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Abstract—This paper introduces a new vulnerability found 

in a low-cost secure authentication IC that stores its security 

settings in non-volatile memory (NVM). Such devices are widely 

used for prevention of counterfeiting in consumable products 

and accessories (printer cartridges, batteries etc.) and for 

aftermarket control. The particular device targeted here uses 

hardwired application logic and lacks a microprocessor, 

however, more sophisticated security devices used in medical 

and banking applications could similarly be vulnerable. The 

newly discovered self-induced fault attacks exploit implications 

of the use of error-correction codes inside modern embedded 

NVM blocks and their associated control logic, which can leave 

the application vulnerable to early termination of NVM write 

operation. This could potentially be used to change the security 

settings of a device in a way that bypasses the intended state 

machine controlling access and allow reverting the stored 

hardware security level back to the factory test/debug mode. 

The paper also outlines some measures that could substantially 

reduce the chances of a successful attack. 
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I. INTRODUCTION 

Modern systems rely on hardware security to prevent all 
sorts of attacks [1,2]. In order to comply with these demands 
modern semiconductor chips are designed with hardware 
security in mind. This helps in designing a secure system by 
combining the knowledge of existing attack technologies with 
state-of-the-art defence technologies. Without awareness of 
modern attack methods it would be impossible to design an 
adequate secure system. Existing countermeasures could help 
in assisting the design process. However, for economical and 
convenience reasons it is not always possible to incorporate 
all countermeasures. Hence, the job of the knowledgeable 
hardware designer is to choose the right solutions. 
Nevertheless, some oversights in the hardware design could 
open new attack vectors later like it happened with modern 
CPUs [3,4]. This paper exposes another area of possible 
vulnerability that could potentially affect the security of 
semiconductor devices. It is related to the embedded non-
volatile memory (NVM) and the way it is controlled by an on-
chip logic. 

Counterfeit prevention and aftermarket control has long 
been a concern for automotive, medical, entertainment and 
printing industries. In the old days this was achieved by using 
semiconductor devices with simple functions, like serial ID 
numbers or proprietary access protocols. From the late 1990s, 
the demand for devices with some cryptographic functionality 
has grown substantially. This was caused by the widespread 
use of low-cost attack methods [5]. Such devices started using 
cryptographically strong message-authentication functions 

such as HMAC-SHA-1 to verify that an authentication device 
shares a secret key or password. In order to prevent 
eavesdropping attacks, the host normally sends a random 
challenge to the device. Then a response computed from the 
hash of the key and the challenge is sent back for verification. 
In the host, the secret key can be derived from a master key, 
to avoid sharing the same key between multiple devices. 

Modern authentication devices are usually based on 
asymmetric cryptography and incorporate a wide range of 
countermeasures against many known attacks. That way the 
host device does not have to hold any secrets. Instead only a 
certificate’s public key and verification algorithm are stored. 
This prevents host reverse-engineering attacks common for 
authentication devices based on symmetric cryptography. 
That is where the secret keys are either directly extracted from 
the host or the host is forced to calculate the derived secret 
keys. The communication between the host and the device is 
normally performed with a random challenge and randomised 
response to prevent eavesdropping attacks. 

II. BACKGROUND 

Attacks on semiconductor devices can be split into several 
categories. Non-invasive attacks are usually low-cost and 
involve observations of the device operation or manipulations 
of external signals. They require only moderately 
sophisticated equipment and knowledge to implement. They 
do not physically harm the chip and often leave no trace. 
Invasive attacks, in contrast, are expensive and require 
sophisticated equipment and knowledgeable attackers. 
However, they offer almost unlimited capabilities to extract 
information from chips and understand their functionality. As 
these attacks involve contacting the intra-chip circuitry, they 
always leave traces and often destroy the chip. Semi-invasive 
attacks fill the gap between non-invasive and invasive attacks 
and are more affordable to many attackers. For these attacks 
the chip still needs to be de-packaged, but the internal 
structure remains intact. Although these attacks often leave 
traces, in most cases the chip remains fully operational. 

