than the vanilla JNI. Close inspection of the
performance-counter results indicates that this is likely to be
caused by moving the buffer to a different address, which af-
fects aliasing in the L2 cache. In the worst case, this shows
just over 5% overhead, and in the best case a 1% speedup.
This demonstrates that the overhead for our sandboxing ap-
proach is within the noise for small variations of memory
layout and instruction-set design.

We contrast this with published results [27], which show
overhead for Arabica with two JVMs, and for Robusta. The
smallest data size that they benchmark is a 1KB buffer,
which is already in the range where the CHERI version is
faster than MIPS. The overhead of Arabica is around 20%,
and Robusta just under 10%.

Figure 4 shows the overhead in decompressing the same
data. Every method invocation in this benchmark will create
and destroy a sandbox. This is an expensive operation, in-
volving remapping memory for the sandbox heap, initializ-
ing any global capabilities, and so on. There is further room
for optimization, but the current implementation provides a
good worst case for comparison. Prior work has used persis-
tent sandboxing; unlike the previous results, these cannot be
directly compared with other approaches.

The costs of sandbox creation dwarf the costs of the work
in the method for small quantities of data. Our smallest
sample (decompressing 11 bytes and producing 32 bytes of
uncompressed data) spends just under 3% of the time inside
the sandbox, with the rest spent on creation and tear-down.
This is obviously an extreme case: the overhead drops off
rapidly as more time is spent inside the sandbox. It is also
worth noting that, for small data, a pure Java implementation
in a modern JVM would likely have adequate performance.

By 64KB of uncompressed data, the overhead is down
to 15%; shortly above this we see that the overhead of a
redundant copy exceeds the overhead of sandbox creation.
This means that any SFI or process-based approach would
be slower above this size even if the cost of creating and
invoking the sandboxes were zero. This graph uses a log-
log scale, and so the absolute overhead is hard to see. The
important result to note on this graph is the highlighted
crossover point.

Finally, we measured the overhead on system calls. A
simple benchmark calls getpid() (a trivial system call that
returns a value without any locking) in a loop. We ran this
benchmark in a global sandbox and with the conventional
implementation. We also ran the sandboxed version with a
trivial SecurityManager installed.

The absolute worst case for system call performance
has no upper bound because the SecurityManager is al-
lowed to run any arbitrary code. We saw an overhead of
422.8%±0.8% with no security manager and with a trivial
one 455.0%±1.0% (with the usual caveat that Java execu-
tion in JamVM is slower than most Java implementations).

This cost is fixed relative to the amount of work that the sys-
tem call performs, and it would drop off quickly for system
calls that do useful work.

7.5 Real-world applicability
We recorded two traces using ARM’s Android simulator to
begin to investigate how applicable these techniques would
be in the real world. The first traces the Android boot, the
second traces 30 seconds of a game of Angry Birds. Both
record entry and exit to native code, and calls back to the
JVM to access native arrays and direct buffers.

Figure 5 shows the distribution of array accesses (bytes
shared per JNI invocation) in the Android boot trace, exclud-
ing around 100,000 calls that did not access any shared data.
Some of these could be trivially elided if domain transitions
were expensive (for example, readBytes with a null array or
zero length is a no-op). Many others are not security domain
transitions, for example didPruneDalvikCache is invoking
a JVM service, not anything outside of the VM. The most
common size for sharing in this trace is 40 bytes (which is
the default size of a string object), but there is a long tail up
to almost 400KB.

Many of the 8KB buffers are shared between native and
Java code. These are in the region where the cost of copying
or page flipping would often dominate, yet a CHERI domain
transition would be cheap.

The Angry Birds trace was less informative. It appears
that the game sets up sharing between native and Java code
early on, and then simply passes notifications between the
two.

Android already includes a special mode for the JNI
(dubbed CheckJNI), which provides a subset of the guaran-
tees of our implementation. This mode is enabled in debug
builds, but is turned off for deployment because the over-
heads are too great. Running the Android Java test suite
shows an overhead ranging from under 1% to almost 100%
(double the run time of the normal JNI implementation), in
pure Java workloads with the only JNI usage coming from
standard library functions implemented in native code. The
only times that we saw overheads this high with CHERI JNI
were microbenchmarks of JNI invocations that were entirely
dominated by domain transition overhead. We therefore be-
lieve that a CHERI design should approach the performance
of the normal JNI, yet with a superset of the guarantees of
CheckJNI.

7.6 Analysis of costs
To quantify our overheads, we recorded instruction traces
for invoking an empty method via the sandboxed JNI. The
results in Table 3 show that most of the cost is sandbox
creation.

