
A tight scrape: methodological approaches to cybercrime research data collection in
adversarial environments

Kieron Turk
University Of Cambridge

Cambridge, United Kingdom
kst36@cam.ac.uk

Sergio Pastrana
Computer Science and Engineering Department

Universidad Carlos III de Madrid
Leganes, Spain

Sergio.Pastrana@uc3m.es

Ben Collier
Cambridge Cybercrime Center

University of Cambridge
Cambridge, United Kingdom

ben.collier@cl.cam.ac.uk

Abstract—We outline in this article a study of ‘adversarial
scraping’ for academic research, which involves the collection of
data from websites that implement defences against traditional
web scraping tools. Although this is primarily a research
methods article, it also constitutes a valuable systematic
accounting of the different defensive techniques used by
the administrators of illicit online services. Some of these
administrators intentionally implement functionality which
attempts to prevent web scrapers from gathering data from
their site, and some will unintentionally design their sites in
ways that make data gathering harder. This is of particular
importance for criminological research, where websites such as
cryptomarkets and underground forums are publicly available
(and hence there is an ethical case for data collection), but
the illicit activity involved means that the administrators of
these services limit scraping. We classify different anti-crawling
techniques taken by websites and outline our developed
countermeasures. Based on this, we evaluate which of these
methods do and do not succeed at preventing data gathering
from a website, as well as those which impact the scraper but
do not necessarily prevent the data from being obtained. We
find that there are some defences that, if used together, might
thwart scraping. There are also a series of defences that are
successful at slowing down scrapers, making historical scraping
more difficult. On the other hand, we show that many defences
are easy to work around and do not impact scraping.

Index Terms—web crawling, web scraping, underground
forums, chat channels, cybercrime

1. Introduction

Empirical research often requires data to be gathered
from various online sources and stored offline to provide
easier access for researchers. This allows both for the
archiving of historical data where sources may become
unavailable, and to facilitate data analysis. Gathering online
data is generally done through web crawling and scraping,
where an automated program visits and retrieves data from
websites without human interaction. This semi-automatic
process collects and stores data from multiple online sources
in a format that is easier to work with. As such, the creation
and maintenance of these scrapers are fast becoming core
skills in data collection for the social sciences.

Many illicit web services of interest to researchers
are hosted publicly on the Internet and can be freely
accessed. Scraping these sites and storing them in a research
database is a time-consuming task, since it is required to
develop and maintain custom crawlers, create accounts for
register-only sites, and bypass technical barriers placed by
site administrators. Thus, having access to such data is of

great interest to researchers, which otherwise would need
to spend various weeks designing and running their own
crawlers. This also permits greater collaboration with other
research groups and ensures the reproducibility of results.

Existing projects that provide scraped data have been
used in a variety of projects. For example, data crawled
from different cybercrime-related online communities has
been released publicly for academic researchers, including
underground forums [25], [21], [2], chan boards [19], or
Darknet Markets [5], [26]. Crawled data have also been
used by journalists, such as Unicorn Riot’s repository of
Discord channels owned by far-right groups [22], which are
increasingly organising on public online platforms.

Existing available datasets run the risk of becoming
outdated as new posts are added. Also, the ecosystem of
online communities related to cybercrime is ephemeral,
with new sites starting and ceasing operations rapidly (e.g.
due to police takedowns [13]) Thus, researchers often
need to develop their own crawling operation, which starts
from the development of the crawler and finishes either
when the required data is gathered, or when the site goes
offline. However, especially for research on clandestine
communities, the administrators of some websites do not
want their site to be scraped, and so will implement
defences to restrict access to human users only. These involve
both explicit technical design decisions (such as requiring
Captchas or inclusion of trap links) and human intervention
(such as scrutinising logs of user activity for suspicious
behaviours). Other websites may not intentionally defend
against scraping but will have features in the design of the
site that impact the scraping. The prevention methods are
designed to impact scrapers in different ways. Some methods
try to protect the site by preventing access, whereas others
aim to slow-down the process. They may attempt to make
data gathering difficult, or to identify and attack web scrapers
on their site. These methods have varying success at stopping
certain types of web scrapers or crawlers from accessing
the website, or from gathering its content. Existing works
have provided tips and insights into how to develop crawlers
for adversarial environments [11], [4], [20]. However, these
typically lack a proper analysis of the impact incurred by
anti-crawling techniques and the level of difficulty to bypass
them.
Contributions In this paper, we set out a comprehensive
accounting of the different anti-crawling defences which we
have observed ‘in the wild’ while developing web crawlers
and scrapers, and present a catalogue of these defences.
Concretely, we have been crawling various cybercrime
communities for more than four years, including web forums,
chat and instant messaging channels, and content sharing
platforms [25]. We classify the anti-crawling techniques

into distinct categories and provide details of the different
strategies adopted to bypass them. We then evaluate the
success of each defensive measure, based on the effectiveness
of the defence in preventing access to the site, delaying
access to the site, and the ease of countering the defence.

We believe that our analysis will be a useful
methodological resource for those designing web crawlers
and scrapers for adversarial environments, which we hope
will support research by cybercrime researchers of different
disciplines trying to better understand online crime and harm.
Organization In section 2 of this paper, we provide
background information on web scraping. In section 3, we
describe our methods and discuss the ethical considerations
of data gathering. Sections 4 and 5 detail the methods we
have seen in use by websites and the countermeasures we
have used to work around them. Section 6 then evaluates the
success of these defences.

2. Background

2.1. Web crawling and scraping

Web scraping is the use of software that automatically
gathers wanted information from a website, normalizes it into
a format that is useful for the intended purpose, and stores in
an offline database for later use [15]. An inherent component
of web scraping is a web crawler, which navigates through
websites, and visits all links of interest. Typically, crawling is
done by either requesting the HTML page and then parsing
the raw result, or by using frameworks that automatize
the use of regular web browsers (e.g. Selenium [17] or
Puppeteer [28]). While the latter approach is more complex
and consumes more resources, it has the benefits that all the
browser features can be used by the crawler, like the use of
JavaScript.

Developing a web scraper typically involves four main
processes:

1) Accessing the site. The crawler needs to create a
connection to the site, bypassing potential barriers
and using adequate credentials if registration is
needed (see Sect. 4.1)

2) Navigating the site. The crawler needs to be able to
access particular pages of interest, e.g. by following
specific links or to scroll down a web page to load
further content. In the case of adversarial settings,
i.e. when administrators do not want their site to
be crawled, the navigation should be done carefully
to prevent detection and avoid following malicious
links (see Sect. 4.2).

3) Loading the page. Once a particular link is visited,
the contents of the page are loaded. While this is
straightforward for a human user, web crawlers must
deal with challenges aimed at thwarting bots, such
as rate limiters or DDoS protection services (see
Sect. 4.3).

4) Gathering the data. Once a page is loaded, a
crawler will search for all links which are required
to follow, and a scraper will search and fetch the
specific data (e.g. looking for specific HTML tags
or content).

