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1 Project Overview 

The goal of the G3card project is to explore the suitability of asynchronous logic in Smart 
Card processors as a means of increasing their robustness to attacks. 

Asynchronous logic dates back to the early computers. Their component and other 
tolerances were not tightly controlled – circuits were built from discrete components, 
some of which were individually made. Means of detecting the completion of  
computations had to be provided. Eventually, a `synchronous’ design style emerged using 
clocks to take all the worst case tolerances into account.. A few specialised asynchronous 
components remained, e.g. in communications, with buffers and synchronisers used to 
join the outside world to the clock-driven circuits. Recently, though, there has been a 
resurgence of interest in asynchronous circuits, as they have a number of virtues (such as 
low power and low RF emissions) that make them attractive in specific applications. 
Also, as feature sizes decrease into the deep submicron and transistor counts in ASICs 
climb past the million mark, the proportion of an ASIC given over to clock distribution 
and synchronisation increases alarmingly. 

Smart cards and other single-chip security processors were considered to be subject to 
two basic types of attack – invasive, where physical manipulation of the chip e.g. by 
drilling holes using a focused ion beam and attaching probes to get extra access to internal 
signals, and non-invasive, where there is no physical tampering but internal secrets may 
be deduced by monitoring the power consumed by the device or the time it takes to 
complete a transaction. 

The project aimed to improve the resistance of security processors to non-invasive 
attacks. One observation was many methods of attack used the chip’s clock to provide a 
reference for attacking the card. Removing the clock should make attacks harder. In 
addition, one asynchronous design style involves `dual-rail’ logic, in which the logic is 
balanced; each bit is signalled on a pair of wires with (for example) HL meaning `0’ and 
LH meaning `1’. In theory, such circuits can be built so that the correlation between the 
power consumed and the data being processed is zero. 

In addition, some attacks involve inducing transient faults in the target device by causing 
a particular component to fail, for example by inserting transients into the clock or power 
signals. Using dual-rail logic, it is possible to use the HH state as an alarm signal, and 
arrange matters so that the failure of a single transistor will result in a reset or safe 
deadlock. It should thus be possible to design out another large class of potential attacks. 

To test this principle, the project set out to build several different asynchronous 
processors, in order to gather knowledge and experience in an area where there is at 
present none. 

The test processors are versions of existing processors, so that comparisons can be made: 

1. XAP –  a simpler 16 bit processor currently used for cheaper and lower 
performance and power applications such as pagers. 

2. SmartMIPS – a 32 bit processor jointly designed by MIPS Technologies and 
Gemplus for smarcard applications. (Only some key blocks will be implemented 
in asynchronous technology.) 

3. ARM – this is the market leading general purpose 32 bit processor which is 
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widely licensed for applications such as mobile phones and set-top boxes. 

Until now, the countermeasures used to defend against both invasive and non-invasive 
attacks have been ad-hoc, employing a variety of hardware and software tricks of ever-
increasing complexity. These not only make maintenance and further development of 
smartcard products expensive, they also impose a significant cost in both silicon area and 
software performance, and are vulnerable to new twists on the established attack 
techniques. 

The project started from a belief that the time had come for a different approach – taking 
a whole systems approach. Much of the software countermeasures implemented today 
might be avoidable, or at least considerably reduced, if the hardware was intrinsically 
more difficult to attack. Since a major part of a smartcard’s code consists of software 
countermeasures to non-invasive attacks, and this is in ROM, this can be traded off 
against the extra silicon area for hardware countermeasures. 

In addition to developing more secure variants of the three chips mentioned above, the 
project also has two people working on developing new types of attack. In addition to the 
existing invasive and non-invasive attack techniques, they have developed a new, `semi-
invasive’ attack technology which greatly increases the competitive advantage enjoyed by 
the protective technologies we have created. 

Finally, we took a new look at how hardware countermeasures could be used by an 
operating system, and especially how to allow multiple programs to run safely without 
being able to interfere with each other. To complement this, we have also looked at a 
typical demanding algorithm for key generation and looked at what techniques can be 
applied here to reduce emissions and opportunities for “cracking”. 
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2 Background 

2.1 Self-timed logic 

For over three decades, people have been building processors with a central clock. 
Research in the 1950's indicated that clocked designs were smaller when implemented 
using the technology of the day; a clock acts as a global synchroniser so that the data 
marches through the circuits to the beat of its drum. This is possible where wire delays are 
less significant than logic delays, so that the clock appears almost instantaneously 
everywhere on the chip. As we move to the new era of deep sub-micron CMOS with 
extremely high clock rates, this basic premise no longer holds true. 

The predicted massive changes in implementation technology have prompted researchers 
around the world to re-evaluate and improve upon the self-timed circuit work of the 50’s. 
Recently, a self-timed version of the ARM – the Amulet – has been produced which 
delivers better MIPS per milliwatt than its synchronous equivalent. A self-timed version 
of the ARM CPU has been under development for a number of years and is on the verge 
of its first commercial exploitation in a telecommunications application. It employs a 
modular approach, based around a self-timed on-chip bus, and the asynchronous 
subsystem can readily be reconfigured for smart card applications. 

A number of studies and investigations have been performed in the past  years on the 
MIPS architecture by Copenhagen University , University of California on self timed 
versions of these architectures .  

In small processors, asynchronous design can also bring definite benefits. Self-timed 
variants of the XAP processor, a 16-bit processor for use in embedded applications, have 
the benefits of very low power (power consumption is data driven rather than clock 
driven), arithmetic fast enough for simple public key cryptography (a 16×16 multiply and 
32/16 divide both take ~0.5µs on the self-timed version) and very low levels of radio 
frequency interference (the lack of a clock means that the stray RF is spread-spectrum). 

The study of such processors has led to the realisation that they may offer further 
substantial advantages to the smart card designer. 

Firstly, they remain operational over a wide voltage and temperature range, independently 
of an external clock, and this together with the spread spectrum nature of the emitted RF 
and the non-deterministic nature of program execution timing gives a high level of 
intrinsic protection against power attacks – both active and passive. This protection may 
be further enhanced at essentially no cost by using dual-rail1 encoding techniques and by 
deliberately adding extra non-deterministic elements to the circuit.  

