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ABSTRACT 
We present the case for an intelligent interactive 
online tutor to teach computer languages, with a 
particular focus on the Verilog hardware description 
language.  This system allows the detailed syntactic 
and semantic components to be presented in byte 
sized chunks with the student’s understanding 
checked and reinforced via problem solving.  A key 
challenge has been the provision of human like 
feedback to erroneous solutions to encourage and 
assist the learning process.  
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1. INTRODUCTION 
 
Teaching computer languages requires the student 
to understand many detailed syntactic and semantic 
forms as well as more general concepts, such as 
object orientation or parallelism.  Whilst we have 
found that general concepts are well taught in 
lectures, the large numbers of important syntactic 
and semantic details soon overload most students.  
We observe that languages can be better taught in 
a small tutorial group format which allows improved 
information presentation and interactive problem 
solving.   
However, small tutorial groups are expensive when 
one has a large class and even experienced 
supervisors do not spot all of the students’ 
mistakes.  We believe that the automated tutor 
system presented in this paper is a better delivery 
mechanism than lectures and has comparable 
benefits to a tutorial approach without being so 

labour intensive. 
This paper focuses on teaching the Verilog 
hardware description language, though we believe 
that many of the techniques described could be 
applied to other programming languages. Verilog is 
taught as part of the existing Electronic Computer 
Aided Design (ECAD) course.  This course includes 
a challenging hands-on hardware/software co-
design component which is undertaken in 
supervised laboratory sessions.  Our system – the 
Intelligent Verilog Compiler (IVC) – replaces part of 
the ECAD lecture course which has been taught in 
its current form for six years to all second year 
Computer Science students.  These sessions 
remain unchanged as we introduce the IVC system 
to help with evaluation of the success of the use of 
an on-line tutor instead of the information being 
presented in four lectures.  
The students have already learned Java and ML in 
their first year of study.  During these sessions, the 
students develop Verilog progams to run on Field 
Programmable Gate Arrays (FPGAs) which provide 
connections to Light Emitting Diodes (LEDs) and an 
infra-red receiver.  Semantic errors in their code 
may mean that LEDs do not light up correctly, 
though this output may be faster than the human 
eye.  To debug effectively, students then use a 
simulation environment in the Quartus tool from 
Altera  to analyse the circuit’s behaviour over time.  
This simulation is very different from being able to 
add debug print statements to their Java code, and 
is another skill to learn in the Laboratory sessions. 
The IVC is a web-based tutorial and a collection of 
programming exercises which are compiled by the 
Icarus Verilog compiler and then interpreted by the 
IVC. The IVC provides semantic and syntactic 
support to the student venturing into Verilog for the 
first time. Permission to make digital or hard copies of all or part of this 
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The explainer component of the IVC provides 
context-sensitive explanation of the compiler error 
messages that the student generates, together with 
context-sensitive help drawn from the tutorial pages 
and a lint-like check.   
Once compiled, the students’ programs are 
simulated and the underlying state models are  



 

displayed and commented on to assist in validating 
the students’ design against the specified problem.  
The advantages of the IVC compared with other on-
line tutorials available now are: 
• ability to present information relevant to the task 

the student is doing ; 
• ability to give feedback on the student’s 

progress in learning Verilog via short revision 
questions;  

• ability to provide part programs for the students 
which are then compiled and checked for 
correctness and completeness, with an English 
explanation of any difficulties as well as a 
graphical representation of the program they 
have written; 

• ability to generate context sensitive help text at 
runtime by generating an English explanation of 
syntactic errors made in  the programming 
exercises. 

The advantages of IVC over going to the lectures or 
reading a book are: 
• the ease of access to information; 
• a clear focus on what the student needs to 

design code and test a program; 
• the ability to work at the student’s own pace in 

their own environment. 

2. CONSTRUCTING THE IVC 
2.1 Gathering requirements 
The Intelligent Verilog Compiler (IVC) has been 
constructed using a prototyping evaluation lifecycle.  
Requirements were gathered from a questionnaire 
given to students who were taught in the traditional 
four lecture style whilst they completed the practical 
sessions. 
The requirements analysis for the IVC was 
conducted from three viewpoints:  teaching, learning 
and observing.  These draw on the underlying 
structuralist versus phenomenological cognitive 
approaches.  
Dr Moore provides the teaching viewpoint and the 
present pedagogical approach to teaching ECAD 
and Digital Electronics.  This includes what 
constitutes good style and program structure, and 
further development of the core computer science 
skills of developing algorithms and data structures.  
The course is delivered in the framework of the 
Computer Science course which develops the skills 
of algorithm design and testing within several 
programming language courses.  
The learning viewpoint is obtained by an on-line 
survey capturing the phenomenological or first 
person view of the students doing the practical 
ECAD laboratory work. There is little published work 