Once the crawler accesses the site, it then cycles between
navigation, loading, and data gathering as it traverses the
site and downloads the data. However, adversaries (usually
the administrators of the website to be scraped) can deploy
anti-scraping measures to interfere with each of these stages
of the scraping process. In Sect. 4, we describe in depth the

anti-scraping protections relevant at each of these stages, and
in Sect. 5, we describe our mitigations.

2.2. Forums and Chat Channels

Scraping web forums presents a different set of
challenges than scraping chat channels. The former requires
visiting a large number of pages covering all posts within
each thread, and within each board on the site. Admins can
restrict access to the site or particular sections. Additionally,
they might monitor the crawling activity alongside other
information to identify and ban bots. However, doing manual
inspection requires human resources. In some communities
(typically large), admins are organized into teams to do
this, but this is not the common case. In general, gathering
data from forums is most commonly prevented by technical
measures rather than manual intervention by site admins.

When scraping chat channels, the crawler connects to
each chat room and collects all the information ever posted
to the conversation. These applications tend to be less bot
friendly, and often unintentionally create problems for bots
with user-experience oriented updates. The participation of
the bot accounts in conversation (or lack thereof) is much
more likely to be scrutinised on chat platforms than it is on
forums, as each community moderates itself. This implies
that researchers should focus on bypassing detection by
humans (i.e. channel/site administrators) rather than working
around technical measures.

2.3. Scraping through the Tor network

While most web services are accessible by scrapers
through regular web browsers, these services can also be
hosted through the Tor network, a global infrastructure
of servers (or ‘relays’) that bounce encrypted user signals
between them in order to provide very robust security and
anonymity protections. Websites hosted through the Tor
network, called Onion Services, use the .onion top-level
domain, and can only be accessed through Tor. As such,
should we wish to scrape these sites, we must route our
scraper through Tor. There are further impacts on our
scraper when accessing these sites: for example, on Tor, the
expectation is that all users will have JavaScript disabled,
and hence websites will not use JavaScript on their site -
with a common exception being an alert to tell users with
JavaScript enabled to disable it. The Tor network constitutes
important public infrastructure in its own right and is relied
on by a range of users around the world for security and
privacy online. As a result, special care should be taken
when using Tor for web scraping not to put undue strain
on the network. As a result, scrapers should only open
a limited number of connections at a time via Tor, and
researchers conducting research on Onion Services should
consider running a Tor node themselves at their institution
to contribute capacity to the network (or donating to Tor
relay operator organisations). For planned research which
makes extensive or high-traffic use of the Tor network,
we advise contacting the Tor Research Safety board at:
https://research.torproject.org/safetyboard . While Tor can be
useful for scraping sites hosted on Onion Services, it is facile
for forums to block access from the Tor network, and so, as
shown in Table 1, it is not recommended as a first port of
call for scraping clearnet sites.

2.4. Related works

Several systems have been proposed for web scraping.
There are systems which attempt to intelligently learn a

site’s structure [15], [23] and others which rely on manual
configuration [3]. Some systems are designed for adversarial
environments, such as CARONTE: a semi-automatic tool
that maintains a low profile while navigating websites, acting
in a similar fashion to a human to avoid being identified as
a scraper [7].

We find some sources advising on methods that can be
used by a website to defend against web scrapers. Fu et
al. provided insights on how to crawl web forums that are
not easily accessible through regular search engines [11].
Benjamin et al. present a list of particular challenges to
crawl hacker forums [4]. These include gaining accessibility ,
avoiding detection and accessing private content.In our work,
we discuss similar defences and also present new ones not
observed by previous works.

Also, non-academic work in the form of white papers or
online blogs have addressed this problem. These describe
systems which attempt to defend a generic website [14],
as well as specific defences that can be employed by
a given site [8], [16]. Other sources discuss classes of
countermeasures without specifying concrete versions that
could be added to a given website [31]. Furthermore,
some sources advise on how to avoid being detected as a
scraper [29], [12] including some valuable methods to avoid
detection. These sources generally focus on theoretically
possible defences against scraping, and few discuss ways to
work around the defences. In this paper, we account for the
methods actively being used to defend against scrapers, as
well as the countermeasures we have implemented to defeat
them.

3. Methods and ethics

We have collected this data through the process of
designing our own scraping systems for use in three main
projects: the CrimeBB project[25]; Discord and Telegram
scrapers, to gather data related to the discussion of booter
or stresser services1; and fget, a directory scraper that
combats anti-scraper measures. We discuss the methods
which we see in use on the sites we scrape and provide the
countermeasures that we found to be effective in combating
these defences. We have scraped 26 forums (described in
Table 1), around 300 chat channels across Discord and
Telegram, and an archive of files.

There are assorted ethical issues with gathering and
analysing data for research from underground forums,
especially in the case where preventative measures are in
place. In the remainder of this section, we analyse the
potential ethical and legal issues arising from this practice.
Web scraping creates a record of data that is generally
publicly visible. These public channels and forums are
important parts of the broader cybercrime economy, and
several high-profile developments in cybercrime activities
can be traced back to beginnings in public underground
communities [20]. Thus, data from these sites constitutes
an important resource for academic researchers and security
practitioners seeking to better understand online crime, and
therefore there is a clear social benefit in (cautiously and
ethically) collecting these data. As these data are already
public, copying this data to a research database does not
increase the amount of data in the public realm. Also, given
the public nature of these forums, it is unlikely that people
providing this data did so in any expectation of privacy.

However, the collection, processing, and analysis of
these data may reveal new relationships, behaviours, and

1. Online websites offering services to commit Distributed Denial of
Service (DDoS) attacks

characteristics about groups and individuals which are not
evident in the ‘raw’ data (and this is often the explicit
purpose of qualitative or quantitative analysis). Hence, care
should be taken to ensure that the outputs of these processes
do not reveal or draw attention to hidden aspects of these
communities, where there is a clear risk of harm to members.
Equally, referring to particular communities or individuals
in outputs, or using easily-identifiable quotes may bring
undue attention to particular communities or individuals, and
hence make them targets for law enforcement or competitors.
Finally, simply writing about a community or type of activity
may well artificially increase the perceived seriousness of the
crime problem which it poses to an unwarranted degree [6].
As a result, we strongly advise both robust anonymisation
of individual outputs and quotes, and careful consideration
of the broader salience of the research, who will read it, and
how it will be read.

The subjects of this data cannot explicitly consent to
their data being collected. In particular, although this data
is publicly available, the adversarial environment means that
we can also safely assume that site administrators actively do
not want researchers scraping their websites, which presents
additional ethical challenges to simply collecting publicly
available data. In the ethics statement of the British Society
of Criminology [18], it is stated that “Covert research may
be allowed where the ends might be thought to justify
the means”. The statement further mentions that informed
consent may not be required when the dataset is collected
from the internet and is publicly available. From a legal
perspective, these collections are generally compliant with
relevant legislation (such as GDPR in Europe) as there is a
clear public interest in their collection.