Secondly, a significant limitation of clocked smart cards is the standard external clock 
frequency of 3.57 MHz. Although this is multiplied up by phase locked loops, this makes 
them more vulnerable to signal injection. It also means that performance is limited, as 
high ratio Phase Locked Loops (PLL) are not very stable. Computation performance is 

                                                           
1 The key aim of dual-rail is to encode data validity with the value, so you need to encode {0, 1, invalid}. As this is 
more than two values it needs more than one wire. The sequence on the wire pair always alternates a value with 
invalid, such as 0n1n1n0n0n1n0n... (n=invalid) so the receiver can clearly see the transmitted symbols 0110010. On 
a single wire this would be indistinguishable from 01010 as there is no clock to define where one ‘1’ ends and the 
next starts. 
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tied to the clock (or a multiple of it), with techniques to switch clock rates during 
cryptographic operations. However, a self-timed Central Processing Unit (CPU) can 
process the available data at whatever speed it can, and use the externally supplied clock 
only for Input/Output (I/O) control. This means, for example, that one could build a small, 
simple crypto coprocessor, which performs modular exponentiations by doing shift and 
add at high speed; a fully self-timed design should have the intrinsic ability to do public 
key cryptography. 

Thirdly, the characteristics of self-timed circuits enable us to make them sensitive to 
changes in capacitance, resistance etc where we want to, and insensitive where we do not. 
This means that we can build in alarm mechanisms against probing in places where it 
would be a threat, such as register buffers, while reducing the rate of false alarms from 
normal environmental fluctuations. (These have been a significant problem with 
conventional smart cards; for example, low-clock-frequency detectors may be triggered 
by clock fluctuations as the card is first inserted into the reader.) Furthermore, the 
mechanisms used in self-timed logic can be extended to propagate alarm messages 
through a computation at very little extra cost. The effect is that the circuitry can be made 
intrinsically tamper-sensitive. 

There will no doubt be other opportunities (and problems) discovered as work progresses. 
However, by bringing together the top self-timed logic teams with the top chip security 
teams, we intend to be the first into the field, make the important discoveries, and 
understand the technology several years in advance of everyone else – including not just 
industrial competitors but also attackers. 

2.2 Attack technologies 

First generation smart cards could be defeated simply by techniques such as reading out 
bus line signals using microprobes. Second generation devices are significantly more 
difficult to probe – they have physical security features providing some protection against 
probing. 

Attack technology has progressed and second generation devices are now vulnerable:  

1. The development of the focused ion beam workstation (FIB) means that top metal 
layer defences can be defeated. Once rare, FIBs are now common2, as an essential 
tool for researchers in nano-technology and preparing samples for electron 
microscopy.  

2. The development of power, and differential power, analysis has enabled severe 
attacks on all of the currently available smart card processors. Each bit change on 
the bus of a smart card chip typically causes an extra 300µA of current, a 
measurable amount, to be drawn from the supply. If implementation details of the 
card software are known, this can provide a direct attack by enabling the values of 
keys and other secrets to be read out.  

Thus the level of protection which second generation smart cards offer against capable, 
motivated opponents is falling fast, and the number of people with access to the relevant 
attack tools and know-how is rising rapidly. Finally, the protection mechanisms that have 
been added to smart cards to date have been added piecemeal. As a result, the attack 
community has also evolved, step by step.  

                                                           
2 There are bureaux, which rent FIB time for a few hundred € per hour. 
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2.3 Societal needs 

A number of important European projects depend on the security of smart cards. Two 
examples are the proposed directive on digital signatures, and the recent change in the 
regulations for the tachographs used to record heavy vehicle drivers’ hours 

The first requires secure devices for the creation of digital signatures in order to promote 
trust in electronic commerce and online government. For the second, tachographs are due 
to move from paper recording charts to smart cards as soon as sufficiently secure smart 
cards can be manufactured. There are many other applications, particularly as multi-
application smart cards start to become necessary e.g. for 3G mobile 
telephony/commerce. 

A prerequisite for many of these applications is a device which is tamper-evident, i.e., on 
which the only feasible attacks involve its physical penetration with probing equipment. 
Current smart cards are not tamper-evident because of the ease with which non-invasive 
attacks can be carried out. They are therefore not suitable in their current form for many 
applications, ranging from electronic signature creation devices to drivers' cards for heavy 
goods vehicles. Other applications, such as health cards, may be held up by the general 
lack of trust in smart card security. The development of smart cards which are 
demonstrably tamper-evident is thus of enormous importance to the European 
Community's broader objectives.  

The results of the project are expected to improve the non-invasive tamper resistance of 
smart cards. 
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3 Results – summary 

After three years, the project has produced the following: 

1. A prototype XAP chip. As well as the intended secure XAP processor, the test 
chip contains, for the purposes of comparison,  three further asynchronous XAP 
processors, with different design styles, and a synchronous one. 

2. A prototype of the MIPS4Ksc™ 32 bit processor (SmartMIPS) variant whereby 
the Multiply & Divide Unit (MDU) has been redesigned to integrate both the 
clocked version and the fully asynchronous one. The latter has been developed in 
close cooperation with the TIMA lab (Grenoble, France). 

3. A prototype 32 bit completely asynchronous ARM processor, built in a new 
variant of asynchronous logic. 

4. A new design style of failure-evident asynchronous logic– secure dual rail. 

5. A set of tools for checking designs for some types of information leakage at the 
design stage, thus reducing the time and cost of prototyping. 

6. A prototype operating system that uses hardware security features to allow 
multiple applications on the same card in a secure manner.  

7. A new algorithm – elliptic point counting – for rapid generation of crypto keys, 
capable of being run on a smartcard, for potential future applications. 

8. A set of results, spread across the asynchronous design space, showing where 
asynchronous design can contribute to higher levels of security.. 

9. The development of a new family of semi-invasive attacks, in which one can 
either induce revealing faults in chips or read out memory contents directly, and 
using either lasers of induced electromagnetic fields.   
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4 Results – details 

4.1 XAP designs 

We produced two variants of the XAP 16-bit microprocessor: a conventional fully-
synthesised clocked version and a secure dual-rail asynchronous version.  Both designs 
used a conventional ASIC design flow for the low level aspects of the design and were 
integrated onto one 0.18um CMOS test chip code named Springbank.  This provided us 
with a unique opportunity to make a side by side comparison without having to take into 
account the effects of varying design and implementation technologies. 

The Secure XAP includes a bus cryptography unit (designed in conjunction with 
Cryptomathic) so that only encrypted data is written to memory.  The Springbank test 
chip also includes on chip memory (SRAM) and distributed asynchronous interconnect.  
It also has an I/O block which includes RS232, smartcard and parallel interfaces. 

The Secure XAP has demonstrably lower data dependent power emissions than the 
conventional synchronous counterpart.  See Figure 1 and Figure 2  below for an example 
of differential power analysis when performing a subtract on the two processors.  For 
these experiments, data was collected from the same program but with different data (for 
the subtract operation) which is shown in the magenta and blue traces.  These signals 
were obtained after 4000 cycles to reduce noise.  The difference is in green.  You will see 
that there is negligible power difference for the two runs.  Thus, it is far more difficult to 
undertake a differential power analysis (DPA) attack on the secure XAP.  Further details 
are available in a paper published by S.W. Moore et. al, Balanced Self-Checking 
Asynchronous Logic for Smart Card Applications, to appear in the Journal of 
Microprocessors and Microsystems.  Earlier work appeared in a paper by S.W. Moore et. 
al, Improving Smart Card Security using Self-timed Circuits, Proceedings of the Eighth 
International Symposium on Asynchronous Circuits and Systems (ASYNC 2002), IEEE 
Press, March 2002. 

