
Intelligent Interactive Online Tutor for
Computer Language Teaching

Dr Simon Moore
Senior Lecturer

Computer Laboratory
University of Cambridge, UK
 simon.moore@cl.cam.ac.uk

 http://www.cl.cam.ac.uk/users/swm11

Mrs Kate Taylor
Research Associate
Computer Laboratory

University of Cambridge, UK
 kate.taylor@cl.cam.ac.uk

 http://www.cl.cam.ac.uk/users/ksw1000

ABSTRACT
We present the case for an intelligent interactive
online tutor to teach computer languages, with a
particular focus on the Verilog hardware description
language. This system allows the detailed syntactic
and semantic components to be presented in byte
sized chunks with the student’s understanding
checked and reinforced via problem solving. A key
challenge has been the provision of human like
feedback to erroneous solutions to encourage and
assist the learning process.

Keywords
Context sensitive error messages, Interactive Tutor,
On-line learning, Prolog, State machines, Verilog.

1. INTRODUCTION

Teaching computer languages requires the student
to understand many detailed syntactic and semantic
forms as well as more general concepts, such as
object orientation or parallelism. Whilst we have
found that general concepts are well taught in
lectures, the large numbers of important syntactic
and semantic details soon overload most students.
We observe that languages can be better taught in
a small tutorial group format which allows improved
information presentation and interactive problem
solving.
However, small tutorial groups are expensive when
one has a large class and even experienced
supervisors do not spot all of the students’
mistakes. We believe that the automated tutor
system presented in this paper is a better delivery
mechanism than lectures and has comparable
benefits to a tutorial approach without being so

labour intensive.
This paper focuses on teaching the Verilog
hardware description language, though we believe
that many of the techniques described could be
applied to other programming languages. Verilog is
taught as part of the existing Electronic Computer
Aided Design (ECAD) course. This course includes
a challenging hands-on hardware/software co-
design component which is undertaken in
supervised laboratory sessions. Our system – the
Intelligent Verilog Compiler (IVC) – replaces part of
the ECAD lecture course which has been taught in
its current form for six years to all second year
Computer Science students. These sessions
remain unchanged as we introduce the IVC system
to help with evaluation of the success of the use of
an on-line tutor instead of the information being
presented in four lectures.
The students have already learned Java and ML in
their first year of study. During these sessions, the
students develop Verilog progams to run on Field
Programmable Gate Arrays (FPGAs) which provide
connections to Light Emitting Diodes (LEDs) and an
infra-red receiver. Semantic errors in their code
may mean that LEDs do not light up correctly,
though this output may be faster than the human
eye. To debug effectively, students then use a
simulation environment in the Quartus tool from
Altera to analyse the circuit’s behaviour over time.
This simulation is very different from being able to
add debug print statements to their Java code, and
is another skill to learn in the Laboratory sessions.
The IVC is a web-based tutorial and a collection of
programming exercises which are compiled by the
Icarus Verilog compiler and then interpreted by the
IVC. The IVC provides semantic and syntactic
support to the student venturing into Verilog for the
first time. Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.
© 2005 HE Academy for Information and Computer Sciences

The explainer component of the IVC provides
context-sensitive explanation of the compiler error
messages that the student generates, together with
context-sensitive help drawn from the tutorial pages
and a lint-like check.
Once compiled, the students’ programs are
simulated and the underlying state models are

displayed and commented on to assist in validating
the students’ design against the specified problem.
The advantages of the IVC compared with other on-
line tutorials available now are:
• ability to present information relevant to the task

the student is doing ;
• ability to give feedback on the student’s

progress in learning Verilog via short revision
questions;

• ability to provide part programs for the students
which are then compiled and checked for
correctness and completeness, with an English
explanation of any difficulties as well as a
graphical representation of the program they
have written;

• ability to generate context sensitive help text at
runtime by generating an English explanation of
syntactic errors made in the programming
exercises.

The advantages of IVC over going to the lectures or
reading a book are:
• the ease of access to information;
• a clear focus on what the student needs to

design code and test a program;
• the ability to work at the student’s own pace in

their own environment.