Tools used for carrying out non-invasive attacks are 
usually available at most electronics engineering labs. These 
include digital multimeter, IC soldering/desoldering station, 
universal programmer, oscilloscope, logic analyser, signal 
generator, power supply, PC and prototyping boards. Non-
invasive attacks can be divided into side-channel attacks 
(timing [6], power analysis [7], emission analysis [8]), data 
remanence [9], data mirroring [10], fault injection (glitching 
[11], bumping [12]) and brute forcing [13]. 

Tools used for carrying out invasive attacks involve a 
simple chemistry lab, high-resolution optical microscope, 
wire bonding machine, laser cutting system, microprobing 
station, oscilloscope, logic analyser, signal generator, PC, 



prototyping board, scanning electron microscope (SEM) and 
focused ion beam (FIB) workstation. Invasive attacks can be 
divided into sample preparation [14], imaging [15], direct 
memory extraction [16], reverse engineering [17], 
microprobing [18], fault injection [19] and chip modification 
[20]. 

Tools used for carrying out semi-invasive attacks involve 
a simple chemistry lab, high-resolution optical microscope, 
UV light source, lasers, oscilloscope, logic analyser, signal 
generator, PC and prototyping boards. Semi-invasive attacks 
can be divided into imaging [21], laser scanning [22], optical 
fault injection [23], optical emission analysis [24] and 
combined attacks [25]. 

Modern authentication devices usually support a product 
life cycle that steps through multiple levels of security 
protection. When the device is initialised at the factory, it 
typically starts in its lowest security level, which allows full 
access to its hardware resources. After the factory testing is 
passed, the device is personalised with some essential data, 
before being shipped to a customer (ID, slot number, access 
password, encryption keys etc.). This places it into the next 
security level, with restricted access. The customer may then 
program the device with customer-specific parameters, data 
and keys, before restricting its security level further. Then it is 
placed into a product and shipped to an end user. Of course, 
there could be plenty of variations, but one aspect remains 
unchanged – the hardware security protection level goes from 
the lowest to the highest on the way between fabrication and 
end user. 

In the past, multiple attacks were carried out on 
authentication devices. Those ranged from a simple write un-
protection of an EEPROM and memory corruption [5] to more 
sophisticated optical fault injection attacks [8,26]. 

Another attack vector that became successful in some 
cases is exploiting backdoors present in many semiconductor 
devices. They normally exist in the form of undocumented 
features implemented by hardware designers for assisting 
post-fabrication and factory testing. In some cases, these allow 
to completely circumvent the security protection and gain full 
access to on-chip memory and low-level hardware control 
features [27]. There had been some speculation about the 
covert nature of such insertions being hardware Trojans, 
however, no real proof of this has been found. 

III. PREVIOUS RESEARCH 

Our target device for demonstrating the new fault injection 
attack is the Infineon OptigaTM Trust B SLE95250 [28], which 
implements a very basic authentication protocol based on 
elliptic-curve cryptography (ECC). As there was very little 
information provided by the manufacturer on this device 
without NDA, we had to obtain all the information necessary 
to operate it first through the Internet search and reverse 
engineering its Evaluation Kit [29]. This led to our nearly full 
understanding of its communication protocol, which turned 
out to be based on a protocol by Braun/Hess/Meyer [30], and 
the discovery of the backdoor that allowed full access to the 
on-chip NVM and successful extraction of secrets [31]. 

While we were able to order SLE95250 engineering 
samples from several distributors, availability of the 
Evaluation Kit was limited to only a few. The information on 
the Infineon website about OptigaTM Trust B products [32] 
was limited to a brief public datasheet on SLE95250 [33] with 

very limited information – primarily package layout, pinout 
and connections, electrical characteristics. It only mentioned 
that the device communicates via a proprietary “SWI” single-
wire interface, without any information on it at all. Neither the 
modes of operation were described, nor the authentication 
protocol or ECC parameters, apart from them involving a 131-
bit engine for authentication and 163-bit certificates. Essential 
information about communication waveforms, bit encoding, 
protocols and commands, NVM access, usage of Life Span 
counter, signature verification and authentication details 
including the Message Authentication Code (MAC) function 
was not publically available. However, some searches over the 
Internet revealed one Infineon’s patent [34] and an IEC62700-
committee standards proposal [35] that shed some light on the 
SWI interface and the basic communication protocol, which 
turned out to be related to the physical interface used in the 
MIPI Battery Interface (BIF) specification. 