on how to successfully go from the theory to the 
actual survey.   The design of the survey is based 
on [1] and [2]. This is augmented with Mrs Taylor’s 
experience of learning the area from a background 
equivalent to a student without prior knowledge of 
Digital Electronics but with a knowledge of a variety 
of third generation and declarative languages.   
The observationalist viewpoint was provided by Dr 
Williams as a teacher but with no previous 
involvement or knowledge of Verilog and hence 
fewer preconceptions of what is easy or hard. Dr 
Moore designed the laboratory sessions for October 
2003.  He and the other demonstrators who 
supervise the laboratory sessions provide the 
structuralist or third person view of the laboratories 
based on the task that the students have to 
complete. 
The first version of the system, IVC 1.1 was  used to 
conduct user trials for the same cohort of students 
three months later.  This was primarily a revision 
exercise for the students, but collected very 
valuable data on programming mistakes and the 
strategies students used to resolve coding and 
semantic errors.  The students reported back using 
an informal email, but these very often followed the 
structure of the original questionnaire. 

2.2 From Requirements to Teaching 
Points 
Research undertaken in Cambridge on on-line 
conferences supporting postgraduate courses [3] 
suggest four clusters of pedagogies correlated with 
students’ grades.  A pedagogy comprises the 
strategies, techniques and approaches that are 
used to pass on information to students.  
Postgraduates have a better developed style of 
learning, but we use these clustering ideas to look 
for similar groupings within our student cohorts. 

2.3 Defining the pedagogy 
The four existing lectures provided the initial list of 
teaching points to define what the pedagogy must 
include.  What strategies and techniques and 
approaches would actually work with a web-based 
delivery must be defined iteratively.    
The 2004 survey of the students’ experience of 
doing the laboratory sessions having learned 
Verilog from four lectures provided the requirements 
for the construction of the IVC1.1 prototype. The 
IVC 2.0 system is the full delivery of the pedagogy 
based on the feedback from the students’ 
experience of IVC1.1.  
The teaching points were extended by looking at 
common programming errors mentioned in the 2004 
laboratory survey, and those captured by logging 
the students’ use of IVC1.1. These were analysed 
and divided into the following three categories: 



 

Conceptual: the student has missed the 
distinctions between behavioural and structural 
Verilog, between the different types of assignment 
used, the four valued logic and how the flow of 
control and timing are handled. 
The resemblance between Java and Verilog lulls 
the novice into thinking that it will be straightforward 
to apply algorithms they already know.  We 
hypothesise that the primary conceptual difference 
is that Verilog is inherently parallel though 
sequential behaviour can be described, whereas 
Java is inherently sequential and it requires more  
effort to write in a parallel manner. 
Although Verilog arose from the same need to 
abstract away from circuit designs to allow larger 
designs to be created by more people, in a similar 
way to C arose from Assembler, it retains closer 
links to the netlists than C does to Assembler. 
Students need to appreciate this close relationship 
to underlying circuits.  For example, continuous 
assignment is a conceptual step which students 
either get straight away, or which they find hard to 
grasp.  One possible explanation, which we hope 
this research will clarify, is whether this has a direct 
link to their knowledge of the underlying digital 
electronics. 
Syntactic: the student understands the concepts 
but cannot quite remember the syntax, or the 
student has all the right constructs but not 
necessarily in all the right places.  This leads to 
student comments along the lines of “What is wrong 
with my assign statement”, to which the answer is 
“Nothing at all:  it is simply in the wrong place”.   
Verilog has more restrictions on nesting the 
statements and expressions than Java, which the 
students already know.  Many assumptions from 

Java simply do not work for a Verilog program.  For 
example, there are far fewer defaults used by the 
Java compiler, whereas the Verilog compiler will not 
report an error in a declaration but merely assign a 
default type, and often then allow assignments to 
the variable that are unexpected by the student. 
The common mistakes identified from the 
questionnaire are categorised into three groups:  
statement based, block based and module based.  
The IVerilog compiler performs best on statement-
based errors, but without some context, it is 
impossible to provide a helpful message for block or 
module errors.  This is the area that the IVC 
explainer focuses on. 
Semantic: the student understands the syntax but 
has not quite met the specification for the 
programming problem giving a state machine that is 
partially correct.   

