
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Compromising device security via NVM controller

vulnerability

Sergei Skorobogatov

Dept of Computer Science and

Technology

University of Cambridge

Cambirdge, UK
sps32@cam.ac.uk

Abstract—This paper introduces a new vulnerability found

in a low-cost secure authentication IC that stores its security

settings in non-volatile memory (NVM). Such devices are widely

used for prevention of counterfeiting in consumable products

and accessories (printer cartridges, batteries etc.) and for

aftermarket control. The particular device targeted here uses

hardwired application logic and lacks a microprocessor,

however, more sophisticated security devices used in medical

and banking applications could similarly be vulnerable. The

newly discovered self-induced fault attacks exploit implications

of the use of error-correction codes inside modern embedded

NVM blocks and their associated control logic, which can leave

the application vulnerable to early termination of NVM write

operation. This could potentially be used to change the security

settings of a device in a way that bypasses the intended state

machine controlling access and allow reverting the stored

hardware security level back to the factory test/debug mode.

The paper also outlines some measures that could substantially

reduce the chances of a successful attack.

Keywords—hardware security, counterfeit prevention,

embedded EEPROM and Flash NVM, backdoors, fault attacks,

reverse engineering

I. INTRODUCTION

Modern systems rely on hardware security to prevent all
sorts of attacks [1,2]. In order to comply with these demands
modern semiconductor chips are designed with hardware
security in mind. This helps in designing a secure system by
combining the knowledge of existing attack technologies with
state-of-the-art defence technologies. Without awareness of
modern attack methods it would be impossible to design an
adequate secure system. Existing countermeasures could help
in assisting the design process. However, for economical and
convenience reasons it is not always possible to incorporate
all countermeasures. Hence, the job of the knowledgeable
hardware designer is to choose the right solutions.
Nevertheless, some oversights in the hardware design could
open new attack vectors later like it happened with modern
CPUs [3,4]. This paper exposes another area of possible
vulnerability that could potentially affect the security of
semiconductor devices. It is related to the embedded non-
volatile memory (NVM) and the way it is controlled by an on-
chip logic.

Counterfeit prevention and aftermarket control has long
been a concern for automotive, medical, entertainment and
printing industries. In the old days this was achieved by using
semiconductor devices with simple functions, like serial ID
numbers or proprietary access protocols. From the late 1990s,
the demand for devices with some cryptographic functionality
has grown substantially. This was caused by the widespread
use of low-cost attack methods [5]. Such devices started using
cryptographically strong message-authentication functions

such as HMAC-SHA-1 to verify that an authentication device
shares a secret key or password. In order to prevent
eavesdropping attacks, the host normally sends a random
challenge to the device. Then a response computed from the
hash of the key and the challenge is sent back for verification.
In the host, the secret key can be derived from a master key,
to avoid sharing the same key between multiple devices.

Modern authentication devices are usually based on
asymmetric cryptography and incorporate a wide range of
countermeasures against many known attacks. That way the
host device does not have to hold any secrets. Instead only a
certificate’s public key and verification algorithm are stored.
This prevents host reverse-engineering attacks common for
authentication devices based on symmetric cryptography.
That is where the secret keys are either directly extracted from
the host or the host is forced to calculate the derived secret
keys. The communication between the host and the device is
normally performed with a random challenge and randomised
response to prevent eavesdropping attacks.

II. BACKGROUND

Attacks on semiconductor devices can be split into several
categories. Non-invasive attacks are usually low-cost and
involve observations of the device operation or manipulations
of external signals. They require only moderately
sophisticated equipment and knowledge to implement. They
do not physically harm the chip and often leave no trace.
Invasive attacks, in contrast, are expensive and require
sophisticated equipment and knowledgeable attackers.
However, they offer almost unlimited capabilities to extract
information from chips and understand their functionality. As
these attacks involve contacting the intra-chip circuitry, they
always leave traces and often destroy the chip. Semi-invasive
attacks fill the gap between non-invasive and invasive attacks
and are more affordable to many attackers. For these attacks
the chip still needs to be de-packaged, but the internal
structure remains intact. Although these attacks often leave
traces, in most cases the chip remains fully operational.

