
Low-Cost Traffic Analysis of Tor

Steven J. Murdoch and George Danezis
University of Cambridge, Computer Laboratory
15 JJ Thomson Avenue, Cambridge CB3 0FD

United Kingdom
{Steven.Murdoch,George.Danezis}@cl.cam.ac.uk

Abstract

Tor is the second generation Onion Router, supporting
the anonymous transport of TCP streams over the Inter-
net. Its low latency makes it very suitable for common
tasks, such as web browsing, but insecure against traffic-
analysis attacks by a global passive adversary. We present
new traffic-analysis techniques that allow adversaries with
only a partial view of the network to infer which nodes are
being used to relay the anonymous streams and therefore
greatly reduce the anonymity provided by Tor. Furthermore,
we show that otherwise unrelated streams can be linked
back to the same initiator. Our attack is feasible for the
adversary anticipated by the Tor designers. Our theoreti-
cal attacks are backed up by experiments performed on the
deployed, albeit experimental, Tor network. Our techniques
should also be applicable to any low latency anonymous
network. These attacks highlight the relationship between
the field of traffic-analysis and more traditional computer
security issues, such as covert channel analysis. Our re-
search also highlights that the inability to directly observe
network links does not prevent an attacker from performing
traffic-analysis: the adversary can use the anonymising net-
work as an oracle to infer the traffic load on remote nodes
in order to perform traffic-analysis.

1 Introduction

2005 IEEE Symposium on Security and Privacy,
May 8–11 2005, Oakland, California, USA.
c© 2005 IEEE. Personal use of this material is permitted.

Anonymous communication networks were first intro-
duced by David Chaum in his seminal paper [10] describing
the mix as a fundamental building block for anonymity. A
mix acts as a store-and-forward relay that hides the corre-
spondence between messages it receives and sends. Sev-
eral mix based architectures have been proposed and im-
plemented to anonymise email, most notably Babel [26],
Mixmaster [30] and the newer Mixminion [15]. Their la-
tency is tolerable for email, but is unsuitable for interactive
applications such as web browsing.

Other systems, based on the idea of a mix, were de-
veloped to carry low latency traffic. ISDN mixes [33]
propose a design that allows phone conversations to be
anonymised, and web-mixes [6] follow the same design pat-
terns to anonymise web traffic. A service based on these
ideas, the Java Anon Proxy (JAP)1 has been implemented
and is running at the University of Dresden. These ap-
proaches work in a synchronous fashion, which is not well
adapted for the asynchronous nature of widely deployed
TCP/IP networks [8].

The Onion Routing project has been working on stream-
level, low-latency, high-bandwidth anonymous communi-
cations [35]. Their latest design and implementation,
Tor [18], has many attractive features, including forward se-
curity and support for anonymous servers. These features,
and its ease of use, have already made it very popular, and
a testing network, available for public use, already has 50
nodes acting as onion routers (as of November 2004).

Tor aims to protect the anonymity of its users from non-
global adversaries. This means that the adversary has the
ability to observe and control some part of the network, but
not its totality. Similarly, the adversary is assumed to be ca-
pable of controlling some fraction of Tor nodes. By making
these assumptions, the designers of Tor believe it is safe to
employ only minimal mixing of the stream cells that are re-
layed, therefore lowering the latency overhead of the com-
munication.

This choice of threat model, with its limitation of the ad-
versaries’ powers, has been a subject of controversy in the
anonymity community, yet most of the discussion has fo-
cused on assessing whether these restrictions of attackers’
capabilities are ‘realistic’ or not. We leave this discussion
aside and instead show that traffic-analysis attacks can be
successfully mounted against Tor even within this very re-
stricted threat model.

Our attacks are based on the notion that the timing signa-
ture of an anonymised stream can be used to track it in the

1http://anon.inf.tu-dresden.de/

Tor network, since the low latency hardly distorts it. The
adversary is not global so he cannot observe this timing sig-
nature directly in the network. Instead the adversary sends
his own traffic streams through a node and monitors the la-
tency. He uses the fact that the traffic volume of one stream
influences the latency of other streams carried over the same
Tor node. To assess if one of the target streams is carried
over a Tor node, the adversary routes a stream that he can
observe, over the same node, and measures the changes in
latency. Besides tracing the route of an anonymous com-
munication, our traffic-analysis attacks can also be used to
link transactions together. Our techniques allow any user to
perform traffic-analysis on the whole network, and thereby
approximate the capabilities of a global passive observer.