Entrapment is the practice of inducing a subject to
commit a crime that they otherwise are unlikely to commit.
Regina v Looselely (2001) [1] provides guidelines on
the limits of acceptable conduct in cases of entrapment.
Researchers should adhere to these guidelines should they
interact with the users of sites they are investigating.

The Menlo Report [10] and its companion [9] are the
primary reference on ethical practice in ICT research. In the
report, it is recommended that the Research Ethics Board
(REB) must protect the interests of individuals in cases
where gaining consent is not possible. Research involving
data of illicit origin would need to have a clear benefit to
society, and simply because data is public does not exempt
research using such data from obtaining REB approval as
it may contain personally identifiable information [24]. Our
REB has granted us approval for the collection of data,
however additional approval is required for each specific
subsequent project which analyses or processes the gathered
data. We argue, in accordance with existing research [30],
that collection and sharing of this data, if carefully handled
and considered, poses a sufficient social benefit to outweigh
the costs of collection.

The sharing of these data sets is beneficial for cybercrime
research and data science, however a key consideration is
privacy protection, as it is likely that data collected by
scrapers is not intended for research purposes and may not be
anonymised. We make all the data collected by our scrapers
available to academic researchers under legal agreements,
however (in the interests of preserving our implementations
of the mitigations we describe in this paper and preventing
websites from breaking our scrapers), we do not provide the
source code for our scrapers open-source, rather, we make
this available to researchers on request2.

2. https://www.cambridgecybercrime.uk/process.html

https://www.cambridgecybercrime.uk/process.html

TABLE 1. DESCRIPTION OF THE CRAWLED FORUMS

Site #Threads #Posts #Members Language Toolkit Registration? VIP content? Captchas? Onion? Blocks TOR? Bans
F1 4.0M 41.7M 623.6K English MyBB 3 5 3 5 3 3
F2 3.4K 25.8K 1.5K English phpBB 5 5 5 5 5 5
F3 11.3K 88.8K 8.2K English SMF 3 5 3 3 5 5
F4 119.3K 161.5K 11.5K English MyBB 5 3 5 5 5 5
F5 643.6K 8.1M 258.5K English XenForo 5 5 5 5 5 5
F6 2.1K 7.7K 872 English vBulletin 5 5 5 5 5 5
F7 34.8K 214.9K 44.3K English MyBB 3 3 3 5 5 5
F8 767.3K 9.4M 477.5K English vBulletin 3 3 3 5 5 3
F9 708 7.1K 764 English MyBB 5 5 5 5 5 5
F10 456.3K 2.5M 50.8K English MyBB 3 3 3 5 3 5
F11 1.6K 9.2K 728 English MyBB 3 5 5 5 3 5
F12 243.2K 2.4M 77.9K Russian XenForo 5 5 ? 5 5 5
F13 155.5K 3.5M 508.7K English ? 3 3 3 5 5 5
F14 244.8K 3.6M 39.2K English MyBB 3 3 5 5 5 3
F15 577.6K 6.2M 126.9K Russian XenForo 5 5 5 5 5 5
F16 1.6K 6.2K 1.1K Russian vBulletin 3 5 ? 3 5 5
F17 13.0K 27.0K 7.4K English vBulletin 5 3 5 5 5 5
F18 419.7K 8.4M 120.5K Russian ? 5 5 5 5 5 5
F19 75.1K 294.6K 47.5K English ? 5 3 3 3 5 5
F20 4.3K 28.5K 3.8K English phpBB 3 5 3 3 5 5
F21 454 2.2K 361 English SMF 3 5 3 3 5 5
F22 10.7K 59.7K 8.3K English MyBB 3 5 5 3 5 5
F23 3.6K 15.6K 1.7K German MyBB 3 5 5 3 5 5
F24 16.9K 240.6K 17.2K Russian ? 3 5 5 3 5 5
F25 78.1K 276.7K 81.5K English ? 3 3 3 5 3 5
F26 120.5K 1.9M 169.6K English vBulletin 3 5 3 5 5 5

4. Techniques to prevent crawling and scraping

In this section, we detail the defences used by websites to
prevent automated data gathering from their websites. Using
the four-stage process model of web scraping described in
Sect. 2, we have identified a range of anti-scraping defences
that can interfere with each of the stages of this process.

4.1. Accessing The Site

Websites might restrict access to the bulk of the site
for users who are not logged in, thus requiring crawlers
to use registered accounts and to log in. In particular,
16 out of 26 of the forums we crawled (61.5%) required
to register accounts. Some will not restrict all access;
instead, they will hide parts of the contents (e.g. attachments
or links) to encourage registration, and cause scrapers to
gather incomplete information. Even if registered, some sites
contain private content, only available for upgraded or VIP
members (i.e., requiring users to have a certain reputation
or to pay a fee). While this is typically reduced proportion
of the entire site, 9 forums (34.6%) in our dataset contain
private content.

Access Restrictions During registration, many websites
will attempt to prevent robots from registering for their
site so that they cannot log in. To prevent this, it is
often required to provide contact information such as email
address or phone number which must then be validated
to complete registration. Furthermore, sites may prevent or
dissuade unwanted users by making their site invite-only,
or by requiring payment to register each account. A special
case is a closed Russian forum which gives the option of a
paid account for $100 or a free account which requires an
application demonstrating extensive experience in hacking
technologies or services.

Login To log in to the website, web crawlers may fill
out and submit the login form and then store the cookies
returned. To prevent automated login, some sites will require
a Captcha to be filled out in the login form. Others may look
for robot-like behaviours when filling in the login form, and
either prevent access to suspected robots or force them to
complete a Captcha due to their behaviour (see discussion

about Captchas below). The actions observed which can
trigger these sites include submitting a form too fast after
loading it, completing different fields of a form too fast, or
typing too quickly. Additionally, sites might provide optional
or enforced Two-factor authentication (2FA). This requires
multiple methods for authentication like sending a one time
code to the user’s known email address, phone number,
authenticated app, or requiring another active session to
authorize the new login. Some darknet sites which are
focused on anonymity will create their own versions of 2FA
that do not require personal information (e.g. one forum
provides a set of 20 numbered codes on registration, and
will ask for a random one on each new login). This causes
problems when attempting to automate the login process, as
the additional verification must also be automated.

Some websites will prevent logins that do not use a
JavaScript-enabled browser by requiring the main page to
be loaded through the execution of an embedded JavaScript
from the login page. This implies that scrapers not using
regular browsers (i.e. with JavaScript enabled) cannot access
their site.

Alternatively, web crawlers can use the cookies from a
prior browsing session, for example from a session where
a human logged in. To prevent reuse of cookies, some web
pages will force cookies to expire after a short time, such
that the user must log in again frequently. However, this
deteriorates the user experience, and in our experience we
have observed sites with expiration times ranging from one
hour to one week. Many sites have cookies that never expire.