2.4 Web page design 
2.4.1 Order of presentation 
The Verilog language constructs are presented to 
the student in the traditional bottom-up manner, 
starting with variables and ending with higher level 
constructs.  The students have not at this stage 
studied compilers in depth, so Backus Naur format 
(BNF) is explained and used alongside an English 
explanation. 

2.4.2 Checking understanding 
The language basics are reinforced by frequent 
multiple choice questions.  The wording of these 
questions is carefully designed to cover the 
common mistakes and misconceptions identified in 
the questionnaire and user trials.  Figure 1 below 
shows an example. 



 

 
 

Figure 1 Example of Reinforcement Questioning 
The language basics are then reinforced by a 
number of programming examples; an up-down 
counter, a multiplexer, an electronic die and a 
simple traffic light controller.  

2.5 BNF as the basis for web pages 
Structuring the English text and the structure of the 
web pages themselves around the BNF grammar of 
Verilog focuses the student on what can be written 
where.  There are many parallels between the 
teaching of human languages and the teaching of 
computer languages:  the most relevant to the IVC 
being the necessity of learning phrases and then 
larger grammatical constructs, and the importance 
of practice. 

2.6 Help text generation 
The help text generation relies on the IVC 
"understanding" how terms are related to one 
another. This is done via a semantic web of 
hypernomic and hyponomic links to model "is a" 
relationships and meronymic and holonymic links to 
represent "is a part of".   
For example, a declaration has a datatype and a 
variable name.  This is represented as data type 
and variable name both being meronyms of 
declaration.  Getting an error in the declaration may 
be due to a misunderstanding of data types of 
variable naming conventions as well or instead of a 
misunderstanding of declarations. 
The semantic web is used to adjust the level of 
explanation required and to provide background 

information to help when the wrong kind of construct 
is being used, for example when an assignment is 
in the wrong place in the program.   
Use of a semantic web combines the Model Tracing 
and Constraint Based Tutoring approaches 
discussed in [4].  The heart of the semantic web is 
based on the grammar of Verilog itself, as the BNF 
definition of a language is also hierarchical. 
At present, information is provided about the 
construct itself and its parent and sibling constructs 
only. 

2.7 Context sensitive compiler error 
messages 
Compilers have a limited view of the source code 
they are viewing as they are based on the BNF of 
the language construct currently being parsed.  In 
many cases, “parse error at line 6” is the best that 
can be done.  “Error in conditional assignment” is 
slightly more informative but not much help to the 
novice programmer.   
The IVC explainer aims to provide informally 
phrased explanations similar to what would be 
provided by a more experienced programmer 
leaning over your shoulder: “oh, that means you 
have used <= where you should have used =”.   

2.8 Lint-like checks 
The well established Lint [5] tool provides lexical 
and syntactic analysis of code with extra sanity 
checks such as variables being initialised before 
use.  We use a similar approach to identify some of 



 

the common mistakes which fall into this category.  
Many of these are already incorporated into the 
Icarus Verilog (IVerilog) [6] which uses a similar 
informal style of presentation. 
For example, the IVC lint can spot incorrect range 
definitions for buses and memories which are 
syntactically correct, so compile, but do not make 
sense.  Because Verilog does not complain about 
such errors at compile time, the student is left with 
code that inexplicably does not run on the Field 
Programmable Gate Arrrays.   

2.9 Representing  state models for 
programs 
Discovering how students think about their 
programs is harder to measure directly.  Feedback 
from the demonstrators and from students 
themselves from the laboratory sessions in October 
2004 and the user trials of IVC 1.1 suggest that 
there are three groups of student. 
The able student has quickly assimilated the syntax 
of Verilog and can program competently in Java and 
ML taught in the first year has probably already an 
intuitive understanding of the notion of state.   
Others may understand the language but have not 
yet noticed the abstraction to a state model. They 
know intuitively what variables are needed to store 
data, but may use more than are really necessary. 
A third group still struggle to turn a specification into 
an abstract design, having no clear idea how to 
divide the problem into data and processing. 
This correlates with the three levels of student 
identified in Section 2.2.  Learning how to program 
is a different skill from learning the syntax of a 
language. 
Another new concept for a student used to 
initialising variables in Java is the idea of self-
starting circuits.  Because Verilog is a language to 
define circuits, initialisations to data are replaced by 
processing in the Verilog modules converting these 
unsafe states to a safe state.  This corresponds to a 
default clause in the case statement used in both 
Verilog and Java.  Creating designs that are self-
starting is part of the good practice that the model 
checker is seeking to support. 