A. Reverse Engineering of the Evaluation Kit 

The OptigaTM Trust B Evaluation Kit [29] is a USB dongle 
that comes with Windows GUI software. Not much 
information was provided on the hardware, not even a simple 
circuit diagram. Nevertheless, it did not take much time to 
eavesdrop on the communication between the SLE95250 
device and the main microcontroller of the kit, an Infineon 
XMC4500. We reconstructed the full circuit diagram of the 
kit using computed-tomography slices prepared with an X-ray 
microscope. This helped us to trace the connections with the 
USB chip and debug points. Finally, we reconstructed the 
complete communication from USB down to OptigaTM Trust 
B device with the help of a logic analyser and an improvised 
SWI-to-UART converter (Figure 1). 

 

Fig. 1. Eavesdropping on the internal communication in the Evaluation Kit. 

The firmware of the Evaluation Kit stored inside 
XMC4500 microcontroller was not read protected. It was 
possible to download the whole image of the internal Flash 
using a standard ARM debugger (J-Link) via the single-wire 
debug (SWD) interface. We then decompiled and annotated 
the firmware into readable C code using Ghidra [36]. A similar 
approach was attempted to the GUI program using a .NET 
decompiler, however, it turned out that the authentication 
algorithm is performed entirely inside the XMC4500 and the 
Windows software is only used for visualisation. Still, this 
exercise revealed the names of the functions called via the 
USB interface and helped to better understand the firmware. 
Finally, we implemented the SWI communication with the 
SLE95250 on an XMC4500 Relax Lite Kit [37], and the ECC 
authentication in Python. 



B. SWI communication and NVM access 

SWI communication is performed through commands. 
Most operations are performed by accessing registers. Some 
of those registers act as a communication buffer, some initiate 
NVM operations or decrement a Life Span counter. Table 1 
summarises commonly used commands and operations. 

TABLE I.  SWI COMMANDS AND OPERATIONS 

Operation 
SWI communication 

Command Address Data 

Reset 800 – – 

Read 1 byte 820, 850 5HH, 7LL 7XX 

Write 1 byte 820, 850 5HH, 6LL 7XX 

Register read 820, 851 5HH, 7LL 7XX 

Register write 820, 851 5HH, 6LL 7XX 

ID search 830, 83X, 83Y – – 

ID select 830, 83Y – – 

ECC run 8C1 – – 

Status query 810 – – 

Select device 9HH, ALL – – 

NVM read 
820, 851 
820, 851 

820, 851 

502, 674 
502, 672 

5XX, 7YY 

4LL 
4HH 

7XX 

NVM write 
820, 851 
820, 851 

820, 851 

5XX, 7YY  
502, 674 

502, 672 

4XX 
4LL 

4HH 

Life Span 
Counter decr 

820, 851 
820, 851 

502, 674 
502, 672 

420 
489 

 

NVM read and write operations can only access 256 bytes 
of memory, as the address is specified by 8 bits in SWI 
registers. However, 64 bytes within the NVM are read 
protected and writing is only allowed into a user area of 104 
bytes. The Public key and certificate can be read, but are write 
protected. Life Span counter can be overwritten in engineering 
samples but can be made write protected using register 0x26F. 

Our initial assumption was that the Private key is stored 
somewhere within the read protected area of the NVM. 
However, in order to access that area the hardware security 
protection of the chip would have to be circumvented. 

C. Optical Fault injection attack 

 

 

Fig. 2. Optical image of the die. 

Our first successful attack performed on the chip was via 
laser fault injection. However, prior to that, the location of the 
NVM array and a way to deliver the laser beam had to be 

found. Figure 2 shows an optical image of decapsulated die 
under a microscope. Fabricated with an advanced process, it 
leaves no visible gaps passing through the metal layers, hence, 
the only practical approach for laser attacks is from the rear 
side, through the bulk silicon. 

 

Fig. 3. Optical image of the rear-side deprocessed die. 