For persistent sandboxes, this is amortized across multi-
ple invocations, but represents around 98.5% of the total in-
structions for the first invocation. The CHERI cross-domain
call is a fairly minor part of our total overhead, at only
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Figure 5. Sizes of array accesses in JNI invocations.

around 12% of the total of the remainder. Most of the rest
of the overhead comes from various bookkeeping activities.
This code is not aggressively optimized, and uses off-the-
shelf data structures (the FreeBSD red-black tree implemen-
tation and the UTHash hash table); thus, there is likely sig-
nificant room for improvement in a production-quality im-
plementation.

8. Limitations of the JNI
Our experiences have led to a number of observations about
the design of the JNI, which we hope will be of benefit to
future language implementers. In spite of being explicitly
designed without security in mind, we were pleasantly sur-

Stage Instructions
Argument handling 160
Sandbox creation 216,204
GC bookkeeping 2,463
C argument frame setup 108
Cross-domain call 393
Java stack return 77
Sandbox Teardown 11,727
Total 219,405

Table 3. Instruction counts for invoking a sandbox.

prised by how easy it was to compartmentalize C code using
this interface. There is no requirement that C code ever have
direct pointers to the Java heap (with the exception of the di-
rect buffer APIs, which may return “not implemented”). As
a result, implementations where the native code is in a dif-
ferent process or in a NaCl or CHERI sandbox are possible.

The experiences are not all positive. For example, there
is no type safety on method invocations from native code.
On CHERI, we can use the tag bit, along with the sealing
type, to differentiate object and non-object arguments from
the caller. This avoids the most dangerous form of type con-
fusion, where the Java code interprets a non-pointer value as
a pointer.

Although useful for efficiency, the direct buffer access
APIs make lifetimes implicit. This is problematic, as there
is no explicit notification that native code has finished with
the buffer; instead the native code is responsible for ensur-
ing that the object persists for as long as it retains a ref-
erence. The NewDirectByteBuffer interface is particularly
tricky, as the memory is allocated by the native code and
must be freed by the native code (to avoid a memory leak),
yet there is no mechanism for ensuring that the lifetime of
the object exceeds the lifetime of the memory. We observe
that NewDirectBuffer is rarely used. In the version of GNU
Classpath that we are using, it is used twice in the same class
(java.net.VMNetworkInterface) – a low-level class encap-
sulating information about a networking adapter. This class
must perform operations that are not permitted to Java code,
yet is not performance sensitive; restructuring the code to
have the buffer provided by the Java code would be rela-
tively easy.

9. Related work
We have discussed prior approaches to enforcing parts of the
Java security model in Section 4. The obvious way to pre-
serve the JVM’s integrity guarantees in C code is to trans-
late the C code to Java bytecode. This approach is taken by
Jazillian (commercial, now defunct), Novosoft’s c2j tool [3],
and Tangible Software Solutions’ C++ to Java Converter [4],
although most have issues with some C constructs such as
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unions and goto. The various Ephedra publications [14–16]
provide detailed coverage of this approach. A similar ap-
proach was taken by Microsoft in the various versions of
C++ that target the CLR [5], providing both a subset (remov-
ing unsafe features) and superset (adding better integration
with other .NET languages) of C++ that compiled to CIL.
This approach provides a good way of migrating legacy code
from C to Java; however, for new uses of native code, it must
(for example) make system calls, or else generate executable
bcode.

Other work has been conducted on providing memory
safety to C. In hardware, this includes research projects
such as HardBound [8] and commercial products such as
Intel’s Memory Protection Extensions [11]. Hardbound was
followed by a software-only approach, SoftBound [22], and
similar ideas were adopted by the Address Sanitizer [25].

Software compartmentalization has a long history based
on a range of hardware- and language-based techniques.
Karger proposed that fine-grained access control (via hard-
ware capability systems) could mitigate malicious soft-
ware [12]. Process-based privilege separation using Memory
Management Units (MMUs) has been applied to OpenSSH [23],
FTPd [13], Chromium [24], Apple iOS/Mac OS X [37], and
in Capsicum [35] – although with substantial performance
overheads and programmming complexity. More recently,
hardware primitives such as Mondriaan [38], CHERI [34],
and CODOMs [32] have extended conventional MMUs
to improve compartmentalization performance and pro-
grammability.