Tools used for carrying out non-invasive attacks are
usually available at most electronics engineering labs. These
include digital multimeter, IC soldering/desoldering station,
universal programmer, oscilloscope, logic analyser, signal
generator, power supply, PC and prototyping boards. Non-
invasive attacks can be divided into side-channel attacks
(timing [6], power analysis [7], emission analysis [8]), data
remanence [9], data mirroring [10], fault injection (glitching
[11], bumping [12]) and brute forcing [13].

Tools used for carrying out invasive attacks involve a
simple chemistry lab, high-resolution optical microscope,
wire bonding machine, laser cutting system, microprobing
station, oscilloscope, logic analyser, signal generator, PC,

prototyping board, scanning electron microscope (SEM) and
focused ion beam (FIB) workstation. Invasive attacks can be
divided into sample preparation [14], imaging [15], direct
memory extraction [16], reverse engineering [17],
microprobing [18], fault injection [19] and chip modification
[20].

Tools used for carrying out semi-invasive attacks involve
a simple chemistry lab, high-resolution optical microscope,
UV light source, lasers, oscilloscope, logic analyser, signal
generator, PC and prototyping boards. Semi-invasive attacks
can be divided into imaging [21], laser scanning [22], optical
fault injection [23], optical emission analysis [24] and
combined attacks [25].

Modern authentication devices usually support a product
life cycle that steps through multiple levels of security
protection. When the device is initialised at the factory, it
typically starts in its lowest security level, which allows full
access to its hardware resources. After the factory testing is
passed, the device is personalised with some essential data,
before being shipped to a customer (ID, slot number, access
password, encryption keys etc.). This places it into the next
security level, with restricted access. The customer may then
program the device with customer-specific parameters, data
and keys, before restricting its security level further. Then it is
placed into a product and shipped to an end user. Of course,
there could be plenty of variations, but one aspect remains
unchanged – the hardware security protection level goes from
the lowest to the highest on the way between fabrication and
end user.

In the past, multiple attacks were carried out on
authentication devices. Those ranged from a simple write un-
protection of an EEPROM and memory corruption [5] to more
sophisticated optical fault injection attacks [8,26].

Another attack vector that became successful in some
cases is exploiting backdoors present in many semiconductor
devices. They normally exist in the form of undocumented
features implemented by hardware designers for assisting
post-fabrication and factory testing. In some cases, these allow
to completely circumvent the security protection and gain full
access to on-chip memory and low-level hardware control
features [27]. There had been some speculation about the
covert nature of such insertions being hardware Trojans,
however, no real proof of this has been found.

III. PREVIOUS RESEARCH

Our target device for demonstrating the new fault injection
attack is the Infineon OptigaTM Trust B SLE95250 [28], which
implements a very basic authentication protocol based on
elliptic-curve cryptography (ECC). As there was very little
information provided by the manufacturer on this device
without NDA, we had to obtain all the information necessary
to operate it first through the Internet search and reverse
engineering its Evaluation Kit [29]. This led to our nearly full
understanding of its communication protocol, which turned
out to be based on a protocol by Braun/Hess/Meyer [30], and
the discovery of the backdoor that allowed full access to the
on-chip NVM and successful extraction of secrets [31].