Captcha Many sites make use of Captchas as a method
for determining if a user is a robot (as shown in Table 1,
40% of the forums crawled use it). The vast majority of
websites will have a Captcha present on the registration
page, and many will include one on login as well. Nearly all
sites on the surface web employ Google’s reCaptcha, which
has a very high reputation and is good at preventing robots
from accessing a website, although pay-to-solve services also
exist. On the dark web, it is standard for JavaScript to be
disabled, and hence dark web sites will never use reCaptcha
- instead, many sites will create their own Captchas, with
varying success. The majority of these Captchas such as
those in Figure 1 ask to transcribe the letters or numbers

Figure 1. Examples of text Captchas being used by underground forums

Figure 2. Example of unique Captcha used by one of the forums

in an image. Some less common Captchas are used in other
sites (see Figure 2). In this forum, a simple image is overlaid
with three offset rows of shapes, some of which are filled
in with the remainder being simple outlines. The user then
selects which shapes are filled in on the 3x3 grid opposite.

4.2. Navigating the site

In order to gather all the historical data of a community,
it is needed to visit all the pages, including old content. This
involves suspicious behaviour that can be easily detected by
site admins, which can ban the account or IP being used,
halting the scraper progress. Additionally, there are other
measures that thwart crawling, even if they are not directly
implemented for such purpose.

Redirects Websites can present multiple variants of
redirects. Those affecting web scraping allow the web page
to load initially (such that the scraper starts to gather data)
but suddenly redirect away from the page. This will cause
errors as the scraper no longer has access to the data it is
expecting to be available.

Malicious Links On some sites, there are links which are
not intended to be clicked by humans, but will be accessed
by automated crawlers. The most common behaviour on one
such site is to redirect to an otherwise unused page on the
site, apply measures intended for DDoS protection, and then
redirect back to the homepage of the site. The homepage will
now run a script, which performs some unknown checks that
appear to determine if the user is a robot. If it determines that
the user is a robot, a function is called which will endlessly
call itself, causing the call stack to overflow after a short
time and crashing the browser.

We have observed a similar feature in the content
delivered by other websites, which are intended to detect
and remove bots. An example is shown in Figure 3, where
the website shows a message at the beginning of the HTML
with a link that directly removes the account being used. An
unsophisticated crawler which simply follows every link it
encounters will fall into the trap, and the account used will
be banned or deleted.

Another observed behaviour upon following a
crawler-only link is to attempt to trap the scraper in a
loop between a pair of pages, each redirecting to the other.
The malicious link will send the browser to one of these
pages, which then causes a redirect loop that some browsers
will follow endlessly.

Endless Text Generation When attempting to access a
specific directory on one site, a page is returned that runs a
simple JavaScript program:

whi le (1) { document . w r i t e ("lolwhy ") ; }

which will endlessly append text to the web page until the
browser crashes. This is hard to stop once it is running,
potentially preventing the browser from closing, and as such
it is extremely successful at crashing the browser.

Massive Files to overload memory In a particular
case, the crawler loaded a CSV file hosted on the website,
containing a single line that is incredibly long. Attempting to
load this in the browser causes it to crash after it has loaded.

Banning user accounts Websites that are attempting to
find bot-like users will often look at their browsing patterns
to find suspicious behaviour: a user who rapidly navigates
many pages without pause is likely to not be interacting with
the content on any of the pages, and hence is likely to be a
robot. Furthermore, a user who navigates all pages of the site
in a predictable order is likely to be a robot. Users that move
between pages without any link are suspicious and if they
frequent this behaviour may get banned. In our experience,
we have observed a higher ratio of detection while our
crawlers were scraping old content (e.g. posted more than
5 or 6 years ago). This is reasonable since probably few or
no users are accessing such old information, and a single IP
or user account suddenly accessing it constitutes anomalous
behaviour. Concretely, 3 of the forums we crawled banned
at least one of the accounts we were using.

During our crawling, we have observed discussions
of our own data collection (see Table 2). From these
discussions, we conclude that the main suspicious patterns
are: i) accounts being online 24/7; ii) accounts connecting
from different IP addresses; and iii) accounts not actively
interacting within the forum. Moreover, forum websites
operate trust services providing information related to each
account. This trust information can be viewed by all the
moderators and certain upgraded accounts. Figure 5 shows
an example of the information provided by these services.

Banning IP addresses Some websites may take a
more extreme approach to banning to prevent users from
registering new accounts: they can ban the IP address a
user used to connect to the website, preventing them from
accessing it again (see Figure 4).

Technical Preventions Websites may implement various
technical restrictions to prevent robots accessing their site.
They may provide various challenges to the browser, which
attempt to identify non-human users and restrict their access.
These are usually Javascript or cookie-setting requests, which
will be automatically handled by any standard browser
without user interaction. Websites may also inspect the
“User-Agent” header from the HTTP request, which includes
information like the version of the browser and the operating
system. Most web crawlers will include information here that
identifies them as being a crawler, such as the name of the
software that is scraping or having “bot” somewhere in the
user-agent, giving websites a simple way to prevent access
to web scrapers and crawlers.

4.3. Page Loading

Many websites will implement anti-bot measures when
the user attempts to load a page from the site. These often go
unnoticed by users, but cause problems for scrapers trying
to access the page.

DDoS Protection Services DDoS protection services
provide an easy defence against malicious users attempting
to overload a web server. The majority of services use
commercial services for this, but we note that some websites
choose to implement their own versions. We also see some
websites that force the user to view multiple protection pages
to access a page of the website, attempting to slow down or

Figure 3. A trap found in an underground forum, causing ‘dummy’ crawlers to follow a link which will automatically remove the account being used

	
	

	
	

Figure 4. Examples of IP banning during registration due to the IP being limited (above) or blacklisted (below)

TABLE 2. EXCERPT OF DISCUSSIONS OBSERVED IN DIFFERENT FORUMS RELATED TO THE ACTIVITIES OF CRAWLERS AND BOTS. DESCRIPTIONS ARE
NOT PROVIDED VERBATIM TO PREVENT DIRECT LINKAGE TO THE ORIGINAL CONTENT.

I found something pretty strange, an account that was registered 3 days ago and has not gone online since then. Every time I refresh the profile, it’s accessing
a different page/post/profile. I think it’s a crawler that’s archiving everything it stumbles over
This account has been roaming some sections for 24/7, has 0 posts and [...] the account is connected to many different IP addresses. [...] I’m almost sure
it’s a bot

Figure 5. Information used to create the trust report in an underground forum

break scrapers. At the user level, this will appear as a simple
web page, a short wait, and then a redirect to the requested
content. For a simple web scraper, being shown this page
as the response to their request may lead to incorrect data
being saved. For a scraper which realises they are looking
at a delay page, this will cause a slowdown to the scraper.

Rate Limiting Web servers can be configured to track
the number of requests made by any specific client over
time, and choose to deny access to users who make too
many requests in a specified time period by returning 429
- Too Many Requests errors. Many surface web forums use
services such as Cloudflare DDoS protection which will also
rate limit scrapers.

