Is Hardware Security prepared for unexpected discoveries?

Dr Sergei Skorobogatov
University of Cambridge, UK
Dept of Computer Science and Technology
Purpose

- Remind about the importance of Hardware Security
 - Growing number of devices being used in critical and sensitive applications
 - Have we learned from history of attacks?
- Highlight that mitigation is not developed in time to defeat attacks
- Present some new attacks
- Discuss predictability of attacks
Outline

- Introduction
- History of attack technologies
- New attacks
- Discussions
- Challenges and Future work
- Conclusion
Introduction

- History of disturbing physical attacks
 - Mask ROM visibility
 - Power analysis
 - Optical fault injection
 - Data remanence in Flash/EEPROM
 - Combined attacks
 - Optical emission analysis
 - Flash/EEPROM imaging under SEM
 - CPU speculative execution bug
History of disturbing physical attacks

- Mask ROM “invisibility” in 1990s
 - Information is encoded with doping level
 - Impossible to see under optical microscope
 - Failure Analysis helps with defects etching
 - Countermeasures at silicon level

O. Kömmerling, M. Kuhn: Design Principles for Tamper-Resistant Smartcard Processors. USENIX 1999
History of disturbing physical attacks

- Power analysis reveals deep secrets
- Leakage from switching CMOS transistors is correlated with processed data
- Can break passwords and crypto keys
- Countermeasures are very sophisticated

P. Kocher: Differential Power Analysis. Crypto 1999
History of disturbing physical attacks

- Optical fault injection
 - CMOS transistors and memory cells can be controlled with a laser beam
 - Confirmed down to 28nm devices
 - Countermeasures at silicon level

S. Skorobogatov, R. Anderson: Optical Fault Induction Attacks. CHES 2002
History of disturbing physical attacks

- Data remanence in Flash/EEPROM
 - Residual information present after Erase
 - Could lead to recovery of sensitive data
 - Once learned can be easily defeated

S. Skorobogatov: Data Remanence in Flash Memory Devices. CHES 2005
History of disturbing physical attacks

- Combined attacks
 - Power analysis + Fault injection
 - More powerful and localised
 - Countermeasures are hard to implement

S. Skorobogatov: Optically Enhanced Position-Locked Power Analysis. CHES 2006
History of disturbing physical attacks

- **Optical emission analysis**
 - Switching CMOS transistors emit photons
 - Can be detected with CCD cameras (2D) and photomultiplier tubes (time resolved)
 - Countermeasures are hard to implement

History of disturbing physical attacks

- Flash/EEPROM imaging under SEM
 - More efficient and faster than SPM
 - Destructive to memory cells
 - Physical limits for detectable charge
 - Countermeasures are hard to implement

F. Courbon, S. Skorobogatov, C. Woods: Direct charge measurement in Floating Gate transistors of Flash EEPROM using Scanning Electron Microscopy. ISTFA 2016
History of disturbing physical attacks

- CPU speculative execution bug
 - Design flaw in most modern CPUs
 - Attack names: Meltdown, Spectre
 - Allows eavesdropping on internal CPU data from independent processes
 - Countermeasures at OS and silicon level

M. Lipp et al: Meltdown. USENIX 2018
P. Kocher et al: Spectre. S&P 2018
History of attack technologies

Did all those attacks came unexpected or they could have been predicted?

- Mask ROM visibility
 - manufacturers new what they were doing

- Power analysis
 - standard tool to calculate power dissipation

- Optical fault injection
 - radiation causes circuits to malfunction

- Data remanence
 - was known for magnetic media
Did all those attacks came unexpected or they could have been predicted?

- Combined attacks
 - were not considered as simpler attacks existed

- Optical emission analysis
 - was known for many years and is used in LEDs

- Flash/EEEPROM imaging under SEM
 - was not considered until latest SEMs with PVC

- CPU speculative execution bug
 - possible to predict if you have security review
Impossible attacks – very high drive

- Reading data if there is no readback
 - Devices were considered secure by design
 - bypassed with bumping attacks
- Accessing data through backdoor
 - Was considered to be impossible by design
 - proved to work via undocumented debugging
- Reset passcode attempt counter in iPhone
 - FBI claimed that NAND mirroring will not work
 - proved to work with hardware cloning prototype

S. Skorobogatov: Flash Memory 'Bumping' Attacks. CHES 2010
S. Skorobogatov, C. Woods: Breakthrough silicon scanning discovers backdoor in military chip. CHES 2012
S. Skorobogatov: The bumpy road towards iPhone 5c NAND mirroring. arXiv 2016
New attacks

- Microprobing CPU data bus
 - Hitachi HD6483102 smartcard controller
 - 16-bit Von-Neumann RISC CPU
 - Cutting bus line bit-15 will inject permanent '1'
 - CPU will execute non-branch 1-cycle instructions
 - Full memory extracted using one microprobe
New proof of concept attack

- Decapsulation on live circuits
 - Vasco Digipass 270 authentication token
 - Battery-backed SRAM storage for keys
 - on losing power or if Reset stops working
 - Sample preparation involves tape insulation, applying hot 100% Nitric Acid via stencil and washing with Acetone
Discussions

- Is it possible to predict new attacks?
 - Hardware security educated engineers
 - Open mind design reviewers

- Unexpected attack: bad or good
 - Helps in understanding the nature
 - What is bad for chip manufacturers might be good for technological progress
 - new materials could be created
 - new processes could be developed
 - new solutions to problems found
Challenges and Future Work

- **Mechanical damage**
 - Restore challenging packages (QFN, BGA)
 - Recovering information from shattered dies

- **Electrical damage**
 - Recovering information with burned I/O
 - Recovering information if logic is burned
Conclusion

- Many new attacks are based on well known facts and phenomena
- Instruction set in many CPUs is highly orthogonal, hence, susceptible to fault attacks
- Battery backed devices can be decapsulated without losing power
- New attacks are likely to emerge in the future
 - Are we ready to defeat?
- Collaboration between Industry and Academia
 - Implementing 'impossible' attacks
 - Coming up with new solutions and 'crazy' ideas