While we were able to order SLE95250 engineering
samples from several distributors, availability of the
Evaluation Kit was limited to only a few. The information on
the Infineon website about OptigaTM Trust B products [32]
was limited to a brief public datasheet on SLE95250 [33] with

very limited information – primarily package layout, pinout
and connections, electrical characteristics. It only mentioned
that the device communicates via a proprietary “SWI” single-
wire interface, without any information on it at all. Neither the
modes of operation were described, nor the authentication
protocol or ECC parameters, apart from them involving a 131-
bit engine for authentication and 163-bit certificates. Essential
information about communication waveforms, bit encoding,
protocols and commands, NVM access, usage of Life Span
counter, signature verification and authentication details
including the Message Authentication Code (MAC) function
was not publically available. However, some searches over the
Internet revealed one Infineon’s patent [34] and an IEC62700-
committee standards proposal [35] that shed some light on the
SWI interface and the basic communication protocol, which
turned out to be related to the physical interface used in the
MIPI Battery Interface (BIF) specification.

A. Reverse Engineering of the Evaluation Kit

The OptigaTM Trust B Evaluation Kit [29] is a USB dongle
that comes with Windows GUI software. Not much
information was provided on the hardware, not even a simple
circuit diagram. Nevertheless, it did not take much time to
eavesdrop on the communication between the SLE95250
device and the main microcontroller of the kit, an Infineon
XMC4500. We reconstructed the full circuit diagram of the
kit using computed-tomography slices prepared with an X-ray
microscope. This helped us to trace the connections with the
USB chip and debug points. Finally, we reconstructed the
complete communication from USB down to OptigaTM Trust
B device with the help of a logic analyser and an improvised
SWI-to-UART converter (Figure 1).

Fig. 1. Eavesdropping on the internal communication in the Evaluation Kit.

The firmware of the Evaluation Kit stored inside
XMC4500 microcontroller was not read protected. It was
possible to download the whole image of the internal Flash
using a standard ARM debugger (J-Link) via the single-wire
debug (SWD) interface. We then decompiled and annotated
the firmware into readable C code using Ghidra [36]. A similar
approach was attempted to the GUI program using a .NET
decompiler, however, it turned out that the authentication
algorithm is performed entirely inside the XMC4500 and the
Windows software is only used for visualisation. Still, this
exercise revealed the names of the functions called via the
USB interface and helped to better understand the firmware.
Finally, we implemented the SWI communication with the
SLE95250 on an XMC4500 Relax Lite Kit [37], and the ECC
authentication in Python.

B. SWI communication and NVM access

SWI communication is performed through commands.
Most operations are performed by accessing registers. Some
of those registers act as a communication buffer, some initiate
NVM operations or decrement a Life Span counter. Table 1
summarises commonly used commands and operations.

TABLE I. SWI COMMANDS AND OPERATIONS

Operation
SWI communication

Command Address Data

Reset 800 – –

Read 1 byte 820, 850 5HH, 7LL 7XX

Write 1 byte 820, 850 5HH, 6LL 7XX

Register read 820, 851 5HH, 7LL 7XX

Register write 820, 851 5HH, 6LL 7XX

ID search 830, 83X, 83Y – –

ID select 830, 83Y – –

ECC run 8C1 – –

Status query 810 – –

Select device 9HH, ALL – –

NVM read
820, 851
820, 851

820, 851

502, 674
502, 672

5XX, 7YY

4LL
4HH

7XX

NVM write
820, 851
820, 851

820, 851

5XX, 7YY
502, 674

502, 672

4XX
4LL

4HH

Life Span
Counter decr

820, 851
820, 851

502, 674
502, 672

420
489

NVM read and write operations can only access 256 bytes
of memory, as the address is specified by 8 bits in SWI
registers. However, 64 bytes within the NVM are read
protected and writing is only allowed into a user area of 104
bytes. The Public key and certificate can be read, but are write
protected. Life Span counter can be overwritten in engineering
samples but can be made write protected using register 0x26F.

Our initial assumption was that the Private key is stored
somewhere within the read protected area of the NVM.
However, in order to access that area the hardware security
protection of the chip would have to be circumvented.

C. Optical Fault injection attack

Fig. 2. Optical image of the die.