Loading Content Some websites make use of animations
while their site is loading in the background, which may
cause problems as unaware scrapers will get a frame of
animation instead of the loaded web page and cannot gather
data from the page. Web pages frequently show part of the
page instantly and then have other content load afterwards,
which can lead to scrapers gathering incomplete data. Some
content will only be loaded on certain events, such as
clicking a button on the page or scrolling past what is
currently loaded, which forces the scraper to interact with
the web page.

4.4. Data Gathering

Whether intentionally or not, some web pages will
implement features that make getting data off of a web page
much harder than grabbing the text from an HTML element.

Visibility Gathering data is easier when the content of
interest is visible on the page, however there are multiple
common features of websites preventing this. Some websites
will have pop-ups appear on screen either on load or shortly
after load, which occlude large portions of the web page.

Some content will only appear when hovered over, such as
drop-down menus or hidden additional information. Finally,
due to some sites being designed around large displays and
then being viewed on smaller displays - or in the case of
most web scrapers, no display - there are websites where
content will overlap other content due to scaling. Sidebars
and headers are common causes of overlap.

Obfuscation Obfuscation is the practice of replacing text
with an image, CSS sprite or other formats, so text-based
scrapers are unable to retrieve the data. Using this technique
explicitly is rarely used due to accessibility and usability
issues, since it restricts some functionalities of the site such
as content search or reduces the user experience. However,
we have observed various users posting images instead of
text for advertising their goods or services, in the form of
publicity banners. While this is probably not intended to
prevent scraping, it is a technique making the gathering of
the actual content harder.

Changing Page Layout Web scrapers look at specific
places in the structure of a website to find the wanted
information. This requires a knowledge of the path to the
HTML element. Thus, websites can hinder scrapers by
frequently changing the layout of the page. This may involve
changing the HTML elements used, the CSS classes of
elements, or the layout of the website overall, which is a
significant effort from the website creators. However, it is
effective since most web scrapers need to be updated to deal
with the changes. In our experience, we observed that most
changes are due to updates in the software toolkits being used
(e.g. MyBB or phpBB for web forums) rather than explicit
changes to thwart scraping.

User Attacks on Scrapers User discussion on various
forums and channels may impact a scraper attempting to
process their posts and messages. These interactions are
unlikely to be intentional but may cause problems for
scrapers. For example, if our scraper is inserting content
into an SQL database without proper input sanitisation, we
may find that a discussion on SQL injection techniques
successfully interferes with the scraper database.

5. Countermeasures

5.1. Accessing The Site

Access Restrictions For sites that use techniques
to prevent automated registration (i.e. bots), we register
accounts manually. This way we can bypass most of the
issues faced, such as Captchas. In cases where an email
address must be provided, we either provide a fake address

(if no confirmation is required) or use disposable addresses.
In some cases, such disposable emails are banned, and so we
set up email addresses from regular providers (e.g. Google
or Yahoo). Creating these accounts is time-consuming since
it involves a manual process. However, the emails can be
reused for registration across different online sites.

Login We can then automate the login process through
the browser, by submitting the login form. If the browser
looks for unusual behaviour in filling out this form, we
add delays between each of the interactions, and if needed,
we split up the typing to add a small delay between keys.
Mimicking human typing is an effective mechanism to
bypass these defences. After logging in, we should check on
each page load that the login session remains by checking
for the presence of tokens indicating that the user is logged
in (e.g. the log out button or the personal settings menu). If
we have been logged out we repeat the automated login, then
continue scraping. If 2FA is required, we must work around it
on a case by case basis. In the case of the forum requesting
one of the 20 verification codes given on registration, we
store the codes offline and scrape the index of the code
required.

Captcha Some login forms require solving Captchas.
In these cases, as with the registration, we either use a
Captcha solver (if possible) or log in once manually, storing
and reusing session cookies for later (using the ‘Remember
me’ option commonly featured in login-based systems). The
scraper then loads these cookies during subsequent crawls,
and can login without filling in the login form again. The
cookies must be replaced when they expire, which requires
human interaction. If this is too frequent, we should try to
automate the login process instead. However, it is unlikely
that sites have short expiration times since this decreases the
users’ experience when navigating the site. In our experience,
the worst cases have one hour of expiration time, however
we were able to automatically fill the login form in these
cases. The worst-case scenario was a forum where cookies’
expiration times were of just one week, and it also required
solving Captcha. In that case, we needed to manually solve
the Captcha once a week. However, the resulting session
cookie for Captcha clearance could be reused across all the
different accounts that were crawling the site in parallel.3

If Captchas are provided during the regular navigation of
a site (i.e., not during registration or login), they need to be
dealt with on a case by case basis: some potential methods
we found useful are to reload the page, navigate away and
then come back, or use a new browser instance to access
the page. Moreover, if we are aware of the actions that lead
to Captchas being served (e.g. high network traffic), we can
adapt the crawling to avoid the problem. During our research,
these cases were very few, and indeed they occurred while
the site was being targeted by a DDoS attack.

5.2. Navigating the site

Redirects If we find we are being redirected several
times, i.e. reaching many intermediate pages after, we
download each page source before redirection occurs, so the
information is available from the saved copy of the data for
offline processing. This requires an additional scraper that
operates on the raw HTML offline.

3. We note that cookie reuse could be potentially harmful due to tracking
of the different accounts. In such a case, the detection and banning of one
of them could result in the others being banned. While this is an actual risk,
during our crawling operations we have reused cookies several times and
only in one case were various accounts banned within a few hours of each
other. However, as we discuss in Sect. 5.2, we believe this is was due to
these crawlers visiting old content frequently.

Figure 6. Message received in one of the forums due to our account being
banned

Malicious Links and Files Some sites purposely provide
content aimed at thwarting bots by attacking the browser. If
we expect such behaviour, like the exposure of malicious
links, the scrapers must be designed to be resilient such that
they recover from a successful attack. We do not want to visit
pages that attack the browser, but we cannot know which
pages do so unless we have visited them before. As such,
we should track previously seen “dangerous links”, and avoid
navigating to them.

Identifying these dangerous links can be done by looking
for impacts to scraping. In the extreme case, some attacks
observed will crash the browser, and so if the browser
generates an exception or otherwise fails at any time we
can log the link that caused the failure as dangerous. If we
are aware of more specific attacks, the system can identify
each attack individually to become more resistant to attacks.
For example, with the script shown before that dynamically
generates infinite content until it crashes the browser, we
analyse the page size before and after an interval to check if it
has grown unexpectedly. These heuristic checks are tailored
to specific attacks, and investigating each of the dangerous
links discovered by the scraper is the optimal method to
identify the new attack and mitigate it in the future. If manual
intervention is to be avoided, being able to detect and recover
from an attack - for example, by creating a new browser
instance - is sufficient.

If it is not needed, we disable JavaScript, as this is the
best defence we can use against malicious scripts. However,
when crawling sites out of the Tor network, JavaScript
typically must be enabled, as it is needed to solve challenges
or to use any other dependant feature.