Java sandboxing develops a mature and complex policy
mechanism on top of language- and run-time-imposed mem-
ory safety [9], but leaves open the possibility of misbehav-
ing native code. Language-based capability systems, such
as Joe-E [19] and Caja [20], allow safe compartmentaliza-
tion in managed languages such as Java – but likewise do
not extend to native code. Software Fault Isolation (SFI)
techniques [33], such as NaCl [40], transform code to im-
pose coarse-grained sandboxing, but have difficulty express-
ing fine-grained memory sharing. As discussed in Section 4,
process- and SFI-based native-code sandboxing for Java has
encountered performance and expressiveness limitations.
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11. Availability
We have released the CHERI hardware and software stacks,
specifications, and manuals, as open source:

http://www.cheri-cpu.org/

Our experimental data are available at:

https://www.cl.cam.ac.uk/research/security/ctsrd/data/

12. Conclusion
With hardware assistance, it is possible to provide to native code
all of the security guarantees that Java code expects.

We have demonstrated the feasibility of an implementation of
the Java Native Interface that is safe, yet implements all of the
features required to support the JNI. We have shown that extra
copying – something that the Java NIO framework was intended
to avoid – can have a greater performance impact than creating and
destroying a sandbox on every method invocation. This highlights
the benefits of providing fine-grained memory safety at an ISA
level, allowing it to be used from C to maintain invariants that are
expected from higher-level languages.

Even in our unoptimized prototype, overhead is negligible for
persistent sandboxes, and for ephemeral sandboxes processing
large amounts of data. We have shown that CHERI’s fine- and
coarse-grained memory protection are essential for efficient inte-
gration between high- and low-level languages.

We have extended the CHERI sandboxing mechanism to sup-
port callbacks and asymmetric distrust, demonstrating the flexibil-
ity of the CHERI instruction set in adapting to security models be-
yond those initially described. Our hardware-assisted implemen-
tation both supports more features and runs faster than a purely
software implementation.

References
[1] Java native interface specification. https://docs.oracle.

com/javase/7/docs/technotes/guides/jni/spec/

jniTOC.html. Accessed: 2016-07-25.

[2] Jsr 51: New i/o apis for the java platform. https://jcp.

org/en/jsr/detail?id=51. Accessed: 2016-07-25.

[3] Novosoft c2j. http://www.novosoft-us.com/

solutions/product_c2j.shtml. Accessed: 2016-07-
25.

[4] Tangible software solutions’ c++ to java converter.
http://www.tangiblesoftwaresolutions.com/

Product_Details/CPlusPlus_to_Java_Converter_

Details.html. Accessed: 2016-07-25.

[5] C++/CLI language specification. (ECMA-372), December
2005.

13 2017/1/27

http://www.cheri-cpu.org/
https://www.cl.cam.ac.uk/research/security/ctsrd/data/
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://jcp.org/en/jsr/detail?id=51
https://jcp.org/en/jsr/detail?id=51
http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.tangiblesoftwaresolutions.com/Product_Details/CPlusPlus_to_Java_Converter_Details.html
http://www.tangiblesoftwaresolutions.com/Product_Details/CPlusPlus_to_Java_Converter_Details.html
http://www.tangiblesoftwaresolutions.com/Product_Details/CPlusPlus_to_Java_Converter_Details.html


[6] David Chisnall, Colin Rothwell, Brooks Davis, Robert N.M.
Watson, Jonathan Woodruff, Munraj Vadera, Simon W.
Moore, Peter G. Neumann, and Michael Roe. Beyond the
PDP-11: Architectural support for a memory-safe c abstract
machine. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 117–130, New
York, NY, USA, 2015. ACM.

[7] G. Czajkowski, L. Daynes, and M. Wolczko. Automated and
portable native code isolation. In Software Reliability Engi-
neering, 2001. ISSRE 2001. Proceedings. 12th International
Symposium on, pages 298–307, Nov 2001.

[8] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve
Zdancewic. Hardbound: Architectural support for spatial
safety of the C programming language. SIGPLAN Not.,
43(3):103–114, March 2008.

[9] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going beyond the sandbox: An overview of the new security
architecture in the Java Development Kit 1.2. In Proceed-
ings of the Symposium on Internet Technologies and Systems.
USENIX, December 1997.

[10] Li Gong. Java security architecture revisited. Commun. ACM,
54(11):48–52, November 2011.

[11] Intel Plc. Introduction to Intel memory protection exten-
sions. http://software.intel.com/en-us/articles/

introduction-to-intel-memory-protection-extensions,
July 2013.

[12] P.A. Karger. Limiting the damage potential of discretionary
Trojan horses. In Proceedings of the 1987 Symposium on
Security and Privacy. IEEE, April 1987.

[13] Douglas Kilpatrick. Privman: A Library for Partitioning Ap-
plications. In Proceedings of 2003 USENIX Annual Technical
Conference, 2003.

[14] Johannes Martin. Ephedra - A C to Java Migration Envi-
ronment: Approaches, Case Studies and Tools for Migrating
Legacy Systems from C and C++ to Java. LAP Lambert Aca-
demic Publishing, Germany, 2009.