Our first successful attack performed on the chip was via
laser fault injection. However, prior to that, the location of the
NVM array and a way to deliver the laser beam had to be

found. Figure 2 shows an optical image of decapsulated die
under a microscope. Fabricated with an advanced process, it
leaves no visible gaps passing through the metal layers, hence,
the only practical approach for laser attacks is from the rear
side, through the bulk silicon.

Fig. 3. Optical image of the rear-side deprocessed die.

Figure 3 shows an optical image of rear-side of a
deprocessed die under a microscope. The NVM area at the top
left corner is easy to spot by its regular structure. However,
optical fault injection attacks require a fully operational
device. It is quite challenging to open a 1.5mm × 1.1mm
device while keeping it still working. Therefore, the package
was first reinforced with epoxy before polishing the silicon
substrate (Figure 4).

Fig. 4. Sample preparation for optical fault injection attacks.

Fig. 5. Optical image of the NVM physical array.

Focusing a 1064nm laser with more that 40mW power at
the NVM region caused temporary data corruption in a
corresponding memory region. However, the chip retrieved its
security settings from NVM only during power-on reset. By
performing an exhaustive search, it was possible to find the

correct location and laser settings to cause the NVM read
protection to be disabled. As a result, all 256 bytes of NVM
became readable. However, there were no interesting secrets
in there – just device ID, ECC curve parameter and some
constants. At the same time a closer look at the NVM array
under a microscope revealed that it contains 6552 bits of
information – far more than the 256 bytes accessible in the
known way (Figure 5). Therefore, a new way of obtaining full
access to the stored data was required, such as exploiting a
backdoor implemented for factory testing and debugging
purposes.

D. Quest for Backdoors to gain full NVM access

The process of finding the registers that could assist with
extended NVM access started with scanning the whole
register space to identify all readable and writable registers.
However, none of them appeared to behave similar to NVM
related registers, apart from the already known ones. Then the
same scanning operation was performed with disabled
security. This revealed a small number of registers which
became active after disabling the security. Fuzzing those
registers identified two interesting candidates. Register 0x266
was behaving similar to the known register 0x274 in respect
of initiating NVM read and write operations. Register 0x264
was setting some parameters for NVM access. Unlike
previously known NVM access commands those extended
NVM access operations applied to a whole row in the physical
NVM array. That is 156 bits at a time – 4 sets of 32-bit data
with 7-bit error correction. The full address space of 1024
bytes was limited to 672 bytes of real data physically present
on the die. Error correction bits were not only always readable,
but were writable when permitted by settings in register
0x270.

Although it was now possible to read all 6552 bits of the
extended NVM array, this was still not enough to extract the
Private key. The memory below address 0x200 contained
already known information, but everything above appeared to
be encrypted.

E. Memory Decryption and Private Key extraction

It turned out that another set of registers needed to be
identified and correctly set before the readout from the
extended NVM appeared unencrypted. The scrambling key
turned out to be only 8 bits long and was stored at address
0xA0 in normal NVM, though read protected by default. We
verified the correctness of the 131-bit elliptic-curve Private
key that became readable that way by multiplying it with the
base point. The result matched the Public key of the device.

The error correction codes turned out to be standard
Hamming codes and were reconstructed by programming the
memory with a single-bit-set test pattern. The memory
encryption function appeared to merely XOR memory content
function with a 64-bit key-dependant table repeated over the
whole range. In addition to data scrambling the chip also
applied address permutation, however, this did not affect the
error correction bits at all. Therefore, it was relatively easy to
find the correct address by matching the 16-byte data blocks
to the sequence of four-byte error correction words.

If we modified the Private key, this blocked ECC
computation is not performed. It turned out that a 32-bit CRC
value of the key is stored inside the extended NVM and must
match the computed one. However, any Private key with
correct CRC can be programmed into any device and will be

accepted. The CRC was easy to identify as a linear function,
i.e. Key1 xor Key2 = Key3 implies CRC1 xor CRC2 = CRC3,

Table 2 shows the data extracted from one compromised
device.