During the G3Card project, ElectroMagnetic emissions Analysis (EMA) techniques were 
refined.  It was discovered that the Secure XAP was susceptible to this attack in much the 
same way as the conventional synchronous XAP.  Our improved understanding the EMA 
technique has allowed us to investigate countermeasures. 

Optical fault injection attacks have also been tried on the Secure XAP.  The dual-rail 
encoding scheme successfully detects many attacks.  Where full dual-rail encoding was 
not adhered to, the circuits could be broken.  However, full dual-rail encoded circuits 
were demonstrated to work very well. 

The areas where the Secure XAP was vulnerable were primarily due to small 
implementation oversights which did not impact the functional correctness.  Thus, it 
became quite apparent that we needed to be able to include security validation criteria as 
part of the design time validation process.  Thus, work towards the end of the project 
focused on design time security validation. 
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Figure 1 Secure XAP, Register Subtract 
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Figure 2 Synchronous XAP, Register subtract 

4.2 Prototype SmartMIPS 

The prototype asynchronous SmartMIPS™ developed in this project was integrated into a 
Testchip fitted onto an evaluation board bearing the basic needs for carrying out tests. 
Due to time restrictions only one part of the SmartMIPS™ was actually implemented into 
asynchronous technology. We chose the MDU because it is an important part in the 
MIPS4Ksc™ architecture. It is the block which performs, for example, the multiplication 
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instructions so heavily used for Public Key Cryptography. Apart from the MDU, the rest 
of the SmartMIPS™ was implemented in the ‘conventional’ clocked scheme. We also 
kept the synchronous MDU so as to allow fair comparison between the clocked MDU and 
its asynchronous equivalent. In the final prototype, the MDU was separated into two 
parts: 

•  Implementation of an asynchronous MDU using Tima’s in-house design 
methodology for implementing secure asynchronous logic 

•  Implementation of the mixed synchronous/asynchronous/synchronous interface to 
support communication between the rest of the processor and both the 
synchronous and asynchronous MDUs.  

The resulting Testchip was shipped in September 2002. It was successfully validated 
before shipment to our partners (NDS and UCL) for evaluation.  

4.3 SPA – Secure Asynchronous ARM 

The Amulet group's contribution to the G3Card project was to fabricate a completely new 
processor design based on the established ARM architecture. Priority in design was given 
to making the chip as secure as possible from non-invasive attacks attempting to 
determine the data being processed. 

The design of a completely new custom chip using a conventional approach was 
infeasible within the resources available to the project; the decision was therefore made to 
employ Balsa, an asynchronous system design tool set, which was in the process of 
development within the Amulet group. This required significant refining of the tool set 
and rewriting of its back-end to make it suitable for the security-oriented target circuits 
designed for the smartcard prototype processor core SPA (Synthesised Portable Amulet). 

A set of secure logic gates and storage elements was designed which minimised the 
variation in supply current which occurs when a CMOS circuit switches from one logic 
state to the other and which balanced as closely as possible the input to output delay 
variation depending on input signal combinations. Dual-rail encoding was used 
throughout the processor core to ensure a constant Hamming weight for all data fields.  
Additionally, storage elements were organised so that their contents were always returned 
to a null state prior to loading so that the loading of a new value always results in a logic 
value change in each bit thus minimising data dependent variations. 

Two SPA processor design implementations were integrated with memory systems, a 
UART and other ancillary units interconnected by Chain, the self-timed Network-on-
Chip, also developed within the Amulet group. The security oriented dual-rail, secure 
latch processor core which had been the focus of the design effort was the processor 
destined for smartcard applications; the other processor was synthesised from the same 
specification but implemented as a single-rail bundled-data design. Having both 
processors available on the chip made possible comparisons of the technologies employed 
and assessment of the effectiveness of the secure circuits designed for the smartcard 
processor. 

The decision to employ the experimental Balsa tools proved to have been correct; the 
design was completed and simulated well within the required timescale.  The G3Card 
chip was fabricated through the MOSIS service using a TSMC 0.18µm 6 layer metal 
process which runs the core cells at 1.8V and the pad ring at 3.3V. The prototype chip 
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occupies an area of 33mm2 and incorporates the two versions of the SPA processor, 192 
Kbytes of RAM, 256 words of ROM and several peripheral and experimental devices.  
The chip samples were shipped by MOSIS in October 2002. 

Basic power and timing analyses were conducted to obtain initial indications of the 
effectiveness of the secure design methodology against non-invasive attacks.  Five 
different instructions were selected as targets for power and timing analysis: ADD, 
BRANCH, MUL, SHIFT and XOR. These instructions are commonly used in 
cryptographic algorithms and are deemed the most likely to leak information through 
varying power consumption or timing. 

 
Figure 3 Single-Rail and Secure SPA Power Traces 

Figure 3 shows power traces for the execution of a SHIFT instruction. The upper window 
corresponds to the single-rail SPA. The darker traces correspond to executions of the 
same instruction with a different shift distance. The lighter trace corresponds to their 
difference. The lower window shows equivalent traces for the secure SPA processor. 
Clearly, the difference trace is much larger for the single-rail SPA, indicating that more 
information is leaked.  

Several experiments were conducted to evaluate the maximum potential side-channel 
leakage. In each experiment a single instruction was targeted using only two different 
data values. A successful extraction indicates that the correct value of the data was 
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extracted from the trace.  The Probability of Correct Deduction (PCD) is defined as the 
percentage of correct deductions in a set of experiments. 

 

ARM Instruction Single-Rail SPA Secure SPA 

 Simulated (%) Simulated (%) Measured (%) 

ADD 100.0   78.0   79.9  

BRANCH (conditional) 100.0 100.0 100.0  

MUL 100.0   85.1   68.5  

SHIFT (varying distance) 100.0 100.0   81.9  

SHIFT (varying data) 100.0   65.0   60.3  

XOR 100.0   67.0   61.3  

Table 1 Power Analysis: Probability of Correct Deduction 

Table 1 shows the results for the different instructions analysed, both for the single-rail 
and the secure SPA cores. A PCD of 100% indicates that the differences in the power 
consumption signature are considerable and data can be deduced easily. A PCD of 50% 
suggests, in these two-valued experiments, that no information is forthcoming and 
deduction is essentially random. 