3. SUPPORT WHEN CODE DOES NOT 
COMPILE 
 

3.1 Explaining compiler error messages 
The compiler used by the IVC is the Icarus Verilog 
compiler. A Perl program examines each error in 
turn, looking back at the previous statement or block 
as required for that particular error.  The explanation 
provides a top level description of the problem. The 
original error message is displayed to help the 
student understand when that particular error can 
occur 

3.2 References back to the tutorial 
The error messages from the IVerilog compiler are 
scanned for language keywords which are passed 
to a knowledge base implemented in Prolog [7].  
Prolog is a declarative logic programming language 
based on predicates which can be true or false, and 
is a de facto standard in generating expert systems 
and knowledge bases. 
Within the knowledge base, each web page is  
referenced to the language keywords in a hierarchy 
of usage and composition reflecting the BNF of the 
language.  This links the semantic web to the pieces 
of HTML that are to be displayed to the student. The 
glossary entry for the keyword and the BNF 
definition are combined into the teaching page 
together with further pages providing the initial 
description, the first example and a more 
complicated example.   
Having these pieces of HTML separately stored 
means that the explanations can provide very 
specific links to each kind of information that the 
student needs rather than simply displaying the 
whole tutorial page back again.  This supports the 
stressed student, who does not want to read the 
whole page when they actually just need one 
particular part of the explanation.   
It also allows future versions of the IVC to be able to 
support different levels of user expertise to tailor 
what they read in the tutorial web pages.  A 
confident student does not need to see the early 
examples, whereas a mystified student faced with 
syntax errors certainly does. 



 

 
 

Figure 2 Context sensitive explanation of compiler messages and help text provision
The IVC displays relevant links embedded within a 
structural explanation of the language constructs, as 
shown in the central red text in Figure 2, part of 
which is reproduced below, with links are shown 
underlined. 
Assign is used in a continuous 
assignment 

an assign has to have a wire.  See the 
BNF for assign 

The information about the BNF for the assign 
statement is given informally in the explanatory 
sentences.  The first line provides information about 
the concept of continuous assignment:  did the 
student realise that this is what they were doing?  
Were they really trying to write an assignment within 
an always block?   
The second line deals with what an assign 
statement needs to have:  in this example the error 
is with using <= instead of = in the assignment.  
This may be a typographical error, or may reflect 
that the student has not realised the implications of 

the different assignment types.  The help text 
generated by the IVC is designed to help the 
student in either case in the same way that a 
demonstrator would.   
The IVC cannot at present use previous knowledge 
of the student or conduct a conversation with them 
in the way that a human could, but it can use its 
knowledge of the structure of the Verilog language 
to provide more than just appropriate links back into 
the tutorial. 

4. SUPPORT WHEN CODE DOES NOT 
WORK 
4.1 State space restrictions 
The problem specifications are presented to the 
student in English, with the correct state diagram.  
The model checker provides the state diagram  
together with comments on how closely the 
student’s program matches the problem 
specification.  



 

The state diagram is generated by restricting the 
student to a template of variable declarations and 
partial output assignments defining the state space, 
leaving the student to produce the state space 

contents. A Prolog file relates errors in the state 
space to an English explanation of the probable 
cause relating directly back to the problem 
definition.   

 
 

Figure 3 Identifying semantic errors 
Another Prolog predicate is used to check that the 
all the necessary states are reachable and that the 
circuit will self-start into a correct state if started in 
an incorrect one.  For example, a three bit state 
representing a traffic light needs move to the safe 
state of 100 (red) if the circuit is in an incorrect state 
such as 111 (all lights on). 

4.2 Discrete event simulation 
A discrete event simulation is provided based on the 
vvp component of the IVerilog compiler.  This 
generates a simulation trace output in a text format,  
shown in the middle right hand window in Figure 3 
above. The simulation explainer helps pick up wiring 
errors that produce unknown values on wires.   
In this case,  the student has forgotten to assign the 
calculated values to the wires. This generates an 
unknown “x” value which produces an error in the 
state space which the model checker spots as an 
error in the transitions.   
The simulation provides another explanation of the 
error which is more familiar to the student used to 

adding print statements to code that does not work.  
It identifies which wire is unconnected and hence 
providing unknown “x” values. 

4.3 Model checking in action 
Figure 3 above shows the model checker spotting 
an error in wiring where a calculated value has not 
been “wired” in to an output variable. 
When button = 0 count does not advance 
to 3’b001.  Sorry, your code does not 
implement an electronic die. 