TABLE II. DATA FROM ONE COMPROMISED DEVICE

Parameter Value

curve y2 + xy = x3 + ax2 + b

√b 00e4808f8949d33c69e070a5f82c3633d9

f(x) x131 + x8 + x3 + x2 + 1

GX (base point) 03651a4282ae22c4fc6c20c9b7281ec1f5

QX (Public key) 06d046e3bf7bb34479bd3aad1301f14cbd

QX
* (padded QX) 1dd6d046e3bf7bb34479bd3aad1301f14cbd

Device ID 07203c0210c4981a8d68

Signature R 001c8f15507787ba50c293427d0794f447e899c150

Signature S 00167334723255207c535908434ac0563548dbaa1d

q (Private key) d861429f79fefd9f8090ae83df804970

q* (padded q) 0d861429f79fefd9f8090ae83df804970

The above-mentioned attack, like most semi-invasive
attacks, has certain limitations and is unlikely to present a real
threat to the security of real-world systems using the OptigaTM
Trust B. Firstly, laser fault injection attacks require specialised
and expensive equipment. Secondly, samples must be
prepared in a special way to allow the laser beam to be focused
from the rear side of the chip. Finally, the chip must still be
fully operational. Achieving reliable sample preparation that
involves substrate thinning while maintaining full
functionality of the chip is a quite challenging, tedious and
time-consuming process, especially for such a small device
with a silicon die area of less than 1mm2. Since each device
holds a unique Private/Public key pair an attacker will have to
extract them from hundreds or even thousands of samples to
avoid key revocation or ID blocking. Therefore, a more
efficient and reliable non-invasive attack is required in order
to become the real threat to the security of OptigaTM Trust B
devices.

IV. FINDINGS AND IMPLEMENTATION

The embedded NVM array is the only reprogrammable
non-volatile data storage present on the SLE95250 die. This
means that any changes in the security settings will be
managed by the same hardware control logic. The reason why
many chip manufacturers go for a single physical NVM is the
size penalty for embedding extra physical arrays. Cost-
optimised sub-mm2 chips usually share the same NVM array
for multiple purposes: device ID or serial number, constants,
factory data, user data, secret key or password. Theoretically,
faults induced into the chip operation could force it to write
into a wrong area and influence the value of the security-
control settings.

A. NVM challenges

Many modern chips are built with deep submicron
fabrication process. As the memory cells shrink, their
reliability, data retention time and maximum number of cycles
become worse. In order to improve fabrication yield, prolong
the device lifetime and improve characteristics, chip
manufacturers choose NVM blocks with error correction.
Very often this feature comes as a complete, independent and
proprietary design block. As a result, even the low-level
hardware design engineers do not have any control over the
memory operation and only manipulate input and output
connections. Hence, changes between any intermediate states
for each memory row during write operation are determined
by the memory-block IP designer at a fab, rather than the

ASIC designer. The same applies to the handling of error
correction functions and read-modify-write buffers. Neither
can the timing of the internal operations be controlled by the
chip designer, and often is fixed in the memory-block library
provided by the fab.

One good practice in the design of security-sensitive
devices can be to only allow changes in security level in one
direction – from lowest to highest. In older devices, based on
classic EEPROM and Flash arrays, this was achieved by
permitting bit changes only in one direction – from erased to
programmed state. However, the introduction of error
correction thwarted the inherent one-way-programming
nature of NVM cells and became embedded into the low-level
design of the NVM controller logic. Chip designers who rely
on fabless manufacturing or outsourcing fabrication often
cannot control such internal functionality of the NVM
controller.