The results shown in Table 1 are very encouraging. The single-rail SPA simulations show 
that 100% correct deductions can be obtained in every case, indicating poor resistance to 
power analysis. By contrast, the secure SPA yields much lower PCDs in most cases, both 
in simulation and in actual measurements. However, the analysis also shows that the 
BRANCH instruction is vulnerable in the secure SPA and should be corrected in future 
designs. 
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Figure 4 ADD Instruction Timing Analysis 

The same experiments were used to perform timing analysis. Figure 4 shows the results 
generated in the experiment targeting the ADD instruction, the secure SPA on the left and 
the single-rail SPA to the right. The x axis displays the range of times which each SPA 
takes to execute the instruction and the y axis indicates the number of cycles which fall 
into the respective bins. The darker bars in each chart show the execution of an ADD 
instruction which causes an 8-bit carry propagation and the lighter bars show those for a 
32-bit carry propagation. 

The figure clearly shows that the two sets of bars are almost fully overlapped for the 
secure SPA indicating that using an ADD instruction to process two different data values 
takes almost exactly the same time to complete (average 191.5 ns). In contrast, the two 
sets of bars are disjoint on the chart for the single-rail SPA.  The times fall into two 
separated groups, one averaging 89.3 ns and the other 95.1 ns. The difference between the 
two average times is about 6%. The larger variation indicates that the single-rail SPA 
leaks information much more severely than does the secure SPA. 



G3Card –Public Final Report 

IST-1999-13515 G3Card  14  G3Card Consortium – January 2003 

 

ARM Instruction Single-Rail SPA Secure SPA 

 Simulated (%) Simulated (%) 

ADD 100.0   51.0 

BRANCH (conditional) 100.0 100.0 

MUL   91.8   76.1 

SHIFT (varying distance) 100.0 100.0 

SHIFT (varying data) 100.0   51.9 

XOR 100.0   60.0 

Table 2 Timing Analysis: Probability of Correct Deduction 

As for power analysis, the probability of correct deduction (PCD) is used to evaluate the 
success of the analysis.  Table 2 shows the timing analysis results for the instructions 
targeted by the experiments. These results confirm that the single-rail SPA has poor 
security against timing analysis, since all instructions result in 100% correct deductions 
(with the exception of MUL, which is very close at 91.8%). These results highlight the 
significantly improved security of the secure SPA for most instructions, particularly ADD 
and XOR. The results also show that the BRANCH and SHIFT (varying distance) 
instructions are vulnerable in the secure SPA and this aspect should be addressed in any 
future design. 

Further experiments were conducted to evaluate the impact of the different security-
enhancing techniques used in the design. The same experiments mentioned earlier were 
repeated using the secure SPA with the configurable latches set as conventional (insecure) 
dual-rail latches. 
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Figure 5 Impact of Dual-Rail Encoding: Probability of Correct Deduction 

Figure 5 shows the power analysis PCDs for all the instructions targeted in the 
experiments. The dark bars correspond to the single-rail SPA and the light ones 
correspond to the secure SPA with the conventional dual-rail latches. These results show 
the impact of the use of dual-rail encoding without secure latches. 

Clearly, the dual-rail SPA has better PCD ratings in most cases, with improvements 
ranging from 2% to 15%. However, these results show that the use of dual-rail encoding 
alone is not likely to produce circuits with adequate security. 
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Figure 6 Impact of Secure Latches: Probability of Correct Deduction 

Figure 6 shows the power analysis PCDs for the secure SPA with the two different types 
of latches. The dark bars correspond to the conventional dual-rail latches while the light 
ones show the results of using the secure dual-rail latches. Clearly, the secure latches have 
a large impact on the PCD, indicating that their use can result in significantly enhanced 
security. The figure also shows that the SHIFT (varying distance) and ADD instructions 
did not benefit as much as the others, which requires further investigation. 

In conclusion the Amulet G3Card contribution has been to demonstrate the feasibility of 
using synthesis techniques to produce a commercial smartcard processor design with 
improved resistance to non-invasive attacks.  An analysis of the probability of 
distinguishing different data fields being processed in the secure chip compared with that 
for a conventional design clearly shows the benefits of the secure circuit design. 
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4.4 Asynchronous logic design styles 

The Cambridge and Manchester teams developed dual-rail asynchronous circuits with 
rapid alarm propagation.  The following data encoding scheme was used: 

 

Dual-rail Signal Symbolic Meaning 

00 Clear 

01 Logic-0 

10 Logic-1 

11 Alarm 

During conventional operation circuits move from the Clear state to the Logic (0 or 1) 
state and back again.  Injection of a fault will have one of the following results: 

•  A Logic state turns into an Alarm state raising the alarm 

•  A multiple fault causes a Clear state to turn into an Alarm state 

•  A Logic state turns into a Clear state which results in deadlock 

•  A Clear state will be turned into a Logic state which also results in deadlock 

The Springbank test chip (see Section XAP designs) embodied a processor constructed 
using these techniques.  We were able to demonstrate that these dual-rail circuits inhibited 
fault injection which was useful to an attacker. 

Dual-rail circuits have also been demonstrated to produce substantially less data 
dependent power since the transitions between Clear and Logic states can be made to 
consume constant power. 

The implementation approach taken by Cambridge was to hand craft much of the design.  
This reduced the CAD tool effort and allowed the relatively simple 16-bit processor 
designs to be completed for early evaluation.   

The Manchester Amulet team developed a more complex 32-bit ARM compatible 
processor employing dual-rail techniques and secure storage latches. A secure latch 
should be balanced in that its delay is not determined by the data to be stored; additionally 
however the possibility of determining the difference between the weight of a word 
loaded into a storage element and that of the word previously held should be removed. A 
conventional latch will exhibit current variations in proportion to the number of bits 
changed during the load. Explicitly resetting dual-rail latches prior to loading will remove 
the current variations due to differing data values, albeit at the cost of slower, more 
expensive storage. The design was accomplished using the Balsa asynchronous design 
tool-set as previously described. This tool-set required refinement and additions to its 
back-end to accommodate the secure logic gate and latch technology.  

Further results, circuit level details and validation approaches may be found in the 
publications listed at the end of this document. 
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4.5 Security by design – tools for checking 

It is common for security evaluations of hardware to be undertaken after the device has 
been manufactured.  This is a time consuming, expensive and error prone process.  None 
the less we have recently trodden this well travelled path to produce a test chip 
(Springbank) and evaluate it.  The design and evaluation of the Springbank test chip has 
taught us a great deal about the typical smart card design process.  We began this process 
in the traditional way with a requirements specification which included security 
properties.  This lead to us identifying key design criteria which steered the design 
process.  However, we lacked design time validation of the security criteria and we now 
know that some side cases were overlooked.  Even more worryingly, our colleagues 
working on attack technologies developed new attacks which we had not even considered 
during the design process.  What we seem to have recreated in our research project is a 
microcosm of current industrial practice. 