Banning Accounts and IP addresses Bot-based
behaviours typically exhibit patterns that lead to its detection,
which results in the account being banned, either temporarily
or permanently (see Figure 6). For this purpose, we create
different human-like profiles which can be adapted for the
different bots. These profiles are configurable and include
techniques such as adding random delays between requests,
navigating around the site using the links on the site (as
opposed to jumping directly to a link which is not present
in the currently loaded page) or adapting the delays to the
size of textual content shown in the page. The different
configurations of these profiles result in different trade-offs
between crawling speed and risk of being detected: stealthier
crawlers are slower and vice-versa. For example, our initial
strategy for forum F1 was to change the configuration of all
the running crawlers whenever one of them was banned, so
the rest became stealthier. However, our experience showed
that the most suspicious activity related to bots is not due
to navigation patterns, but due to the content accessed
being too old (indeed, our crawlers were more frequently
banned whenever they were accessing content dating back
5 or 6 years). We believe that this is due to the server
using monitoring tools that highlight whenever a substantial
amount of traffic is requesting old content, which is rarely
accessed otherwise. Thus, our strategy for that site was to
set extremely slow and stealthy crawlers for this old content
(around 1 request/minute), while using faster crawlers for
recent content (published less than 1 year ago).

Additionally, we keep the HTTP User-Agent header used
during registration of an account, and always use those

related to commonly used browsers (e.g. Google Chrome,
Mozilla Firefox, or Safari). If we find out that one account
has been banned (even temporarily), we cease its operations
and create a new one (using a different email and IP).
Banning IPs is less common, and often related to the use
of IPs that are blacklisted, typically due to them being Tor
exit nodes. We use our own proxies distributed across the
globe to conduct the crawling.

5.3. Page Loading

The use of a browser-based scraper prevents many
problems related to page loading, since many websites will
aim to filter out other non-browser tools such as the curl and
wget commands.

Challenges and DDoS Protection In particular,
JavaScript challenges and cookie challenges will have no
impact on any user or scraper with a browser (provided
it supports JavaScript and this is enabled). For example,
sites protected by Cloudflare might conduct an up-to 5
second browser check requiring the execution of a JavaScript
function to prevent DDoS attacks [27]. In these cases, the
scrapers check for particular text in the loaded page after
fetching an URL, and keeps waiting for the actual page being
rendered (i.e. checking when that particular text is no longer
present).

Rate Limiting Another issue is when our IP is rate
limited. In these cases, we automatically reduce the rate
of the crawlers such that we do not reach the limit in
use. This slows down the overall process, which is partially
compensated by using various proxies and conducting
parallel crawls.

Loading Content When a page renders content a while
after the main page is loaded, the scrapers must wait
for this content to appear on the page. This is done by
frequently checking if the content is present (to prevent
halting, whenever a timeout is reached an error message is
triggered). If we must interact with the page for specific
content to load, we will need to use the browser to provide
the required interactions and cause the content to load.

5.4. Data Gathering

Visibility To handle issues with content visibility, we
download the page source after loading and then create a
scraper that gathers data from the HTML content, which will
be able to access data that is not visible or that is occluded
on the screen. Alternatively, we can call JavaScript through
our browser to scrape the raw HTML, for example using
query selectors.

Obfuscation If a site uses obfuscation on data that we
wish to gather, we can either download the image or take a
screenshot of the data, and then run it through OCR software
to gather the data from it.

Changing Page Layout Whenever the website changes
its layout, we will have to modify our scraper to handle
these changes. We can try to design our scraper to be robust
to these changes. For example, we can look for some label
text and gather the required information from the rest of this
block of text. However, this design is more complex and not
always possible, and so regular changes to the site structure
might be a good approach to interfere with web scrapers.

User attacks User attacks are often unintentional
exploitation of vulnerabilities in the scraping software, such
as SQL injection. It is recommended to follow security best
practices for any such attack that could apply: for example,
if a SQL database is used, all queries should be prepared
statements to mitigate the possibility of SQL injection.

6. Discussion

So far we have revisited the different techniques to
prevent web crawling and scraping, and the countermeasures
that researchers can take to thwart these. Table 3 summarizes
the techniques discussed so far in terms of their intent
and the impact on crawling. We can observe that some
countermeasures are harder to apply than others, and the
impact of the defences vary. In this section we discuss and
evaluate the effectiveness and robustness of the defences
against web scrapers.
Ineffective Defences Methods aimed at preventing bot
access typically rely on human interaction (e.g. solving
Captchas), after which automated crawling could begin.
While these methods prevent large scale crawling, they are
ineffective for targeted crawlers where a human operator can
spend a small amount of time registering or logging into the
site. Even though this process is manual, the human operator
can still benefit from an automated program that assists in
the process. Some websites, notably .onion sites, will use
Captchas on their registration forms but nowhere else on
the website. This prevents robots from registering but does
nothing to prevent a scraper once an account has been made.
Creating an automated login for a web scraper requires a
small amount of development time, and does not slow down
the scraper enough to be effective. The sites we scraped
have been observed to log out users at most once an hour,
having very little impact overall. Sites that enforce a form of
two-factor authentication to be used tend to be sites with easy
to automate 2FA, and hence it is often an ineffective defence.
Blocking specific user-agents from accessing the website is
an ineffective defence against scraping, as browsers allow
custom user-agent strings to be used. The attempt at trapping
the scraper’s browser by sending it into a redirect loop is
ineffective with any modern browser, as the browser will
detect this behaviour and stop following the loop. Both
JavaScript and cookie challenges are ineffective so long as
we use a regular browser to access the web pages being
scraped, as the browser will handle them automatically.
Partially effective defences Websites employing rate
limiting will force the crawler to slowdown the navigation.
Similarly, any website which bans users behaving like robots
will force the crawler to run slower to mimic human
behaviour. In both cases, performance can be improved by
running multiple parallel scrapers on the website, each using
a different proxy and account. Methods which make data
gathering difficult required customized techniques, but are
often easy to automate or design around. Handling visibility
issues and redirects after load require working on saved
copies of HTML increasing the complexity of the scraper.
If obfuscation is used, we can make use of OCR technology
to retrieve the text, which might affect the completeness of
the content. When scraping a website that uses malicious
redirects, for example those which will direct to a page that
attempts to crash the browser, we need to actively check for
redirects and handle them accordingly. Provided we can do
so before any malicious script runs, or if we can recover
from an attack, we can continue scraping after the attack.
Successful Slowdowns If we have any animations on the
website or data that loads over time, and that are of interest,
we have no choice but to wait for these resources to load.
Similarly, if DDoS protection is being used, the crawlers
must wait for it to pass. Any attack on the browser that we
are not previously aware of will cause a slowdown since the
browser will crash and have to be restarted. This requires
tracking these attacks and updating the scraper to handle
them, which incurs additional costs. In some cases, we may

not be able to automate the login process, for example due
to Captchas that we do not have a solver for, or forms of
2FA that cannot be performed through a browser. We will be
forced to use manual logins and reuse cookies from this. In
some cases, websites will also force these cookies to have
short expiry times, such that the scraper will need human
interaction frequently to be able to continue working. As
such, there is no easy way to keep the scraper logged in,
and keeping the scraper running is difficult. When websites
change their layout, scrapers need to be updated, which is
costly and time-consuming. While sometimes is it possible
to design around this, this is a good way to thwart web
scrapers. However, as it can be observed from Table 1, many
of the sites use similar toolkits. Thus, learning the new layout
and updating crawlers is typically transferable across sites.
Finally, automated anomaly detection tools can be designed
to detect bot-related patterns. In those cases, we were forced
to reduce the speed of the crawlers, thus significantly slowing
down the process.