2. CONSTRUCTING THE IVC
2.1 Gathering requirements
The Intelligent Verilog Compiler (IVC) has been
constructed using a prototyping evaluation lifecycle.
Requirements were gathered from a questionnaire
given to students who were taught in the traditional
four lecture style whilst they completed the practical
sessions.
The requirements analysis for the IVC was
conducted from three viewpoints: teaching, learning
and observing. These draw on the underlying
structuralist versus phenomenological cognitive
approaches.
Dr Moore provides the teaching viewpoint and the
present pedagogical approach to teaching ECAD
and Digital Electronics. This includes what
constitutes good style and program structure, and
further development of the core computer science
skills of developing algorithms and data structures.
The course is delivered in the framework of the
Computer Science course which develops the skills
of algorithm design and testing within several
programming language courses.
The learning viewpoint is obtained by an on-line
survey capturing the phenomenological or first
person view of the students doing the practical
ECAD laboratory work. There is little published work

on how to successfully go from the theory to the
actual survey. The design of the survey is based
on [1] and [2]. This is augmented with Mrs Taylor’s
experience of learning the area from a background
equivalent to a student without prior knowledge of
Digital Electronics but with a knowledge of a variety
of third generation and declarative languages.
The observationalist viewpoint was provided by Dr
Williams as a teacher but with no previous
involvement or knowledge of Verilog and hence
fewer preconceptions of what is easy or hard. Dr
Moore designed the laboratory sessions for October
2003. He and the other demonstrators who
supervise the laboratory sessions provide the
structuralist or third person view of the laboratories
based on the task that the students have to
complete.
The first version of the system, IVC 1.1 was used to
conduct user trials for the same cohort of students
three months later. This was primarily a revision
exercise for the students, but collected very
valuable data on programming mistakes and the
strategies students used to resolve coding and
semantic errors. The students reported back using
an informal email, but these very often followed the
structure of the original questionnaire.

2.2 From Requirements to Teaching
Points
Research undertaken in Cambridge on on-line
conferences supporting postgraduate courses [3]
suggest four clusters of pedagogies correlated with
students’ grades. A pedagogy comprises the
strategies, techniques and approaches that are
used to pass on information to students.
Postgraduates have a better developed style of
learning, but we use these clustering ideas to look
for similar groupings within our student cohorts.

2.3 Defining the pedagogy
The four existing lectures provided the initial list of
teaching points to define what the pedagogy must
include. What strategies and techniques and
approaches would actually work with a web-based
delivery must be defined iteratively.
The 2004 survey of the students’ experience of
doing the laboratory sessions having learned
Verilog from four lectures provided the requirements
for the construction of the IVC1.1 prototype. The
IVC 2.0 system is the full delivery of the pedagogy
based on the feedback from the students’
experience of IVC1.1.
The teaching points were extended by looking at
common programming errors mentioned in the 2004
laboratory survey, and those captured by logging
the students’ use of IVC1.1. These were analysed
and divided into the following three categories:

Conceptual: the student has missed the
distinctions between behavioural and structural
Verilog, between the different types of assignment
used, the four valued logic and how the flow of
control and timing are handled.
The resemblance between Java and Verilog lulls
the novice into thinking that it will be straightforward
to apply algorithms they already know. We
hypothesise that the primary conceptual difference
is that Verilog is inherently parallel though
sequential behaviour can be described, whereas
Java is inherently sequential and it requires more
effort to write in a parallel manner.
Although Verilog arose from the same need to
abstract away from circuit designs to allow larger
designs to be created by more people, in a similar
way to C arose from Assembler, it retains closer
links to the netlists than C does to Assembler.
Students need to appreciate this close relationship
to underlying circuits. For example, continuous
assignment is a conceptual step which students
either get straight away, or which they find hard to
grasp. One possible explanation, which we hope
this research will clarify, is whether this has a direct
link to their knowledge of the underlying digital
electronics.
Syntactic: the student understands the concepts
but cannot quite remember the syntax, or the
student has all the right constructs but not
necessarily in all the right places. This leads to
student comments along the lines of “What is wrong
with my assign statement”, to which the answer is
“Nothing at all: it is simply in the wrong place”.
Verilog has more restrictions on nesting the
statements and expressions than Java, which the
students already know. Many assumptions from