Having analysed security attacks on our circuits, we have been able to devise validation 
techniques which may be used at design time. 

Power Analysis: G3Card has been very focused on power analysis attacks.  We have 
determined that data dependant leakage may be detected at design time via systematic 
simulation.  Such simulations allow design comparisons to be made, though it is harder to 
predict the exact values of emissions.  The simulations we have undertaken for power and 
electromagnetic emissions are based upon switching activity.  In the case of power 
analysis, capacitance masks some of the information.  Similarly, for electromagnetic 
radiation one has to consider wave interference.  None the less, switching activity 
simulation gives a good approximation to the energy being consumed over time which is 
a good approximation for EMA and DPA. 

Fault Injection Analysis: Injecting faults into working processors can change the nature of 
data being treated or corrupt cryptographic computations in such a way as to unveil secret 
information.  Early forms of these so called active attacks were focused on the device's 
external interface and often involved introducing glitches on power or clock input pins 
{AndKuh96}. Changes in temperature, either by cooling or heating the whole device or 
the introduction of a temperature gradient, may also be used to induce faulty behaviour. 
Defences against such attacks are simplified by the restricted nature of the channel by 
which faults are injected and can easily be detected by incorporating a suitable tamper 
sensor.  Far greater control over the nature of the faults injected has been demonstrated 
recently. These attacks have included the use of localised EM pulses (by UCL), laser 
light, X-rays and local heating.  We have been able to model this range of physical 
phenomena which can trigger faults.  We can then model a wide range of attack scenarios 
from single to multiple transistors failures.  Given bounds on the control the attacker has, 
we can determine whether a fault can be injected without being detected. 

Our long term aim is to produce a validation suite which covers a range of fault induction 
and measurement possibilities which far exceeds current known attacks.  Using this 
approach we believe that security by design will become a far more powerful technique 
than security analysis post manufacture. 

4.6 Operating system security – benefiting from hardware improvements 

The smartcard processors developed in this project incorporate fine-grain memory 
protection units.  This hardware improvement can potentially improve the security of 
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smartcard applications in several areas: 

•  Resistance to glitch attacks; these rely on stressing the processor physically to cause it 
to execute an instruction in a faulty manner.  For example, the “test” operation at the 
end of a loop that is reading out memory may be skipped, causing the loop to be 
executed extra times and exposing the contents of more memory than was intended.  
If the memory protection unit is always set to the “most restrictive possible” state then 
this kind of attack is made much harder: not only must the correct instruction be 
glitched, the attacker must also find a way to disable the memory protection unit or 
arrange for it to be programmed incorrectly. 

•  Resistance to application programming faults; application programming errors that 
might previously have gone unnoticed, for example an access to an “unallocated” area 
of memory, will now be trapped automatically and will cause the application to fail.  
The application programmer can correct errors that are caught in this way during 
development.  Errors of this type that remain in the finished application will cause the 
application to fail when they occur, but should not affect the security of the card. 

•  Separation of applications into mutually-suspicious components.  The parts of the 
application that deal with issues like communication with the card accepting device 
and dealing with external requests can be completely separated from parts of the 
application that deal with encryption and key management.  Communication between 
these parts can take place across a well-defined internal interface, with checking on 
both sides: the part that deals with access to key material can have an internal policy 
that it will not perform operations using a stored key unless a correct PIN has been 
presented, and will refuse to do so even if asked to by the component that implements 
communication with the outside world. 

•  Separation of mechanism and policy.  Applications can be written to provide 
mechanism, for example performing operations using stored key material.  Policy 
about what to permit the application to do can be implemented in separate code that 
does not have access to the application’s internal data. 

A further benefit of  having a fine-grain memory protection unit is that multiple 
applications, written in the smartcard processor’s native machine code, can be supported 
on the same card without having to trust each other. 

The benefits listed above all derive from the presence of a memory protection unit, but 
this hardware requires careful management in order to deliver the benefits in a safe and 
usable way.  The project has developed an operating system that provides this.  The 
operating system consists of a small supervisor that runs when the card is reset, and a 
number of user-space modules.  The supervisor is responsible for low-level management 
of the MPU (and some other hardware resources, for example the countdown timers).  It 
provides protection-related services to the user-space modules and uploaded applications. 

The key concept supported by the supervisor is a protection domain (“domain” for short).  
A domain consists of a list of memory protection requirements: regions of memory and 
their accessibility.  The supervisor programs the MPU to meet these requirements 
(dealing with the limited resources of the MPU by swapping protection regions in and out 
as necessary).  Domains also contain some ancillary information: the address of a routine 
to call when a protection fault occurs, an execution time limit, and so on.  When the card 
is reset, the supervisor creates a domain that allows access to all of the resources on the 
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card, and runs the ‘init’ module. 

On its own the concept of a domain is not terribly useful.  However, the supervisor does 
not just support one domain at a time; instead it supports a stack of domains.  The current 
domain is the one most-recently pushed on to the stack; the supervisor programs the MPU 
only to allow accesses that are permitted by the current domain and all other domains on 
the stack as well.  Domains are exposed to user-space by a system call that allows the 
currently-running user-space code to push a new domain onto the stack.  This allows user-
space code to produce new execution environments that are more restrictive than the 
current one, and never less restrictive. 

When a protection fault occurs in the current domain, the supervisor pops it from the 
stack and calls the address specified in the domain descriptor.  This enables the “parent” 
of a domain, if it wishes, to handle faults that occur in that domain.  This mechanism can 
be used for a number of different things; the trivial case is that the child domain faults 
deliberately when it wants to return control (and a result) to its parent.  Faults also occur 
when the time limit assigned to a domain expires; in this case the parent can decide 
whether to allocate more time to the domain, call a different domain (enabling a simple 
kind of pre-emptive multi-tasking managed entirely in user-space) or give up and deal 
with the event as an error. 

If the parent is unwilling to handle the fault then it is propagated up the domain stack until 
a domain is found that is willing to handle it.  If the fault reaches the top of the stack and 
is still unhandled, the supervisor freezes the card; this is clearly an error condition. 

Domains can request services from their parents (and indirectly from the rest of the 
operating system) by executing a software interrupt instruction.  This causes a fault that 
their parent (or parents’ parent, or whatever) can handle, perform an operation (that might 
involve starting other domains) and eventually return control to the domain.  Parents can 
define any set of services they like to provide to their children in this way, and can also 
mediate access between their children and the rest of the operating system. 