6.1. A Note On Onions and chat channels

When accessing websites with Tor - specifically .onion
websites - the expectation is that JavaScript is disabled in the
browser. As such, onion websites design their site to function
without it. This will prevent a large number of the defences
from working, as they depend on JavaScript to function, and
hence we see that some defences are replaced with older
systems and some are removed entirely. Google reCaptcha
and JavaScript challenges have to be replaced with older
style image Captchas and cookie challenges, despite both
of these systems no longer being used elsewhere. DDoS
protection pages and JavaScript attacks on the browser will
not function, and so neither are not present on onions. Web
pages are forced to be static, and so we face no problems
with animations, visibility, or asynchronously loaded content.
Overall, we find that Onion Services are far easier to scrape
than surface sites.

We have additionally been scraping chat channels on two
platforms as part of our research. On both platforms, we
find that there are very few technical measures employed
to stop scrapers - the few that we encountered such as
content loading and visibility issues are not intended for
this purpose. Instead, we find that the main problem is
getting banned from individual channels on each platform
due to moderator intervention. Where platforms themselves
ban scraping accounts (as scrapers will often be members
of a range of illicit services and hence become swept up
in clean-ups), developers of these platforms may well have
a more sympathetic sensibility towards researchers than
the administrators of underground forums. Equally, while
Telegram’s developer API means that robust scrapers are
simple to develop and need little maintenance, scrapers for
platforms such as Discord, which lack such a pro-scraping
API and have regular UX updates can be easily broken
where the page markup changes, and hence need regular
maintenance.

7. Conclusions

The collection of research data in ‘adversarial’
environments is inherently challenging. At each stage within
the crawling process, the administrators of these websites
have a range of options available to inhibit data collection.
While there are ways in which scrapers can be designed to
mitigate these problems, there are no easy solutions; where
administrators manually comb through the data, they will

generally be able to spot the suspicious activity patterns
which crawlers generate. Conversely, researchers can always
collect data from public sites through manual labour. The
general effectiveness of our solutions implies that most
websites lack the resources or incentive to engage in much
of this manual administration: crawlers are generally banned
when they engage in easily-spotted patterned behaviour, such
as accessing every post on a website beginning with the
oldest. What manual detection exists is generally sporadic
- well-designed scrapers will still occasionally be banned,
but only at irregular intervals, and only on the larger sites
which can afford sizeable admin teams.

Defences which attempt to automatically detect and stop
scraping altogether are generally ineffective, however the
more effective defences are those which force a slowdown
or require human interaction to solve. This is especially true
where defences are used in combination: if we have Captchas
on login as well as a short session expiry time, we force
large amounts of human interaction to scrape the website,
potentially making the time to scrape the site infeasible.
On the other hand, having one of these without the other
can be combated with relative ease. Hence, on both sides
of scraper attack/defence, the limiting factor is the level
of manual work required, and productive moves generally
revolve around undermining the ability of the other side to
automate detection or scraping processes effectively.

Finally, we encourage collaboration between research
centres and the ethical sharing of collected data. This would
provide a means to carry out this cybercrime research
without needing to develop scrapers and accomplish the
tedious crawling task. For researchers who do have this
facility, parsimony around data collection helps the research
community in general as a smaller number of scrapers
implies fewer defences being put in place. In this spirit, we
make our data collections of forum and chat channel data
available to other researchers by agreement.

Acknowledgements

The authors would like to thank our colleagues at
the Cambridge Cybercrime Centre, particularly Richard
Clayton, Daniel Thomas, and Alexander Vettel, for their
assistance with understanding some of these techniques.
This work was partially supported by the Comunidad
de Madrid (P2018/TCS-4566, co-financed by European
Structural Funds ESF and FEDER).

References

[1] Regina v Looseley (2001) House of Lords, 53. Available at:
https://perma.cc/P4CQ-EQKU (Accessed: 11 June 2020).

[2] Luca Allodi. Economic factors of vulnerability trade and
exploitation. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, pages 1483–1499. ACM,
2017.

[3] Bissan Audeh, Michel Beigbeder, Antoine Zimmermann, Philippe
Jaillon, and Cédric Bousquet. Vigi4med scraper: A framework for
web forum structured data extraction and semantic representation.
PloS one, 12(1), 2017.

[4] Victor Benjamin, Sagar Samtani, and Hsinchun Chen. Conducting
large-scale analyses of underground hacker communities.
Cybercrime Through an Interdisciplinary Lens, 26:56, 2016.

[5] Gwern Branwen, Nicolas Christin, David Dcary-Htu, Rasmus
Munksgaard, Andersen, StExo, El Presidente, Anonymous, Daryl
Lau, Sohhlz, Delyan Kratunov, Vince Cakic, Van Buskirk, Whom,
Michael McKenna, and Sigi Goode. Dark net market archives,
2011-2015. https://www.gwern.net/DNM-archives, July 2015.

[6] Finn Brunton and Gabriella Coleman. Closer to the metal. Media
technologies: Essays on communication, Materiality, and society,
pages 77–97, 2014.

https://perma.cc/P4CQ-EQKU
https://www.gwern.net/DNM-archives

TABLE 3. SUMMARY OF THE DEFENCES, THE DEVELOPED COUNTERMEASURES, AND THE IMPACT INCURRED ON THE SCRAPING PROCESS. COLOURS
REPRESENT THE SEVERITY OF IMPACT THAT A SUCCESSFUL DEFENCE WOULD HAVE IN CRAWLING (HIGH , MEDIUM , LOW) AND THE EASINESS TO

IMPLEMENT COUNTERMEASURES FOR THE DEFENCE (HARD , MEDIUM , EASY)

Defence Intent Countermeasure Impact to crawling
Category: SITE ACCESS

Registration w/ Captcha Restrict accounts Manual Registration None
Login w/o Captcha Restrict access Automated login None
Login w/ Captcha Restrict access Manual login, cookie reuse Manual intervention required
2FA Improve Security Disable if possible ; Workaround if not Potential intervention