Figure 3 shows an optical image of rear-side of a 
deprocessed die under a microscope. The NVM area at the top 
left corner is easy to spot by its regular structure. However, 
optical fault injection attacks require a fully operational 
device. It is quite challenging to open a 1.5mm × 1.1mm 
device while keeping it still working. Therefore, the package 
was first reinforced with epoxy before polishing the silicon 
substrate (Figure 4). 

 

Fig. 4. Sample preparation for optical fault injection attacks. 

 

Fig. 5. Optical image of the NVM physical array. 

Focusing a 1064nm laser with more that 40mW power at 
the NVM region caused temporary data corruption in a 
corresponding memory region. However, the chip retrieved its 
security settings from NVM only during power-on reset. By 
performing an exhaustive search, it was possible to find the 



correct location and laser settings to cause the NVM read 
protection to be disabled. As a result, all 256 bytes of NVM 
became readable. However, there were no interesting secrets 
in there – just device ID, ECC curve parameter and some 
constants. At the same time a closer look at the NVM array 
under a microscope revealed that it contains 6552 bits of 
information – far more than the 256 bytes accessible in the 
known way (Figure 5). Therefore, a new way of obtaining full 
access to the stored data was required, such as exploiting a 
backdoor implemented for factory testing and debugging 
purposes. 

D. Quest for Backdoors to gain full NVM access 

The process of finding the registers that could assist with 
extended NVM access started with scanning the whole 
register space to identify all readable and writable registers. 
However, none of them appeared to behave similar to NVM 
related registers, apart from the already known ones. Then the 
same scanning operation was performed with disabled 
security. This revealed a small number of registers which 
became active after disabling the security. Fuzzing those 
registers identified two interesting candidates. Register 0x266 
was behaving similar to the known register 0x274 in respect 
of initiating NVM read and write operations. Register 0x264 
was setting some parameters for NVM access. Unlike 
previously known NVM access commands those extended 
NVM access operations applied to a whole row in the physical 
NVM array. That is 156 bits at a time – 4 sets of 32-bit data 
with 7-bit error correction. The full address space of 1024 
bytes was limited to 672 bytes of real data physically present 
on the die. Error correction bits were not only always readable, 
but were writable when permitted by settings in register 
0x270. 

Although it was now possible to read all 6552 bits of the 
extended NVM array, this was still not enough to extract the 
Private key. The memory below address 0x200 contained 
already known information, but everything above appeared to 
be encrypted. 

E. Memory Decryption and Private Key extraction 

It turned out that another set of registers needed to be 
identified and correctly set before the readout from the 
extended NVM appeared unencrypted. The scrambling key 
turned out to be only 8 bits long and was stored at address 
0xA0 in normal NVM, though read protected by default. We 
verified the correctness of the 131-bit elliptic-curve Private 
key that became readable that way by multiplying it with the 
base point. The result matched the Public key of the device. 

The error correction codes turned out to be standard 
Hamming codes and were reconstructed by programming the 
memory with a single-bit-set test pattern. The memory 
encryption function appeared to merely XOR memory content 
function with a 64-bit key-dependant table repeated over the 
whole range. In addition to data scrambling the chip also 
applied address permutation, however, this did not affect the 
error correction bits at all. Therefore, it was relatively easy to 
find the correct address by matching the 16-byte data blocks 
to the sequence of four-byte error correction words. 

If we modified the Private key, this blocked ECC 
computation is not performed. It turned out that a 32-bit CRC 
value of the key is stored inside the extended NVM and must 
match the computed one. However, any Private key with 
correct CRC can be programmed into any device and will be 

accepted. The CRC was easy to identify as a linear function, 
i.e. Key1 xor Key2 = Key3 implies CRC1 xor CRC2 = CRC3,  

Table 2 shows the data extracted from one compromised 
device. 