The user-space section of the operating system has a fairly simple structure.  As 
mentioned earlier, the first user-space code to be called after card reset is the init module.  
This creates domain descriptors for its immediate children: the “comm” module that deals 
with communication with the card accepting device, the “rng” module which manages the 
card’s random number generation hardware, the “nvr” module which manages the non-
volatile storage on the card, and the “app” module which manages all the installed 
applications on the card.  There are a number of libraries that provide cryptographic and 
utility routines; these are called directly by application code (usually in a sub-domain to 
protect the application against faults in the library code and to ensure that the library 
routine has access to as little of the card’s resources as are required for it to complete its 
task). 

Init has access to all the resources of the card, and so is kept very simple with static 
memory allocation and static policy.  Its main job is to pass requests between app and the 
other modules.  Its only important policy is over ownership of the APDU buffer, the area 
of memory used to pass APDUs between the comm and app modules; both of these are 
allowed access to the buffer, but only one of them at any one time. 

The app module is the most complex of the OS-provided modules.  It keeps data relating 
to all of the uploaded and instantiated applications.  When an APDU arrives from the card 
accepting device, it is passed to app which inspects it; if it is a SELECT APDU then app 
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consults its list of applications, starts up the appropriate one (in a sub-domain) and passes 
further APDUs to it.  App provides a number of services to applications; it mediates inter-
application calls, and it enables applications to access their own areas of non-volatile 
memory. 

App itself is policy-neutral; its default policy for all operations is just to do them.  More 
sensible policies can be specified in a special “policy application”.  This is uploaded to 
the card like any other application, but instantiated using a special call to app.  Once a 
policy application is installed, app will consult it before performing any operation 
(including allowing the upload of new applications, deleting old applications, permitting 
any inter-application call, and allowing any allocation of non-volatile memory).  The 
ability to specify card policy safely in native code gives G3CardOS great flexibility; for 
example a “transport key” feature could be included in cards at manufacture time that 
prohibits the upload of new applications until a key is supplied to the card. 

4.7 Elliptic curve cryptography on smartcards 

Elliptic curves  

Elliptic curve algorithms are emerging as secure and efficient alternatives to the RSA 
algorithms. Several standardization bodies (e.g. IEEE) are working on cryptographic 
protocols using elliptic curve cryptography. 

Elliptic curves are defined by an equation of the following form, over a finite field: 

 y2 = x3 + ax + b (mod q) 

Here q is an odd prime power. Elliptic curves can also be defined over fields with an even 
number of elements. Then, an equation of the following form is used: 

 y2+xy = x3+ax+b  (mod q) 

Here the operations “+” and “.” are not ordinary integer arithmetic, but operations over 
the finite field. 

The points on the curve, i.e. the pairs (x,y) satisfying the equation, together with a special 
point at infinity, form a group. 

The main attraction of elliptic curve cryptosystems arises because the analogue of the 
discrete logarithm problem on these curves is apparently much harder than the discrete 
logarithm problem in Z^*_p and the integer factorization problem. 

Consequently, in elliptic curve cryptosystems the same level of security can be obtained 
working in much smaller fields. 

Point counting 

The generation of suitable elliptic curve parameters is the major obstacle in an elliptic 
curve environment. In order to resist known attacks, it is required that the number of 
points on the curve should not be smoothly factorizable. The most popular way to achieve 
is, is by generating a random curve and determining (“counting”) the number of points on 
it.   

Advanced mathematics seems to be required in order to determine the number of points 
efficiently. 

 A completely new algorithm, for counting points on elliptic curves over finite fields of 
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small odd characteristics, has been discovered by T. Satoh. It uses a lot of the arithmetic 
of elliptic curves such as lifting to characteristic 0, small Frobenius maps, isogenies, p-
adic numbers and trace calculations. The original Satoh method doesn’t work for curves 
over fields with an even number of elements. 

Cryptomathic has managed to develop an algorithm that solves this problem.  

 Because smartcards have constraints on memory size and code size, and will remain to 
have them in the foreseeable future, this new counting method was revised to become 
better suited for these restrained environments. 

Software countermeasures against side-channel attacks 

Also during this project, we studied software countermeasures that can be taken to protect 
cryptographic protocols using elliptic curve cryptography. These software 
countermeasures can be used on top of hardware security measurements. 

The countermeasures described in the literature were classified according to the level on 
which they operate. Some examples of the countermeasures we studied are: different 
techniques for masking points and scalars, the use of randomized projective coordinates, 
unified addition formulas. We generalized some of the countermeasures. Secondly, the 
resulting decrease in performance of the different countermeasures was compared. We 
also studied the counterattacks that were proposed in order to circumvent the 
countermeasures.  

Conclusion 

During this project we developed efficient algorithms and implementations for generating 
cryptographically secure elliptic curve parameters in a smartcard environment.   

We also investigated the security of cryptographic protocols based on elliptic curve 
cryptography, and how software techniques can complement the hardware security to 
achieve maximal resistance against side-channel attacks. 

4.8 Measured improvements to security from asynchronous logic 

At the time this report has been handed in, tests were completed on the XAP processor 
and on the SmartMIPS. The first of those two chips under test was the XAP processor 
designed by the University of Cambridge. The Springbank chip consisted of several 
versions of the same 16-bit RISC processor, one of which is a ‘conventional’ clocked 
circuit (the SyncXAP) and one other being the SecXAP, a dual rail with RTZ 
asynchronous circuit. With those two processors, we carried out comparative tests based 
on four attack techniques. 

Power Analysis showed that both the SyncXAP and the SecXAP leak information through 
Hamming weight current consumptions. However, it is shown that for the asynchronous 
circuit, this power signature is reduced by a few dB. The principal reason for the 
persistence of information leakage in the SecXAP is proposed as being due to design 
issues where the automatic place&route tools used produced wires of uneven, unbalanced 
lengths. 

Electromagnetic Analysis yielded the same kind of results as for the Power Analysis, 
except that the SecXAP seemed to radiate off more significant information, which is 
probably due to the larger circuit size, the absence of the ‘noisy’ clock and to unevenness 
due to automatic place&route. 
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Light/Laser fault injection unveiled weaknesses in the SecXAP’s design as explained 
earlier but apart from those local fatalities, the rest of the circuit went into a ‘stall’ state 
whenever submitted to such aggressions. 

Vcc glitches on the SecXAP unfortunately turned out to be as fatal as it is on the clocked 
version of the processor, producing exploitable faulty behaviours. 

The second chip was based on the SmartMIPS™ architecture. The Silicon Design team of 
Gemplus designed the Testchip upon which the tests were carried out. The core is a 
clocked one with two different versions of the multiplier: the normal clocked multiplier 
(the SyncMDU) and the asynchronous secure multiplier (the AsyncMDU). At the time of 
this report, only Power Analysis had been performed to compare the two multipliers. We 
ended up confirming the results obtained on the XAP processors: i.e. Information leakage 
on the asynchronous MDU is lower, but still significant, than on the clocked MDU by a 
about 20 dB. 