This might at first seem to be a typical example of infor-
mation leakage, or covert channels, that have for decades
haunted the community working on multi-level secure sys-
tems. Yet there is a fundamental difference: anonymous
communication relies on traffic from many different sources
being mixed together. Therefore the established solution
to covert channels, of separating the different streams to
avoid timing information leakage, would completely ruin
the anonymity properties of the system. For this reason,
novel techniques will have to be devised to cope with our
attacks.

The results we present should be seriously considered
by designers of anonymous communication systems. They
concern a widely deployed, popular, and well used system
that represents the state of the art in both research and im-
plementation. Few systems of such a standard have been
deployed (Freedom [23, 9, 4] and JAP [6] being the oth-
ers), which has made practical experimentation to verify
the effectiveness of theoretical attacks very difficult. Also,
our attacks highlight an architectural flaw that leads to in-
formation leakage, and this could affect other designs of
anonymity systems. The parallels that this problem has
with covert channels in multilevel security brings the field
of anonymous communications closer to more traditional
computer security disciplines. The approach of performing
covert channel analysis to assess the security of an anony-
mous communication system was pioneered in Moskowitz
et al. [31, 32]. Our attacks show that this is not simply a
theoretic model, but techniques from this community can
be effective in practice in degrading the anonymity provided
by real systems.

2 Understanding The Onion Router (Tor)

The Onion Router (Tor) [18] is the culmination of many
years of research by the Onion Routing project [35, 24, 39].
Not only is it a completely new design and implementa-
tion, but it reflects a shift from the traditional threat mod-
els anonymous communication systems have tried to pro-

tect against. We first describe the Tor architecture and then
introduce the threat model considered in the Tor design.

2.1 Architecture

The Tor network can be used to transport TCP streams
anonymously. The network is composed of a set of nodes
that act as relays for a number of communication streams,
hopefully from different users. Each Tor node tries to
ensure that the correspondence between incoming data
streams and outgoing data streams is obscured from the at-
tacker. Therefore the attacker cannot be sure about which
of the originating user streams corresponds to an observed
output of the network.

The Tor architecture is similar to conventional circuit
switched networks. The connection establishment has been
carefully crafted to preserve anonymity, by not allowing ob-
servers to cryptographically link or trace the route that the
connection is using. The initiator of the stream creates acir-
cuit by first connecting to a randomly selected Tor node, ne-
gotiating secret keys and establishes a secure channel with
it. The key establishment uses self-signed ephemeral Diffie-
Hellman key exchange [16] and standard Transport Layer
Security (TLS) is further used to protect the connections
between nodes and provide forward secrecy. All communi-
cations are then tunnelled through this circuit, and the ini-
tiator can connect to further Tor nodes, exchange keys and
protect the communication through multiple layers of en-
cryption. Each layer is decoded by a Tor node and the data
is forwarded to the next Onion router using standard route
labelling techniques. Finally, after a number of Tor nodes
are relaying the circuit (by default three), the initiator can
ask the last Tor node on the path to connect to a particular
TCP port at a remote IP address or domain name. Applica-
tion layer data, such as HTTP requests or SSH sessions, can
then be passed along the circuit as usual. Since we are not
attacking the cryptographic components of Tor we will not
go into any further details on this subject. Interested readers
should consult the Tor specification [17].

TCP streams travelling through Tor are divided and
packaged into cells. Each cell is 512 bytes long, but to
cut down on latency it can contain a shorter useful pay-
load. This is particularly important for supporting interac-
tive protocols, such as SSH, that send very small keystroke
messages through the network.

Controversially, Tor does not perform any explicit mix-
ing. Cells are stored in separate buffers for each stream, and
are output in a round-robin fashion, going round the connec-
tion buffers. This ensures that all connections are relayed
fairly, and is a common strategy for providing best effort
service. Importantly, when a connection buffer is empty, it
is skipped, and a cell from the next non-empty connection
buffer is sent as expected. Since one of the objectives of

Tor is to provide low latency communications, cells are not
explicitly delayed, reordered, batched or dropped, beyond
the simple-minded strategy described above.