TABLE II.  DATA FROM ONE COMPROMISED DEVICE 

Parameter Value 

curve y2 + xy = x3 + ax2 + b 

√b 00e4808f8949d33c69e070a5f82c3633d9 

f(x) x131 + x8 + x3 + x2 + 1 

GX (base point) 03651a4282ae22c4fc6c20c9b7281ec1f5 

QX (Public key) 06d046e3bf7bb34479bd3aad1301f14cbd 

QX
* (padded QX) 1dd6d046e3bf7bb34479bd3aad1301f14cbd 

Device ID 07203c0210c4981a8d68 

Signature R 001c8f15507787ba50c293427d0794f447e899c150 

Signature S 00167334723255207c535908434ac0563548dbaa1d 

q (Private key) d861429f79fefd9f8090ae83df804970 

q* (padded q) 0d861429f79fefd9f8090ae83df804970 

 

The above-mentioned attack, like most semi-invasive 
attacks, has certain limitations and is unlikely to present a real 
threat to the security of real-world systems using the OptigaTM 
Trust B. Firstly, laser fault injection attacks require specialised 
and expensive equipment. Secondly, samples must be 
prepared in a special way to allow the laser beam to be focused 
from the rear side of the chip. Finally, the chip must still be 
fully operational. Achieving reliable sample preparation that 
involves substrate thinning while maintaining full 
functionality of the chip is a quite challenging, tedious and 
time-consuming process, especially for such a small device 
with a silicon die area of less than 1mm2. Since each device 
holds a unique Private/Public key pair an attacker will have to 
extract them from hundreds or even thousands of samples to 
avoid key revocation or ID blocking. Therefore, a more 
efficient and reliable non-invasive attack is required in order 
to become the real threat to the security of OptigaTM Trust B 
devices. 

IV. FINDINGS AND IMPLEMENTATION 

The embedded NVM array is the only reprogrammable 
non-volatile data storage present on the SLE95250 die. This 
means that any changes in the security settings will be 
managed by the same hardware control logic. The reason why 
many chip manufacturers go for a single physical NVM is the 
size penalty for embedding extra physical arrays. Cost-
optimised sub-mm2 chips usually share the same NVM array 
for multiple purposes: device ID or serial number, constants, 
factory data, user data, secret key or password. Theoretically, 
faults induced into the chip operation could force it to write 
into a wrong area and influence the value of the security-
control settings. 

A. NVM challenges 

Many modern chips are built with deep submicron 
fabrication process. As the memory cells shrink, their 
reliability, data retention time and maximum number of cycles 
become worse. In order to improve fabrication yield, prolong 
the device lifetime and improve characteristics, chip 
manufacturers choose NVM blocks with error correction. 
Very often this feature comes as a complete, independent and 
proprietary design block. As a result, even the low-level 
hardware design engineers do not have any control over the 
memory operation and only manipulate input and output 
connections. Hence, changes between any intermediate states 
for each memory row during write operation are determined 
by the memory-block IP designer at a fab, rather than the 



ASIC designer. The same applies to the handling of error 
correction functions and read-modify-write buffers. Neither 
can the timing of the internal operations be controlled by the 
chip designer, and often is fixed in the memory-block library 
provided by the fab. 

One good practice in the design of security-sensitive 
devices can be to only allow changes in security level in one 
direction – from lowest to highest. In older devices, based on 
classic EEPROM and Flash arrays, this was achieved by 
permitting bit changes only in one direction – from erased to 
programmed state. However, the introduction of error 
correction thwarted the inherent one-way-programming 
nature of NVM cells and became embedded into the low-level 
design of the NVM controller logic. Chip designers who rely 
on fabless manufacturing or outsourcing fabrication often 
cannot control such internal functionality of the NVM 
controller. 

B. Fault injection during NVM writing 

In order to understand the process of memory writing, we 
supplied power to the SLE95250 target device directly from 
an I/O pin of our microcontroller test board, to be able to 
precisely power down the target, synchronized with events on 
the SWI bus. The result of a memory write operation 
terminated after different time intervals is presented in Table 
3. In this example, the write operation overwrites an initial 
value of 5Ah with A5h value. As the table shows, changes to 
that byte do not happen simultaneously for all bits. Also, there 
is a 750μs long delay between the apparent completion of 
erasure and the first signs of the programming cycle. 