The general conclusions that can be drawn from those tests are the following: the dual 
rail with RTZ asynchronous technology does reduce power dependant information 
leakage by a few decibels. More significant reductions in the information leakage could 
have been achieved by having appropriate design tools or by doing careful full custom 
chips. Moreover, those design weaknesses also have a dramatic impact when it comes to 
injecting exploitable faults. This also means that the task of protecting a chip against fault 
injections is far from being that simple and that there is still plenty of room left for further 
research. 

4.9 New semi-invasive attacks and proposed countermeasures. 

The team at Cambridge worked first on the problem of data retention in semiconductor 
memory. It is commonly assumed that once power is removed from a static RAM, the 
memory contents are immediately destroyed. This is not the case. The data may remain 
readable for several seconds, in that the device will revert to its former state if powered up 
again. If the chip is frozen, this remanence period may increase to minutes or even hours. 
The existing views of the security engineering community rely on papers published in the 
1980s, when technologies were very different. We considered it important to repeat this 
work using modern components and we found a wide variation in remanence behaviour, 
even between different devices of the same type and from the same manufacturer. 

The team at Louvain-la-Neuve started off refining their work on electromagnetic analysis. 
This technique involves placing a small probe coil on the surface of the chip under test 
and measuring the current induced in it by the local magnetic field at the chip’s surface. 
In some circumstances, this gives similar information to that obtained by measuring the 
chip’s power consumption (i.e., in power analysis). However, it was shown that 
electromagnetic analysis gives strictly more information, as the coil can pick up the 
magnetic fields generated by local signals that are not present outside the chip. This was 
highly significant in itself; it also turned out to be important for later analysis and 
protection work. 

The Cambridge team then turned to optical fault induction. This work started by chance, 
with the observation that the microscope light caused a short-circuit in the EEPROM 
read-out amplifier of an SLE66 smartcard that was under test. This led the Cambridge 
team to wonder whether it would be possible to induce a fault in the component of their 
choice by illuminating it. A second-hand photographers’ flashgun was purchased and 
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mounted on a microscope; it was found that suitably aimed flashes could be used to write 
arbitrary values into SRAM. This result got considerable publicity. The use of lasers 
rather than flashguns enabled the technique to be made more precise and to be extended 
to smaller feature sizes. 

The team at Louvain-la-Neuve then developed a variant of this technique using their 
electromagnetic probing tools. By placing a small coil next to a target component in a 
smartcard chip, and passing a current pulse through the coil, they found that they could 
induce a sufficiently large eddy current in the chip to cause a targeted malfunction. 

The final attack technology development brought Cambridge and Louvain together, to 
explore new ways of recovering data directly from semiconductor memory without using 
the read operations provided by the chip vendor for that purpose, thereby circumventing 
any access controls and reading out secret data directly.  This is also a semi-invasive 
attack, in that the chip is still de-packaged, but no direct electrical contact is made and the 
chip passivation remains intact. We will describe the technique in the context of an 
optical attack on CMOS RAM, but it has much wider applicability; electromagnetic 
probing techniques work too, and many other types of memory are vulnerable. 

The structure of a typical SRAM cell is shown in Figure 7. Two inverters are built from 
pairs of p- and n-channel transistors. The output of the first inverter is connected to the 
input of the second, and vice versa. Two n-channel transistors are used to read data from 
it and write data into it. 

 

 
Figure 7 The architecture of an SRAM cell 

 

To read out this memory cell,  we used a red laser focused on the chip surface using a 
microscope. The photons (650nm wavelength) ionise active areas inside the chip. If they 
strike an area near a p-n junction, a photocurrent will be produced. The decrease in 
resistance is noticeable for closed channels, and almost negligible for open channels. 
Thus, by aiming the laser beam at an appropriate transistor or transistors, we can 
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distinguish between the two possible memory states.  

In our first experiment, we built a map of the active areas in a microcontroller by 
measuring the photocurrent induced by laser scanning the chip surface. The chip was 
mounted on an X-Y motorized stage with 0.1µm resolution. The result of the scan is 
shown in Figure 9. The active areas can be seen as they produce higher current, but most 
of the chip is covered with metal layers which the laser cannot penetrate, so these areas do 
not produce any current. We used this picture as a reference to the results obtained from a 
powered chip. 

Our next experiment was done with an operating chip. It was programmed to allow us to 
upload any value into its RAM and then stop the chip operation. The result of the 
scanning with memory cells loaded with random data is shown in Figure 10. It can be 
seen that memory cells have different states: where the cell holds a `1' the top is brighter, 
and where it is a `0' the bottom is. Thus the sixteen bits held in the locations scanned are  

 
Figure 8 Pattern of bits in memory 

 
Figure 9 Laser scan of unpowered memory 
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Figure 10 Laser scan of powered-up memory 

Similarly, one can use electromagnetic probing techniques to read out a chip’s memory. 
We built a miniature inductor by wrapping several hundred turns of fine wire around the 
tip of a microprobe needle. A current injected into this coil will create a magnetic field, 
and the needle will concentrate the field lines. We obtained the current from a camera, by 
connecting the coil where the flashbulb should have been. The test probe was then placed 
a few microns over the surface of the target processor. The magnetic field creates an eddy 
current in the chip, and we sensed this in order to build a map of the chip (Figure 11). 

 
Figure 11 A map built using eddy current and a picture of the same area 

We experimented to see whether this fault induction technique could also be used for 
non-destructive readout. With the same sensor we used to scan the chip, we created a 
small perturbation on a memory cell. The intensity of the current necessary to recover the 



G3Card –Public Final Report 

IST-1999-13515 G3Card  27  G3Card Consortium – January 2003 

initial value of the polarization point was noticeably different between the zero state and 
the one state. The significance of electromagnetic probing is that optical defences alone 
are not enough; although it is helpful to give a smartcard chip an opaque passivation 
layer, it is not sufficient. A continuous metal layer would be preferable - though even this 
would not block attacks based on the use of infrared lasers through the rear of the chip, or 
the use of X-rays.  

We tested our attack on several static random access memories from different silicon 
manufacturers, and a few flash memories. We always managed to extract data by one 
method or another.. 

This confirms the basic hypothesis of the G3Card project – that more attention should be 
paid to design techniques such as the use of failure-evident logic with built-in alarm 
propagation.  