Figure 4 below shows an example where the 
simulation trace is unhelpful because the incorrect 
program stops producing new output once the 
electronic die it represents gets stuck on the value 
“2”.  The model checker, on the other hand, scans 
all of the state space and is able to identify incorrect 
behaviour, thereby pointing the student directly to 
the problem.    



 

It is extremely likely that the student has cut and 
pasted the lines in the case statement but forgotten 

to edit the line afterwards.  We have all been there. 

Figure 4 Identifying state machine errors 
Another common error occurs when the student 
has forgotten to assign the calculated value to the 
output bit representing the amber traffic light. This 
generates an unconnected “z” value which 
prevents the student’s code from working.  
However, there is no error in the state space.  
Having both representations encourages the 
student to recognise that a trace table and a state 
transition diagram are different views on to the 
same concept.  
Understanding which variables are needed to 
represent an algorithm and what processing is 
needed to achieve the necessary state is a skill 
the students have already started to learn with 
Java and ML.   

5. RESULTS 
5.1 Prototyping of IVC 1.0 
At the time of writing, version 1.1 of the IVC has 
been evaluated by students who already knew the 
language from having taken the lecture course six 
months before.  Their feedback has shaped the 

ideas above, and provided confirmation of the 
advantages of having all resources to hand to 
make the learning of the language as painless as 
possible. 

5.2 Live use of IVC 2.0 
Our research hypotheses are as follows: having 
used the IVC instead of attending  four lectures. 

1: Students do complete the tutorial before 
attempting the first laboratory exercise; 
2: Students take less time to finish the first and 
second laboratory exercise; 
4: Students answer examination questions better  
5: More students attempt the examination 
questions 

At the time of writing, we are able to provide 
results to 1 and 2 above.  Achieving 2 is taken as 
a measure that the students have learned basic 
Verilog. 

Only one student out of a class of eighty four 
chose not to use the IVC. 

  



 

 

 

The following questions from the IVC questionnaire 
completed after its use in October 2005 show how 
the students reacted to the intelligent components 
of the IVC: 
10. The intelligent compiler also provides links back 
to relevant parts of the tutorial to help solve syntax 
and usage queries. How did you use these links? 

35% did not use them 
11% read the BNF 
14% answered the question from the generated text 
without following the links 
40% read the generated tutorial page link  
11 Once your code compiled, the intelligent 
compiler provides a text simulation and model 
checks your code to generate a state transition 
model. These next questions ask how useful these 
were. How did you spot the errors in your program? 

  9% used the model checker comments 
47% used the state transition diagrams 
29% used both the above 
  9% used the simulation and model checker 
   6% just looked at code again 

Figure 5 below shows the time taken to complete 
the laboratory exercises (ticks) for 2004, without the 
IVC, and this year, with the IVC. 

6. CONCLUSIONS AND FUTURE WORK 
6.1 Conclusions 
In this paper we have demonstrated the advantages 
of the use of an English explanation, the language 
grammar, graded examples, feedback on student 
progress and the opportunity to try small 
programming examples in the protected 
environment of a context-sensitive compiler and 
model checker.  
Over 85% of the students used the visual 
representation of the state machines.  65% of 
students used the context sensitive help, with 14% 
being able to answer their query merely by the 
structure of the generated text.  This represents a 
good take-up of the two intelligent components of 
the IVC. 
We have demonstrated a significant improvement in 
success in completing the laboratory exercises. 
We have shown that adding an understanding of 
Verilog syntax and the semantics of simple 
programming exercises to a compiler can vastly 
improve the support given to novice Verilog 
programmers in a university setting. 
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Figure 5 Tick Acquisition after IVC use 

6.2 Future work 
We hope that examination results in the summer will 
also reflect the positive results from this term’s 
survey. We hope to publish further papers in due 
course based on the quantitative and qualitative 
analysis of the students’ progress with the IVC and 
the laboratory sessions. 
The current IVC system has been built very much 
as a proof of concept.  We wish to extend the 
framework to cover a broader range of intelligent 
context sensitive explanations of both syntax and 
semantic errors, based on the structure of the 
language and the problem space to be solved.  We 
believe other semantic checks apart from the 
representation of state may be possible using 
concepts analogous to the invariants and pre- and 
post-conditions in conventional third generation 
languages. 
We wish to be able to support different levels of 
user expertise to tailor what they read in the tutorial 
web to what they have already seen.  User levelling 
and history capabilities would extend what further 
intelligence can be added to the intelligent complier 
and model checker.  We also wish to generalise the 



 

framework to allow a broader range of subjects to 
be taught.   
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