Java simply do not work for a Verilog program. For
example, there are far fewer defaults used by the
Java compiler, whereas the Verilog compiler will not
report an error in a declaration but merely assign a
default type, and often then allow assignments to
the variable that are unexpected by the student.
The common mistakes identified from the
questionnaire are categorised into three groups:
statement based, block based and module based.
The IVerilog compiler performs best on statement-
based errors, but without some context, it is
impossible to provide a helpful message for block or
module errors. This is the area that the IVC
explainer focuses on.
Semantic: the student understands the syntax but
has not quite met the specification for the
programming problem giving a state machine that is
partially correct.

2.4 Web page design
2.4.1 Order of presentation
The Verilog language constructs are presented to
the student in the traditional bottom-up manner,
starting with variables and ending with higher level
constructs. The students have not at this stage
studied compilers in depth, so Backus Naur format
(BNF) is explained and used alongside an English
explanation.

2.4.2 Checking understanding
The language basics are reinforced by frequent
multiple choice questions. The wording of these
questions is carefully designed to cover the
common mistakes and misconceptions identified in
the questionnaire and user trials. Figure 1 below
shows an example.

Figure 1 Example of Reinforcement Questioning
The language basics are then reinforced by a
number of programming examples; an up-down
counter, a multiplexer, an electronic die and a
simple traffic light controller.

2.5 BNF as the basis for web pages
Structuring the English text and the structure of the
web pages themselves around the BNF grammar of
Verilog focuses the student on what can be written
where. There are many parallels between the
teaching of human languages and the teaching of
computer languages: the most relevant to the IVC
being the necessity of learning phrases and then
larger grammatical constructs, and the importance
of practice.

2.6 Help text generation
The help text generation relies on the IVC
"understanding" how terms are related to one
another. This is done via a semantic web of
hypernomic and hyponomic links to model "is a"
relationships and meronymic and holonymic links to
represent "is a part of".
For example, a declaration has a datatype and a
variable name. This is represented as data type
and variable name both being meronyms of
declaration. Getting an error in the declaration may
be due to a misunderstanding of data types of
variable naming conventions as well or instead of a
misunderstanding of declarations.
The semantic web is used to adjust the level of
explanation required and to provide background

information to help when the wrong kind of construct
is being used, for example when an assignment is
in the wrong place in the program.
Use of a semantic web combines the Model Tracing
and Constraint Based Tutoring approaches
discussed in [4]. The heart of the semantic web is
based on the grammar of Verilog itself, as the BNF
definition of a language is also hierarchical.
At present, information is provided about the
construct itself and its parent and sibling constructs
only.

2.7 Context sensitive compiler error
messages
Compilers have a limited view of the source code
they are viewing as they are based on the BNF of
the language construct currently being parsed. In
many cases, “parse error at line 6” is the best that
can be done. “Error in conditional assignment” is
slightly more informative but not much help to the
novice programmer.
The IVC explainer aims to provide informally
phrased explanations similar to what would be
provided by a more experienced programmer
leaning over your shoulder: “oh, that means you
have used <= where you should have used =”.

2.8 Lint-like checks
The well established Lint [5] tool provides lexical
and syntactic analysis of code with extra sanity
checks such as variables being initialised before
use. We use a similar approach to identify some of

the common mistakes which fall into this category.
Many of these are already incorporated into the
Icarus Verilog (IVerilog) [6] which uses a similar
informal style of presentation.
For example, the IVC lint can spot incorrect range
definitions for buses and memories which are
syntactically correct, so compile, but do not make
sense. Because Verilog does not complain about
such errors at compile time, the student is left with
code that inexplicably does not run on the Field
Programmable Gate Arrrays.