Category: NAVIGATION
Redirects after load Advertising Scrape HTML after initial load Increase complexity
Malicious redirects Crash scrapers Detect redirect and restart browser Moderate slowdown
Redirect loops Trap scrapers Browser handles automatically None
Honeytokens and Traps Ban scrapers Avoid known traps; Adapt to new Minor updates of scrapers
Endless text generation Crash browser Restart browser; Disable JS Moderate slowdown; JS not featured
Malicious files Crash browser Detect actions and restart browser Moderate slowdown
Rapid navigation Prevent scraping Rate limit scraper; Parallel scraping Moderate slowdown. Operational cost
Indirect navigation Prevent scraping Follow links provided on site Small slowdown
Scraping old content Prevent scraping Rate reduction when scraping historical data Large slowdown
Inhuman page interaction Prevent scraping Delay between actions; Reduce interactions Moderate slowdown
User-agent blocking Block known crawlers Set common user-agent header None
IP Banning Block known crawlers Use another proxy Operational cost
Captcha on page load Prevent automated traffic Captcha solver; Avoid triggering Captchas Increase complexity

Category: PAGE LOADING
DDoS Protection Services Prevent high traffic Recognise pages and wait Small slowdown
Rate Limiting Prevent high traffic Slow down scrapers; Run multiple in parallel Moderate slowdown. Operational cost
JavaScript/cookie challenges Prevent automated traffic Use a browser-based scraper None
Loading Content UI/UX, performance Recognise and wait; Interact where required Small slowdown.

Category: DATA GATHERING
Visibility — Scrape HTML where possible Increase complexity
Obfuscation Protect sensitive data OCR Software None
Changes in page layout Break existing scrapers Modify scraper to match Major updates of scrapers
User attacks — Follow standard security practices None

[7] Michele Campobasso, Pavlo Burda, and Luca Allodi. Caronte:
crawling adversarial resources over non-trusted, high-profile
environments. In 2019 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), pages 433–442. IEEE, 2019.

[8] Shaumik Daityari. Protect your site against web scraping. [Online.
Last accessed: February 20, 2020], 2017.

[9] Michael Bailey David Dittrich and Erin Kenneally. Applying ethical
principles to information and communication technology research: A
companion to the menlo report. Technical report, U.S. Department
of Homeland Security, 2013.

[10] David Dittrich and Erin Kenneally. The menlo report: Ethical
principles guiding information and communication technology
research. Technical report, U.S. Department of Homeland Security,
2012.

[11] Tianjun Fu, Ahmed Abbasi, and Hsinchun Chen. A focused crawler
for dark web forums. Journal of the American Society for
Information Science and Technology, 61(6):1213–1231, 2010.

[12] Scrape Hero. How to prevent getting blacklisted while scraping.
[Online. Last accessed February 20, 2020], 2014.

[13] Alice Hutchings, Richard Clayton, and Ross Anderson. Taking down
websites to prevent crime. In 2016 APWG Symposium on Electronic
Crime Research (eCrime), pages 1–10. IEEE, 2016.

[14] Imperva. Detecting and blocking site scraping attacks. Technical
report, Imperva, 2014.

[15] Jingtian Jiang, Xinying Song, Nenghai Yu, and Chin-Yew Lin.
Focus: learning to crawl web forums. IEEE Transactions on
knowledge and Data Engineering, 25(6):1293–1306, 2012.

[16] JonasCz. A guide to preventing webscraping.
https://github.com/JonasCz/How-To-Prevent-Scraping, 2016.

[17] Baiju Muthukadan. Selenium with python.
http://selenium-python.readthedocs.io.

[18] British Society of Criminology. Statement of ethics. Accessed Oct
6, 2019 from http://www.britsoccrim.org/ethics/,
https://perma.cc/K3MY-UG5U, 2015.

[19] A Papasavva, S Zannettou, E De Cristofaro, G Stringhini, and
J Blackburn. Raiders of the lost kek: 3.5 years of augmented 4chan
posts from the politically incorrect board. In 14th International
AAAI Conference on Web and Social Media (ICWSM 2020).
ICWSM, 2020.

[20] Sergio Pastrana, Alice Hutchings, Andrew Caines, and Paula Buttery.
Characterizing eve: Analysing cybercrime actors in a large
underground forum. In Research in Attacks, Intrusions, and Defenses
(RAID), pages 207–227, Heraklion, Crete, Greece, 2018. Springer.

[21] Rebecca S. Portnoff, Sadia Afroz, Greg Durrett, Jonathan K.
Kummerfeld, Taylor Berg-Kirkpatrick, Damon McCoy, Kirill
Levchenko, and Vern Paxson. Tools for automated analysis of
cybercriminal markets. In Proceedings of 26th International World
Wide Web conference (WWW), 2017.

[22] Unicorn Riot. Discord leaks.
https://discordleaks.unicornriot.ninja/discord/, 2017.

[23] Wei Lai Yida Wang Rui Cai, Jiang-Ming Yang and Lei Zhang.
irobot: An intelligent crawler for web forums. In In Proceedings of
the 17th international conference on World Wide Web (WWW). ACM,
447456., 2008.

[24] Sonia Chiasson David Dittrich Serge Egelman, Joseph Bonneau and
Stuart Schechter. Its not stealing if you need it: A panel on the
ethics of performing research using public data of illicit origin. In
International Conference on Financial Cryptography and Data
Security (FC), 2012.

[25] Alice Hutchings Sergio Pastrana, Daniel R. Thomas and Richard
Clayton. Crimebb: Enabling cybercrime research on underground
forums at scale. In Proceedings of The Web Conference 2018 (WWW
2018), Lyon, France. ACM, New York, NY, USA, 2018.

[26] Kyle Soska and Nicolas Christin. Measuring the longitudinal
evolution of the online anonymous marketplace ecosystem. In 24th
USENIX Security Symposium, pages 33–48, 2015.

[27] CloudFare Support. Understanding cloudflare under attack mode
(advanced ddos protection), February 2020.

[28] Chrome DevTools team. Puppeteer chromium automation library.
https://pptr.dev/, 2017.

[29] The Scraper API Team. 5 tips for web scraping without getting
blocked or blacklisted.
https://www.scraperapi.com/blog/5-tips-for-web-scraping, 2019.

[30] Daniel R Thomas, Sergio Pastrana, Alice Hutchings, Richard
Clayton, and Alastair R Beresford. Ethical issues in research using
datasets of illicit origin. In Proceedings of the 2017 Internet
Measurement Conference, pages 445–462, 2017.

[31] Colin Watson and Tin Zaw. Owasp automated threat handbook web
applications. Technical report, OWASP, 2018.

http://selenium-python.readthedocs.io

	Introduction
	Background
	Web crawling and scraping
	Forums and Chat Channels
	Scraping through the Tor network
	Related works

	Methods and ethics
	Techniques to prevent crawling and scraping
	Accessing The Site
	Navigating the site
	Page Loading
	Data Gathering

	Countermeasures
	Accessing The Site
	Navigating the site
	Page Loading
	Data Gathering

	Discussion
	A Note On Onions and chat channels

	Conclusions
	References