B. Fault injection during NVM writing

In order to understand the process of memory writing, we
supplied power to the SLE95250 target device directly from
an I/O pin of our microcontroller test board, to be able to
precisely power down the target, synchronized with events on
the SWI bus. The result of a memory write operation
terminated after different time intervals is presented in Table
3. In this example, the write operation overwrites an initial
value of 5Ah with A5h value. As the table shows, changes to
that byte do not happen simultaneously for all bits. Also, there
is a 750μs long delay between the apparent completion of
erasure and the first signs of the programming cycle.

TABLE III. NVM WRITE RESULT AFTER DELAY

t

μs
 0 58 77 78 79 830 831 832 833 999

N 5A 5A 7B FB FF FF F7 A7 A5 A5

The embedded memory write operation can be terminated
by switching off the power supply of the chip and forcing it to
GND level. By controlling the delay time, it is possible to
perform the change bit by bit, until the desired bit is affected.
Both EEPROM and Flash memory store the data in the form
of a charge inside their cells. If the normal write operation is
terminated early, there is a chance that internal charge will
stay at an intermediate level. Then it would be possible to
influence the values read from of the memory by changing the
power supply voltage [38]. The overall time required for
disabling the security protection in an OptigaTM Trust B device
this way is less than 0.1 seconds.

C. Self-induced fault injection

The presence of other protection features could also affect
the susceptibility to the above type of fault injection attacks
making them easier to perform. For example, in the SLE95250
both the security-protection register 0x26F and user-NVM
write-protection register 0x275 are physically located in the
same row of the NVM array. This increases the number of
attempts to find the correct fault injection settings from 4 (bits
in 0x26F register) to 12 (bits in 0x26F and 0x275 registers).

Although the introduced attack, with fault injection into
the power supply line during NVM write, is completely non-
invasive and very fast, it still requires some additional
preparation time. At least physical access to the chip’s power
supply line is required. If the chip is used in a configuration
where the power supply is delivered through the SWI interface

line, this can present an additional challenge, requiring de-
soldering of the chip and placing it onto a test bench. Hence,
the attack time could be much longer than the actual 0.1
seconds required to amend the security register.

A more powerful alternative was found through exploiting
a feature in control register 0x270. Apart from enabling the
Life Span counter, NVM bulk 0s writing and error correction
overwriting it also has a bit that terminates the device
operation. This acts as some kind of a soft kill switch. The
effect from it is very similar to the one achieved by switching
off the power supply to the device. Hence, the already very
successful NVM-write-terminate attack was improved into a
purely software-controlled fault attack, by aborting the write
operation with the help of this soft-kill switch feature. Yet
another backdoor on the device.

V. CONCLUSION

The attacks presented above are capable of inducing faults
into the NVM memory through exploiting the overwriting
mechanism. The process of updating the memory content is
internally controlled by logic hardwired into silicon. This is
imposed by the use of error-correction logic. It does not allow
to change a single bit of memory directly from erased to
programmed state without rewriting the whole memory row
to also update the error-correction bits. Such a row consists in
case of the SLE95250 of 128 data bits and 28 error-correction
bits. Even a single-bit change operation starts with fetching
the row into hardware buffer, modifying it there, then erasing
the row followed by writing the modified data from the buffer
back into it. If this flow of events is terminated early, either
during the row-erase or row-write operation, it results in
incorrect data stored in NVM. In some cases, the memory
content became unstable and gave a slightly different reading
each time. This can be further exploited in a controllable way
due to a power-supply voltage dependency of these
fluctuations. As a demonstration of the power of this attack we
cloned one OptigaTM Trust B chip with user data completely
into a blank chip in less than 1 second. The two chips were
indistinguishable and shared the same Device ID, Private key,
Certificate, Security settings and user data. Both devices
successfully passed the authentication-protocol challenge in
the Evaluation Kit.

There are several mitigation techniques against fault
attacks. Firstly, the physical design and functionality of the
NVM block could be reviewed. Even if it was provided as a
black box, it would still be possible to reverse engineer and
simulate its operations. Secondly, the actual security register
could rely on data from multiple memory rows, thus
minimising the risk of errors and faults. Third, the process of
changing the security from one level to another could be made
more robust with extra redundancy and CRC checks.