TABLE III.  NVM WRITE RESULT AFTER DELAY 

t 

μs 
 0 58 77 78 79 830 831 832 833 999 

N 5A 5A 7B FB FF FF F7 A7 A5 A5 

 

The embedded memory write operation can be terminated 
by switching off the power supply of the chip and forcing it to 
GND level. By controlling the delay time, it is possible to 
perform the change bit by bit, until the desired bit is affected. 
Both EEPROM and Flash memory store the data in the form 
of a charge inside their cells. If the normal write operation is 
terminated early, there is a chance that internal charge will 
stay at an intermediate level. Then it would be possible to 
influence the values read from of the memory by changing the 
power supply voltage [38]. The overall time required for 
disabling the security protection in an OptigaTM Trust B device 
this way is less than 0.1 seconds. 

C. Self-induced fault injection 

The presence of other protection features could also affect 
the susceptibility to the above type of fault injection attacks 
making them easier to perform. For example, in the SLE95250 
both the security-protection register 0x26F and user-NVM 
write-protection register 0x275 are physically located in the 
same row of the NVM array. This increases the number of 
attempts to find the correct fault injection settings from 4 (bits 
in 0x26F register) to 12 (bits in 0x26F and 0x275 registers). 

Although the introduced attack, with fault injection into 
the power supply line during NVM write, is completely non-
invasive and very fast, it still requires some additional 
preparation time. At least physical access to the chip’s power 
supply line is required. If the chip is used in a configuration 
where the power supply is delivered through the SWI interface 

line, this can present an additional challenge, requiring de-
soldering of the chip and placing it onto a test bench. Hence, 
the attack time could be much longer than the actual 0.1 
seconds required to amend the security register. 

A more powerful alternative was found through exploiting 
a feature in control register 0x270. Apart from enabling the 
Life Span counter, NVM bulk 0s writing and error correction 
overwriting it also has a bit that terminates the device 
operation. This acts as some kind of a soft kill switch. The 
effect from it is very similar to the one achieved by switching 
off the power supply to the device. Hence, the already very 
successful NVM-write-terminate attack was improved into a 
purely software-controlled fault attack, by aborting the write 
operation with the help of this soft-kill switch feature. Yet 
another backdoor on the device. 

V. CONCLUSION 

The attacks presented above are capable of inducing faults 
into the NVM memory through exploiting the overwriting 
mechanism. The process of updating the memory content is 
internally controlled by logic hardwired into silicon. This is 
imposed by the use of error-correction logic. It does not allow 
to change a single bit of memory directly from erased to 
programmed state without rewriting the whole memory row 
to also update the error-correction bits. Such a row consists in 
case of the SLE95250 of 128 data bits and 28 error-correction 
bits. Even a single-bit change operation starts with fetching 
the row into hardware buffer, modifying it there, then erasing 
the row followed by writing the modified data from the buffer 
back into it. If this flow of events is terminated early, either 
during the row-erase or row-write operation, it results in 
incorrect data stored in NVM. In some cases, the memory 
content became unstable and gave a slightly different reading 
each time. This can be further exploited in a controllable way 
due to a power-supply voltage dependency of these 
fluctuations. As a demonstration of the power of this attack we 
cloned one OptigaTM Trust B chip with user data completely 
into a blank chip in less than 1 second. The two chips were 
indistinguishable and shared the same Device ID, Private key, 
Certificate, Security settings and user data. Both devices 
successfully passed the authentication-protocol challenge in 
the Evaluation Kit. 

There are several mitigation techniques against fault 
attacks. Firstly, the physical design and functionality of the 
NVM block could be reviewed. Even if it was provided as a 
black box, it would still be possible to reverse engineer and 
simulate its operations. Secondly, the actual security register 
could rely on data from multiple memory rows, thus 
minimising the risk of errors and faults. Third, the process of 
changing the security from one level to another could be made 
more robust with extra redundancy and CRC checks. 

A serious new hardware-security vulnerability was 
revealed by the research described in this paper. Formal 
security evaluation is unlikely to spot such flaws due to the 
restricted nature of low-level IP blocks. Unless appropriate 
testing is introduced modern embedded NVM blocks could 
pose a serious threat to the security of semiconductor devices.  
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