2.9 Representing state models for
programs
Discovering how students think about their
programs is harder to measure directly. Feedback
from the demonstrators and from students
themselves from the laboratory sessions in October
2004 and the user trials of IVC 1.1 suggest that
there are three groups of student.
The able student has quickly assimilated the syntax
of Verilog and can program competently in Java and
ML taught in the first year has probably already an
intuitive understanding of the notion of state.
Others may understand the language but have not
yet noticed the abstraction to a state model. They
know intuitively what variables are needed to store
data, but may use more than are really necessary.
A third group still struggle to turn a specification into
an abstract design, having no clear idea how to
divide the problem into data and processing.
This correlates with the three levels of student
identified in Section 2.2. Learning how to program
is a different skill from learning the syntax of a
language.
Another new concept for a student used to
initialising variables in Java is the idea of self-
starting circuits. Because Verilog is a language to
define circuits, initialisations to data are replaced by
processing in the Verilog modules converting these
unsafe states to a safe state. This corresponds to a
default clause in the case statement used in both
Verilog and Java. Creating designs that are self-
starting is part of the good practice that the model
checker is seeking to support.

3. SUPPORT WHEN CODE DOES NOT
COMPILE

3.1 Explaining compiler error messages
The compiler used by the IVC is the Icarus Verilog
compiler. A Perl program examines each error in
turn, looking back at the previous statement or block
as required for that particular error. The explanation
provides a top level description of the problem. The
original error message is displayed to help the
student understand when that particular error can
occur

3.2 References back to the tutorial
The error messages from the IVerilog compiler are
scanned for language keywords which are passed
to a knowledge base implemented in Prolog [7].
Prolog is a declarative logic programming language
based on predicates which can be true or false, and
is a de facto standard in generating expert systems
and knowledge bases.
Within the knowledge base, each web page is
referenced to the language keywords in a hierarchy
of usage and composition reflecting the BNF of the
language. This links the semantic web to the pieces
of HTML that are to be displayed to the student. The
glossary entry for the keyword and the BNF
definition are combined into the teaching page
together with further pages providing the initial
description, the first example and a more
complicated example.
Having these pieces of HTML separately stored
means that the explanations can provide very
specific links to each kind of information that the
student needs rather than simply displaying the
whole tutorial page back again. This supports the
stressed student, who does not want to read the
whole page when they actually just need one
particular part of the explanation.
It also allows future versions of the IVC to be able to
support different levels of user expertise to tailor
what they read in the tutorial web pages. A
confident student does not need to see the early
examples, whereas a mystified student faced with
syntax errors certainly does.

Figure 2 Context sensitive explanation of compiler messages and help text provision
The IVC displays relevant links embedded within a
structural explanation of the language constructs, as
shown in the central red text in Figure 2, part of
which is reproduced below, with links are shown
underlined.
Assign is used in a continuous
assignment

an assign has to have a wire. See the
BNF for assign

The information about the BNF for the assign
statement is given informally in the explanatory
sentences. The first line provides information about
the concept of continuous assignment: did the
student realise that this is what they were doing?
Were they really trying to write an assignment within
an always block?
The second line deals with what an assign
statement needs to have: in this example the error
is with using <= instead of = in the assignment.
This may be a typographical error, or may reflect
that the student has not realised the implications of

the different assignment types. The help text
generated by the IVC is designed to help the
student in either case in the same way that a
demonstrator would.
The IVC cannot at present use previous knowledge
of the student or conduct a conversation with them
in the way that a human could, but it can use its
knowledge of the structure of the Verilog language
to provide more than just appropriate links back into
the tutorial.

4. SUPPORT WHEN CODE DOES NOT
WORK
4.1 State space restrictions
The problem specifications are presented to the
student in English, with the correct state diagram.
The model checker provides the state diagram
together with comments on how closely the
student’s program matches the problem
specification.