Tor has some provisions for fairness, rate limiting and to
avoid traffic congestion at particular nodes. Firstly, Tor im-
plements a so-called token bucket strategy to make sure that
long-term traffic volumes are kept below a specified limit
set by each Tor node operator. Since the current deployment
model relies on volunteer operators, this was considered im-
portant. Yet this approach, on its own, would not prevent
spikes of traffic from being sent, and propagating through
a connection. These spikes of data would, of course, be
subject to the maximum bandwidth of each node, and could
saturate the network connection of some Tor nodes.

To avoid such congestion, a second mechanism is imple-
mented. Each stream has two windows associated with it,
the first describes how many cells are to be received by the
initiator, while the other describes how many are allowed to
be sent out to the network. If too many cells are in transit
through the network – and have not already been accepted
by the final destination – the Tor node stops accepting any
further cells until the congestion is eased. It is important
to note that this mechanism ensures that the sender does not
send more than the receiver is ready to accept, thereby over-
filling the buffers at intermediary Tor nodes. It also makes
sure that each connection can only have a certain number
of cells in the network without acknowledgement, thus pre-
venting hosts from flooding the network. Tor does not, how-
ever, artificially limit the rate of cells flowing in any other
way.

Finally, it is worth mentioning that each Tor circuit can
be used to relay many TCP streams, all originating from
the same initiator. This is a useful feature to support proto-
cols such as HTTP, that might need many connections, even
to different network nodes, as part of a single transaction.
Unused Tor circuits are short-lived – replacements are set
up every few minutes. This involves picking a new route
through the Tor network, performing the key exchanges and
setting up the encrypted tunnels.

2.2 Threat model

The principal objective of an adversary attacking an
anonymous communication system is to link the initiators
of connections with their respective communication part-
ners and vice versa. For example, an adversary observing
a web request coming out of the Tor network might be in-
terested in determining its originator. Similarly, an attacker
observing a connection into the Tor network would be in-
terested in knowing which remote machine it is ultimately
accessing. A secondary objective of the attacker is to link
transactions, namely network connections, so as to estab-
lish that they are from the same initiator. This could allow

an adversary to profile the initiator, by observing patternsin
his communication habits.

Tor aims to protect against a peculiar threat model, that
is unusual within the anonymous communications com-
munity. It is conventional to attempt to guarantee the
anonymity of users against a global passive adversary, who
has the ability to observe all network links. It is also cus-
tomary to assume that transiting network messages can be
injected, deleted or modified and that the attacker controls
a subset of the network nodes. This models a very powerful
adversary and systems that protect against it can be assumed
to be secure in a very wide range of real world conditions.

Tor, on the other hand, like some other designs, most no-
tably MorphMix [36] and Tarzan [21, 20], assumes a much
weaker threat model. It protects against anon-globaladver-
sary that can only observe a fraction of the network, mod-
ify the traffic only on this fraction and control a fraction of
the Tor nodes. Furthermore, Tor does not attempt to pro-
tect againsttraffic confirmation attacks, where an adversary
observes two parties that he suspects to be communicating
with each other, to either confirm or reject this suspicion.
Instead, Tor aims to make it difficult for an adversary with a
very poora priori suspicion of who is communicating with
whom, to gain more information.

It could be claimed that the weaker threat model makes
Tor insecure and incapable of protecting the anonymity of
users against powerful real-world adversaries. In particular,
while real world adversaries are not omnipotent, they do
have the ability to beadaptive, i.e. select where to monitor
the network based on previous observations. This monitor-
ing can be performed on deployed TCP/IP or telephone net-
works using the lawful interception capabilities integrated
in most modern routing equipment [40]. Access to these
capabilities is, or at least should be, restricted to authorised
parties only.

The importance of our attacks is that an adversary can
extract information about the path of a Tor connection with-
out stepping outside the threat model considered by Tor, and
the methods used are accessible to any Tor user. Therefore
we show that even relatively weak adversaries can perform
traffic-analysis, and get vital information out of Tor. This
means that even non-law-enforcement agencies can signif-
icantly degrade the quality of anonymity that Tor provides,
to the level of protection provided by a collection of simple
proxy servers, or even below.

3 Attacking The Onion Router

An attacker aims to gain some information about who is
communicating with whom through the Tor network. We
will present an overview of the techniques that an attacker
can use to trace the communication and the constraints in-
troduced by the restrictive Tor threat model. These lead to

the theoretical exposition of our attacks, the practical results
of which are presented in Section 4.