A serious new hardware-security vulnerability was
revealed by the research described in this paper. Formal
security evaluation is unlikely to spot such flaws due to the
restricted nature of low-level IP blocks. Unless appropriate
testing is introduced modern embedded NVM blocks could
pose a serious threat to the security of semiconductor devices.

ACKNOWLEDGMENT

I would like to thank my colleagues Markus G. Kuhn and
Shih-Chun You for their many suggestions and help in
understanding the Infineon OptigaTM Trust B devices and the
cryptography used during their authentication process.

REFERENCES

[1] F. Rahman, M. Farmani, M. Tehranipoor, and Y. Jin, “Hardware-

assisted Cybersecurity for IoT Devices,” 18th International Workshop
on Microprocessor and SOC Test and Verification, Austin, USA,
December 2017

[2] S. Skorobogatov, “Physical Attacks and Tamper Resistance,” Chapter
7 in Introduction to Hardware Security and Trust, Eds: Mohammad
Tehranipoor and Cliff Wang, Springer, September 2011

[3] M. Lipp et al, “Meltdown: Reading Kernel Memory from User Space,”
in USENIX Security Symposium, 2018

[4] P. Kocher et al., “Spectre Attacks: Exploiting Speculative Execution,”
2019 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 2019, pp. 1-19

[5] R. Anderson, M. Kuhn, “Low Cost Attacks on Tamper Resistant
Devices,” Security Protocol Workshop, April 1997

[6] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” Advances in Cryptology: Proceedings
of CRYPTO’ 96, Springer-Verlag, August 1996

[7] P. Kocher, J. Jaffe and B. Jun, “Differential power analysis,” In M.
Wiener, editor, Advances in Cryptology-crypto’99, vol. 1666 of
Lecture Notes in Computer Science, Springer-Verlag, 1999

[8] S. Skorobogatov, “Semi-invasive attacks – A new approach to
hardware security analysis,” Technical Report UCAM-CL-TR-630,
University of Cambridge, Computer Laboratory, April 2005

[9] S. Skorobogatov, “Data Remanence in Flash Memory Devices,”
Cryptographic Hardware and Embedded Systems Workshop (CHES-
2005), August-September 2005, LNCS 3659, Springer

[10] S. Skorobogatov, “The bumpy road towards iPhone 5c NAND
mirroring,” arXiv:1609.04327, September 2016

[11] K. Gandolfi, C. Mourtel and F. Olivier, “Electromagnetic Attacks:
Concrete Results,” In Proc. Workshop on Cryptographic Hardware and
Embedded Systems, Paris, France, May 2001

[12] S. Skorobogatov, “Flash Memory 'Bumping' Attacks,” CHES-2010,
August 2010, LNCS 6225, Springer

[13] C. Paar, J. Pelzl, and B. Preneel, “Understanding Cryptography: A
Textbook for Students and Practitioners,” Springer 2010

[14] F. Beck, “Integrated Circuit Failure Analysis : A Guide to Preparation
Techniques,” John Wiley and Sons Ltd, March 1998

[15] F. Courbon, S. Skorobogatov, and C. Woods, “Reverse engineering
flash EEPROM memories using scanning electron microscopy,“ In:
Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146

[16] S. Skorobogatov, “Deep dip teardown of tubeless insulin pump,”
arXiv:1709.06026, September 2017

[17] R. Torrance, and D. James, “The State-of-the-Art in IC Reverse
Engineering,” CHES 2009, LNCS, vol. 5747, Springer, Heidelberg,
2009

[18] S. Skorobogatov, “How microprobing can attack encrypted memory,”
In Proceedings of Euromicro Conference on Digital System Design,
AHSA 2017 Special Session, Vienna, Austria. IEEE Computer
Society, 2017