[15] Johannes Martin and Hausi A. Muller. Strategies for migra-
tion from c to java. In Proceedings of the Fifth European Con-
ference on Software Maintenance and Reengineering, CSMR
’01, pages 200–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[16] Johannes Martin and Hausi A. Müller. C to java migration ex-
periences. In Proceedings of the 6th European Conference on
Software Maintenance and Reengineering, CSMR ’02, pages
143–153, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

[17] Stephen Mccamant and Greg Morrisett. Efficient, verifiable
binary sandboxing for a CISC architecture. Technical Report
MIT-LCS-TR-988, May 2005.

[18] Marshal Kirk McKusick, George V. Neville-Neil, and Robert
N. M. Watson. The Design and Implementation of the
FreeBSD Operating System. Pearson, 2014.

[19] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A
Security-Oriented Subset of Java. In NDSS 2010: Proceedings

of the Network and Distributed System Security Symposium,
2010.

[20] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad,
and Mike Stay. Caja: Safe active content in sanitized
javascript, May 2008. http://google-caja.googlecode.
com/files/caja-spec-2008-06-07.pdf.

[21] Mark Samuel Miller. Robust composition: towards a unified
approach to access control and concurrency control. PhD
thesis, Johns Hopkins University, Baltimore, MD, USA, 2006.

[22] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and
Steve Zdancewic. Softbound: Highly compatible and com-
plete spatial memory safety for C. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 245–258, New
York, NY, USA, 2009. ACM.

[23] Neils Provos, Markus Friedl, and Peter Honeyman. Preventing
Privilege Escalation. In Proceedings of the 12th USENIX
Security Symposium. USENIX, 2003.

[24] Charles Reis and Steven D. Gribble. Isolating web programs
in modern browser architectures. In EuroSys ’09: Proceedings
of the 4th ACM European Conference on Computer Systems.
ACM, 2009.

[25] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer: A
fast address sanity checker. In USENIX ATC 2012, 2012.

[26] Joseph Siefers, Gang Tan, and Greg Morrisett. Robusta:
Taming the native beast of the jvm. In Proceedings of the 17th
ACM Conference on Computer and Communications Security,
CCS ’10, pages 201–211, New York, NY, USA, 2010. ACM.

[27] Mengtao Sun and Gang Tan. JVM-Portable Sandboxing of
Java’s Native Libraries, pages 842–858. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[28] Mengtao Sun and Gang Tan. Nativeguard: Protecting android
applications from third-party native libraries. In Proceedings
of the 2014 ACM Conference on Security and Privacy in
Wireless &#38; Mobile Networks, WiSec ’14, pages 165–176,
New York, NY, USA, 2014. ACM.

[29] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song.
SoK: Eternal war in memory. In IEEE Symposium on Security
and Privacy, pages 48–62, 2013.

[30] Gang Tan and Jason Croft. An empirical security study of the
native code in the jdk. In Proceedings of the 17th Conference
on Security Symposium, SS’08, pages 365–377, Berkeley, CA,
USA, 2008. USENIX Association.

[31] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The con-
tinuously concurrent compacting collector. SIGPLAN Not.,
46(11):79–88, June 2011.

[32] Lluı̈s Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Et-
sion, and Mateo Valero. CODOMs: Protecting software with
code-centric memory domains. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture,
ISCA ’14, pages 469–480, Piscataway, NJ, USA, 2014. IEEE
Press.

[33] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Su-
san L. Graham. Efficient software-based fault isolation. In

14 2017/1/27

http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf


Proceedings of the 14th Symposium on Operating Systems
Principles. ACM, 1993.

[34] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka,
B. Laurie, S. J. Murdoch, R. Norton, M. Roe, S. Son, and
M. Vadera. Cheri: A hybrid capability-system architecture for
scalable software compartmentalization. In 2015 IEEE Sym-
posium on Security and Privacy, pages 20–37, May 2015.

[35] R.N.M. Watson, J. Anderson, B. Laurie, and K. Kennaway.
Capsicum: Practical capabilities for Unix. In Proceedings
of the 19th USENIX Security Symposium. USENIX, August
2010.

[36] Robert N. M. Watson. Exploiting concurrency vulnerabilities
in system call wrappers. In WOOT ’07: Proceedings of the
first USENIX Workshop on Offensive Technologies, pages 1–
8, Berkeley, CA, USA, 2007. USENIX Association.

[37] Robert N. M. Watson. A decade of OS access-control exten-
sibility. Commun. ACM, 56(2), February 2013.

[38] Emmett Witchel, Junghwan Rhee, and Krste Asanović. Mon-
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