3.1 Traditional traffic-analysis

Traffic-analysis is extracting and inferring information
from network meta-data, including the volumes and timing
of network packets, as well as the visible network addresses
they are originating from and destined for. In the case of
anonymous communications, an adversary would use this
data to perform traffic-analysis with the aim of tracing who
the originator or the ultimate destination of a connection is –
therefore violating the anonymity properties that the system
is designed to provide. We assume that Tor intermediaries,
through the use of encrypted tunnels, effectively hide the bit
patterns of data travelling though a Tor connection. There-
fore an attacker cannot use any information from the content
to trace the stream and has to resort to traffic-analysis.

Traffic-analysis can be performed at different levels of
granularity. The first class of attacks considers the anony-
mous network as a “black box” and only consider the times
when users are initiating connections, and connections are
being relayed to network services outside the Tor network.
Dogan Kesdoganet al. [27] were the first to show how re-
peated communications would eventually be revealed even
if the anonymous channel was otherwise perfect. A statis-
tical variant of these attacks, later presented [13], and val-
idated through simulations [29], is more general and can
be applied to a wider variety of anonymous communication
channels.

Both these attack families are very powerful and would
uncover repeated patterns of communication through Tor.
For example, the disclosure and statistical disclosure attacks
could, in the long run, reveal if a particular user connects ev-
ery day to a set of web sites through Tor. An analysis of how
long this would take can be found in Mathewsonet al. [29]
and Agrawalet al. [2]. Yet, to effectively mount such at-
tacks, an adversary is required to observe a large fraction of
the network in order to log who is accessing it and which
outside services are used. This attacker is outside the threat
model that Tor tries to protect against and therefore cannot
be considered to break Tor as such2.

A second category of attacks works at a much finer gran-
ularity. They inspect the traffic within the anonymous com-
munication network, and further, the actual shape (load) of

2How realistic these attacks are is a completely different subject, that
requires careful consideration of the size and topology of the anonymous
communication network. In the case of Tor, a fully-connected network, an
attacker would have to be able to know all the meta-data associated with
the TCP connections to and from all Tor nodes. Given their small number
(at time of writing, approximately 50) this might not be sucha large effort.
In the case of JAP [6], which arranges all relays in a cascade,only two
nodes have to be under surveillance when applying disclosure or statistical
disclosure attacks. In the latter case we judge them to be a real threat.

the traffic on each network link. Earlier work by the Onion
Routing project drew attention to the fact that overall traffic
patterns in connections are not particularly distorted by each
Onion Router that relays them [39]. Therefore, a global ob-
server would be able to correlate the timing and volume of
incoming and outgoing streams in order to trace the route
an onion-routed connection is taking though the network.

In Danezis [14] these finer granularity attacks are pre-
sented in detail, and a theoretical framework is developed to
assess their effectiveness. In practice, an attacker observes
a stream of data that is to be traced, for example, the reply
of a web server to the initiator of a request. This stream
of data can be represented as a function of traffic volume
by time. The function is convolved with an exponential
decay function: the result is atemplatethat predicts how
the stream will look in the anonymous network. All links
of the network are then compared to assess if they match
(more precisely, could have been generated by) the target
template. Each network link will have a degree of similar-
ity to the template that can be used to classify it as being
after the first, second or third node on the path of the con-
nection. Similar attacks have also been presented in Fuet
al. [42] and Levineet al. [28].

The obvious problem of these attacks is that, as pre-
sented, the adversary observes all nodes, network links and
is also to be able to record traffic meta-data at a much finer
granularity than required for the disclosure attacks above.
As a result, these attacks use a global passive adversary,
which is not considered within the Tor threat model. At the
same time, it is important to highlight that these attacks are
robust [29]: when less, partial or lower resolution data is
available they will take longer, and require more evidence
until they provide the attacker with the same degree of cer-
tainty, but in the long run they will still work. Therefore, an
attacker that controls part of the network, as Tor assumes,
might still be able to trace some communications at random.
However this is not very appealing to an attacker because of
the amount of interception effort and analysis required.

An attack worth mentioning has been presented by Ser-
jantov et al. [38]. They notice that by doing simple
packet counting on lone connections, they can follow the
anonymised streams. Their attack is appealing, since packet
counting can be performed easily and cheaply by most rout-
ing equipment. Others have also looked at detectingstep-
ping stones(relays) for intrusion detection [7, 41].