[19] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault
attacks on RSA with CRT: concrete results and practical
countermeasures,” CHES 2002, CA, USA, August 2002

[20] O. Kömmerling, and M.G. Kuhn, “Design principles for tamper-
resistant smartcard processors,” USENIX Workshop on Smartcard
Technology, Chicago, Illinois, USA, May 1999

[21] S. Skorobogatov, “Video Imaging of Silicon Chips,” University of
Cambridge, poster, March 2004

[22] K. Ueda, “Backside OBIC Scanner,” LSI Testing Symposium in Japan,
1996

[23] S. Skorobogatov, “Optical Fault Induction Attacks,” CHES-2002,
August 2002, LNCS 2523, Springer-Verlag

[24] S. Skorobogatov, “Using Optical Emission Analysis for Estimating
Contribution to Power Analysis,” FDTC 2009, September 2009,
Lausanne, Switzerland. IEEE-CS Press

[25] S. Skorobogatov, “Optically Enhanced Position-Locked Power
Analysis,” CHES-2006, October 2006, LNCS 4249, Springer

[26] S. Skorobogatov, “Optical Fault Masking Attacks,” 7th Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC 2010), 21
August 2010, Santa Barbara, USA. IEEE-CS Press, ISBN 978-0-7695-
4169-3, pp.23-29

[27] S. Skorobogatov, C. Woods, “Breakthrough silicon scanning discovers
backdoor in military chip," Cryptographic Hardware and Embedded
Systems Workshop (CHES-2012), 9-12 September 2012, Leuven,
Belgium, LNCS 7428, Springer, ISBN 978-3-642-33026-1, pp.23-40

[28] OPTIGA™ Trust B SLE95250: Authentication solution for improved
security and reduced system costs, Product Brief, Infineon 2017

[29] OPTIGATM Trust B SLE95250 Evaluation Kit User Guide, Infineon
2017. https://www.mouser.co.uk/datasheet/2/196/Infineon-
OPTIGA_Trust_B_SLE95250_Evaluation_Kit_Us-1379946.pdf

[30] M. Braun, E. Hess, B. Meyer, “Using Elliptic Curves on RFID Tags,”
IJCSNS International Journal of Computer Science and Network
Security, 8(2):1–9, 2008.

[31] HardwearIO 2020 Netherland, Online Hardware Security Conference.
https://hardwear.io/netherlands-2020/

[32] OPTIGA™ Trust Products, Infineon 2020. https://www.infineon.com
/cms/en/product/security-smart-card-solutions/optiga-embedded-
security-solutions/optiga-trust/

[33] SLE95250 OPTIGATM Trust B Authentication IC, Datasheet Rev.1.01,
Infineon 2017. https://www.infineon.com/cms/en/product/security-
smart-card-solutions/optiga-embedded-security-solutions/optiga-
trust/optiga-trust-b-sle-95250/

[34] Electronic system and method for sending or receiving a signal, Patent
US7636806, Infineon Technologies AG, 2007

[35] Wolfgang Furtner, “Proposal for IEC 62700 Identification and
Communication Method for Notebook Computer supporting Class 1-3
ID,” Infineon Technologies AG, 2019. http://www.y-adagio.com/publ
ic/committees/iec_tc100_ags/meetings/35/100ags566.pdf

[36] Ghidra: A software reverse engineering (SRE) suite of tools developed
by NSA's Research Directorate in support of the Cybersecurity
mission. https://ghidra-sre.org/

[37] Infineon XMC4500 Relax Lite Kit, Infineon, 2014.
https://www.infineon.com/cms/en/product/evaluation-boards/

[38] S. Skorobogatov, “Data Remanence in Flash Memory Devices,”
Cryptographic Hardware and Embedded Systems Workshop (CHES-
2005), 30 August - 1 September 2005, LNCS 3659, Springer, ISBN 3-
540-28474-5, pp.339-353