The state diagram is generated by restricting the
student to a template of variable declarations and
partial output assignments defining the state space,
leaving the student to produce the state space

contents. A Prolog file relates errors in the state
space to an English explanation of the probable
cause relating directly back to the problem
definition.

Figure 3 Identifying semantic errors
Another Prolog predicate is used to check that the
all the necessary states are reachable and that the
circuit will self-start into a correct state if started in
an incorrect one. For example, a three bit state
representing a traffic light needs move to the safe
state of 100 (red) if the circuit is in an incorrect state
such as 111 (all lights on).

4.2 Discrete event simulation
A discrete event simulation is provided based on the
vvp component of the IVerilog compiler. This
generates a simulation trace output in a text format,
shown in the middle right hand window in Figure 3
above. The simulation explainer helps pick up wiring
errors that produce unknown values on wires.
In this case, the student has forgotten to assign the
calculated values to the wires. This generates an
unknown “x” value which produces an error in the
state space which the model checker spots as an
error in the transitions.
The simulation provides another explanation of the
error which is more familiar to the student used to

adding print statements to code that does not work.
It identifies which wire is unconnected and hence
providing unknown “x” values.

4.3 Model checking in action
Figure 3 above shows the model checker spotting
an error in wiring where a calculated value has not
been “wired” in to an output variable.
When button = 0 count does not advance
to 3’b001. Sorry, your code does not
implement an electronic die.

Figure 4 below shows an example where the
simulation trace is unhelpful because the incorrect
program stops producing new output once the
electronic die it represents gets stuck on the value
“2”. The model checker, on the other hand, scans
all of the state space and is able to identify incorrect
behaviour, thereby pointing the student directly to
the problem.

It is extremely likely that the student has cut and
pasted the lines in the case statement but forgotten

to edit the line afterwards. We have all been there.

Figure 4 Identifying state machine errors
Another common error occurs when the student
has forgotten to assign the calculated value to the
output bit representing the amber traffic light. This
generates an unconnected “z” value which
prevents the student’s code from working.
However, there is no error in the state space.
Having both representations encourages the
student to recognise that a trace table and a state
transition diagram are different views on to the
same concept.
Understanding which variables are needed to
represent an algorithm and what processing is
needed to achieve the necessary state is a skill
the students have already started to learn with
Java and ML.

5. RESULTS
5.1 Prototyping of IVC 1.0
At the time of writing, version 1.1 of the IVC has
been evaluated by students who already knew the
language from having taken the lecture course six
months before. Their feedback has shaped the

ideas above, and provided confirmation of the
advantages of having all resources to hand to
make the learning of the language as painless as
possible.

5.2 Live use of IVC 2.0
Our research hypotheses are as follows: having
used the IVC instead of attending four lectures.

1: Students do complete the tutorial before
attempting the first laboratory exercise;
2: Students take less time to finish the first and
second laboratory exercise;
4: Students answer examination questions better
5: More students attempt the examination
questions

At the time of writing, we are able to provide
results to 1 and 2 above. Achieving 2 is taken as
a measure that the students have learned basic
Verilog.

Only one student out of a class of eighty four
chose not to use the IVC.

The following questions from the IVC questionnaire
completed after its use in October 2005 show how
the students reacted to the intelligent components
of the IVC:
10. The intelligent compiler also provides links back
to relevant parts of the tutorial to help solve syntax
and usage queries. How did you use these links?

35% did not use them
11% read the BNF
14% answered the question from the generated text
without following the links
40% read the generated tutorial page link
11 Once your code compiled, the intelligent
compiler provides a text simulation and model
checks your code to generate a state transition
model. These next questions ask how useful these
were. How did you spot the errors in your program?

 9% used the model checker comments
47% used the state transition diagrams
29% used both the above
 9% used the simulation and model checker
 6% just looked at code again

Figure 5 below shows the time taken to complete
the laboratory exercises (ticks) for 2004, without the
IVC, and this year, with the IVC.