If valuable data are present in the clear in memory for just one clock cycle in a location 
that an attacker can deduce, and the state can be frozen (whether physically, using low 
temperature, or by some other means such as stopping the clock), then it is likely to be 
possible for an attacker to read this data out using optical or electromagnetic probing 
techniques. The investment in skills and equipment required to carry out such attacks is 
significantly lower than that needed for full invasive attacks. Hardware 
countermeasures will be necessary for any processors required to resist capable 
hardware attacks. 
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5 Deliverables 

Because of the nature of the project, many of the deliverables are not publicly available. 
A lot of  information has been published in a controlled manner – see the section on 
dissemination. 

The publicly available deliverables are: 

Ref Description Type 

D3.2/1 Prototype Secure Amulet Processor Design Specification 

D3.3/1 Prototype Secure Amulet Processor Analysis Report 

D6.1/1b G3Card Demonstrators Report 

D6.2/1b Report on analysis and requirements Report 

D8.1/1 Project Presentation Report 

D8.1/2 Project web site Demonstrator 

D8.1/3 Dissemination report Report 

A number of deliverables are available to IST projects: 

Ref Description Type 

D2.2/1 General improvements to improve security in 
hardware 

Report 

D3.2/2 *Final Secure Amulet Processor Design Report 

D4.1/1 Crypto Software library Prototyp
e 

D4.2/1 Specification of Secure OS requirements Report 

D4.2/1rev Specification of Secure OS requirements Report 

D4.3/2 *First Prototype OS Prototyp
e 
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6 Dissemination 

6.1 Dissemination - 2000 

Improving Smartcard Security using Self-timed Circuit Technology - Simon Moore, 
Ross Anderson, Markus Kuhn (University of Cambridge) 

Fourth ACiD-WG workshop, Grenoble (31/01/2000) 

Self Calibrating Clocks for Globally Asynchronous Locally Synchronous Systems - 
S.W. Moore, G.S. Taylor, P.A. Cunningham, R.D. Mullins and P.Robinson, 

International Conference on Computer Design, Austin Texas, September 2000. 

6.2 Dissemination - 2001 

ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smard Cards  - 
Jean-Jacques Quisquater and David Samyde..  

In Smart Card Programming and Security (E-smart 2001), Cannes, France, LNCS 2140, 
pp.200-210. September 2001. 

Protecting Consumer Security Devices - the next 10 years - Simon Moore, University of 
Cambridge  

In Smart Card Programming and Security (E-smart 2001), Cannes, France September 
2001 

Bundled-Data vs Clocked ASIC Design - S.W.Moore, G.S.Taylor, R.D.Mullins and 
P.Robinson, 

10th UK Async. Forum, July, 2001. 

Security Engineering – Ross Anderson 

John Wiley & Sons, Inc. ISBN 0-471-38922-6 

6.3 Dissemination - 2002 

Point to Point GALS Interconnect  - Simon Moore, George Taylor, Robert Mullins, 
Peter Robinson 

Eighth International Symposium on Advanced Research in Asynchronous Circuits and 
Systems, 2002 

Improving Smart Card Security using Self-timed Circuits - Simon Moore, Ross 
Anderson, Paul Cunningham, Robert Mullins, George Taylor 

Computer Laboratory, University of Cambridge ASYNC 2002 Manchester (8-
11/04/2002) 

Optical Fault Induction Attacks - Sergei Skorobogatov, Ross Anderson. University of 
Cambridge, Computer Laboratory 

Workshop on Cryptographic Hardware and Embedded Systems (CHES 2002) Redwood 
City, USA. August 13-15, 2002 

Side Channel Cryptanalysis - Jean-Jacques Quisquater and David Samyde. UCL 
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Invited talk in SEcurité de la Communication sur Internet (SECI 02). Tunis, Tunisia. 
September 2002 

Eddy current for Magnetic Analysis with Active Sensor  - Jean-Jacques Quisquater and 
David Samyde..UCL 

Proceedings of Esmart 2002 3rd edition. Nice, France. September 2002. 

SPA - A Synthesisable Amulet Core for Smartcard Applications - L. A. Plana, P. A. 
Riocreux, W. J. Bainbridge, A. Bardsley, J. D. Garside and S. Temple  

Proceedings of the Eighth International Symposium on Asynchronous Circuits and 
Systems (ASYNC 2002). Pages 201-210. Manchester, 8-11/04/2002. Published by the 
IEEE Computer Society. 

Chain: A Delay-Insenstive Chip Area Interconnect - W. J. Bainbridge and S. B. Furber  

IEEE Micro, Volume 22, Number 5, Pages 16-23, September/October 2002.  Published 
by the IEEE Computer Society. 

On a New Way to Read Data from Memory - David Samyde(1), Sergei Skorobogatov(2), 
Ross Anderson(2) and Jean-Jacques Quisquater(1) 

SISW2002 First International IEEE Security in Storage Workshop  

(1): Université catholique de Louvain, UCL Crypto Group Place du Levant, 3, B-1348 
Louvain-la-Neuve, Belgium 

(2): Computer Laboratory, JJ Thompson Avenue, Cambridge CB3 0FD, England 

6.4 Planned Dissemination – 2003 

The following papers have been submitted and/or accepted 

SPA - A Synthesisable Amulet Core for Smartcard Applications  - L. A. Plana, P. A. 
Riocreux, W. J. Bainbridge, A. Bardsley,  J. D. Garside, S. Temple and Z. C. Yu  

Submitted to Microprocessors and Microsystems. Special Issue on Asynchronous System 
Design, to appear in 2003. Published by Elsevier Science B. V. 

An Investigation into the Security of Self-Timed Circuits  - Z. C. Yu, S. B. Furber and L. 
A. Plana  

Submitted to the Ninth International Symposium on Asynchronous Circuits and Systems. 
To be held in Vancouver, 12-16 May 2003. Sponsored by the IEEE Computer Society. 

Balanced Self-checking asynchronous logic for smart card applications by University 
of Cambridge and Gemplus CSG, for Special issue of 'Microprocessors & 
Microcontrollers 

Towards security by design by Gemplus CSG and the University of Cambridge, for 
ASYNC 2003 

Balanced Self-Checking Asynchronous Logic for Smart Card Applications - S.W. 
Moore, Ross Anderson, Robert Mullins, George Taylor, Jacques Fournier,  

to appear in the Journal of Microprocessors and Microsystems, 2003 
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6.5 Patents 

R.J. Anderson and S.W. Moore, Microprocessor Resistant to Power Analysis, 
International application number: PCT/GB01/00311, International filing date 26 January, 
2001. 
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7 Conclusions 

The project has successfully demonstrated three chips built with asynchronous logic. All 
have shown a lower level of emissions. Greater resistance to other types of non-invasive 
attacks has also been demonstrated. In cases where the results have not been as expected, 
the cause has been traced to non-asynchronous parts of the design, or in the underlying 
libraries. 

 