6. CONCLUSIONS AND FUTURE WORK
6.1 Conclusions
In this paper we have demonstrated the advantages
of the use of an English explanation, the language
grammar, graded examples, feedback on student
progress and the opportunity to try small
programming examples in the protected
environment of a context-sensitive compiler and
model checker.
Over 85% of the students used the visual
representation of the state machines. 65% of
students used the context sensitive help, with 14%
being able to answer their query merely by the
structure of the generated text. This represents a
good take-up of the two intelligent components of
the IVC.
We have demonstrated a significant improvement in
success in completing the laboratory exercises.
We have shown that adding an understanding of
Verilog syntax and the semantics of simple
programming exercises to a compiler can vastly
improve the support given to novice Verilog
programmers in a university setting.

Time to acquire Tick 1 2004 and 2005

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10

% students with tick

Ti
ck

in
g

se
ss

io
n

Tick1 2004
Tick1 2005

Time to acquire Tick 2 2004 and 2005

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10

% students with tick

Ti
ck

in
g

se
ss

io
n

Tick 2 2004
Tick 2 2005

Figure 5 Tick Acquisition after IVC use

6.2 Future work
We hope that examination results in the summer will
also reflect the positive results from this term’s
survey. We hope to publish further papers in due
course based on the quantitative and qualitative
analysis of the students’ progress with the IVC and
the laboratory sessions.
The current IVC system has been built very much
as a proof of concept. We wish to extend the
framework to cover a broader range of intelligent
context sensitive explanations of both syntax and
semantic errors, based on the structure of the
language and the problem space to be solved. We
believe other semantic checks apart from the
representation of state may be possible using
concepts analogous to the invariants and pre- and
post-conditions in conventional third generation
languages.
We wish to be able to support different levels of
user expertise to tailor what they read in the tutorial
web to what they have already seen. User levelling
and history capabilities would extend what further
intelligence can be added to the intelligent complier
and model checker. We also wish to generalise the

framework to allow a broader range of subjects to
be taught.

7. ACKNOWLEGEMENTS

Many thanks are due to the Cambridge MIT Institute
(CMI) for funding this work, and to Dr Williams at
the Centre for Applied Research in Educational
Technology (CARET) for assisting with evaluation.
Thanks are also due to the second-year students of
the Computer Science course at Cambridge who
have evaluated and used the IVC during its
development over the last two years. Their
enthusiasm and interest has been invaluable.

8. REFERENCES

[1] Peter McDonald, The Nature of Algorithm

Understanding: A Phenomenographic
Investigation. pmcd@cs.rmit.edu.au, School of

Computer Science and Information Technology,
RMIT University, Melbourne, Vic., Australia,
3000

[2] CS378 Stanford
http://www.stanford.edu/class/cs378/cs378-
topics.html
[3] Mehanna The pedagogies of e-Learning

Proceedings of the Networked Learning
Conference 2004

[4] Billingsley W, Robinson P Towards an
Intelligent On Line Textbook for Discrete
Mathematics, University of Cambridge

[5] Johnson S Lint, a C Program checker Computer
Science Technical Report 65 Bell Laboratories
December 1977

[6] Icarus Verilog
http://www.icarus.com/eda/verilog/

[7] SWI-Prolog
Http://www.swi-prolog.org

	1. Introduction
	2. Constructing the IVC
	2.1 Gathering requirements
	2.2 From Requirements to Teaching Points
	2.3 Defining the pedagogy
	2.4 Web page design
	2.4.1 Order of presentation
	2.4.2 Checking understanding

	2.5 BNF as the basis for web pages
	2.6 Help text generation
	2.7 Context sensitive compiler error messages
	2.8 Lint-like checks
	2.9 Representing state models for programs

	3. Support when code does not compile
	3.1 Explaining compiler error messages
	3.2 References back to the tutorial

	4. Support when code does not work
	4.1 State space restrictions
	4.2 Discrete event simulation
	4.3 Model checking in action

	5. results
	5.1 Prototyping of IVC 1.0
	5.2 Live use of IVC 2.0

	6. conclusions and future work
	6.1 Conclusions
	6.2 Future work

	7. Acknowlegements
	8. References