3.2 Traffic-analysis of Tor

As we have seen, traditional traffic-analysis techniques
rely on vast amounts of data. The conventional wisdom
has been that such data can only be gathered by a global
passive observer, which lies outside the Tor threat model.
The key contribution of our work is the realisation that such

Initiator Tor Relay 1 Tor Relay 2 Tor Relay 3

(Victim)

Destination

(Corrupt Server)

Corrupt Tor Node

Traffic
Measurement

Figure 1. The attack setup

observation capabilities are not necessary to perform these
attacks. The ability to route over the anonymous commu-
nication network, that anyone has, can be used to estimate
the traffic load on specific Tor nodes accurately enough to
perform traffic-analysis. Therefore adversaries with very
modest capabilities can still detect the path that target con-
nections are using through the Tor network.

Mix systems rely on the fact that actions, be it relayed
messages, stream cells or connection startups, from differ-
ent users, are processed by one party, the mix, in such a way
that they become unlinkable to their initiator. In the case of
Tor, multiple connections, from different users have to be
relayed by the same Tor node, for any of them to be pro-
vided with any anonymity at all3. Since the relayed streams
are processed and transported over a particular Tor node,
they interfere with each other. This is due to the fact that
they consume shared resources on a single machine – such
as processor time and network bandwidth.

Some mixing strategies try to correlate streams in order
to make them indistinguishable. The best example is the
threshold mix batching strategy that waits until a particu-
lar number of messages have arrived and outputs them all
at once. Tor does not use any particular batching strategy,
since it would increase the latency of the communication.
Instead, cells from different streams are sent out in a round
robin fashion. When a stream has no cells available it is
skipped and the next connection with cells waiting to be de-
livered is used. This means that the load on the Tor node
affects the latency of all connection streams that are routed
through this node. A similar increase in latency is intro-
duced at all layers. As expected, the higher the load on the
node, the higher the latency.

The simple observation that higher load, even due to one
extra connection, on a Tor node will result in higher latency
of all other connections routed through it can be used by
an attacker. By routing a connection through specific Tor
nodes, and measuring the latency of the messages, the ad-
versary can get an estimate of the traffic load on the Tor

3Acquisti et al. go as far as claiming that a multitude of users that do
not trust each other have incentives to share the same anonymous network
since their traffic is then all mixed together [1].

node, that is, the superposition of the traffic load resulting
from all relayed connections. This, in turn, can be com-
pared with a known traffic pattern to assess if it is present
in, and therefore relayed through the node, using conven-
tional traffic-analysis techniques [14].

Any Tor user can perform these measurements and try to
estimate the load on a Tor server. On the other hand, a Tor
node is not subject to some restrictions that apply to clients
(e.g. bandwidth limits), therefore, without loss of generality,
we consider that the attacker controls a corrupt Tor node.
This is in accordance with the Tor threat model, and allows
us to ignore whether the node to be measured is also an exit
node or not. This corrupt Tor node creates a connection that
passes through another Tor node, whose traffic load is to be
measured. This connection is then filled withprobe traffic,
that measures the latency of the connection and therefore
estimates the load on the target Tor node. This should allow
the detection of transient traffic signals transiting through
the measured Tor node.

The adversary could observe a connection to or from the
Tor network and use the technique outlined above to de-
tect which nodes it is being relayed through. We propose a
more powerful variant of this attack: we assume that the ad-
versary controls a network server that the user to be traced
is accessing. This falls within the Tor threat model, and to
some extent it is itsraı̂son d’́etre: users should be able to
access network services, that might be interested in identi-
fying them, in an anonymous manner. This corrupt server
sends to the user, though the Tor connection, data modu-
lated in a very specific traffic pattern. In our experiments
we have used a pattern that consists of sequences of short
(a few seconds) bursts of data. Since the attacker knows the
input pattern to the Tor network, he can construct a tem-
plate, and use it to detect whether the traffic volume in Tor
nodes is correlated with it.

Figure 1 illustrates the setup necessary for the attacks.
In the next section we will present the results of setting up
and performing such an attack against the operational Tor
network.

3.3 Traffic-analysis methodology

The goal of an attacker is, based on timing data from all
nodes on the network, to identify which nodes are carrying
the traffic with the pattern injected by the corrupt server.
For each node, we performed a test where the stream from
the corrupt server went through the target node, and one
where the stream did not go through the target node. For
the test to be considered a success, the correlation between
the traffic modulation and probe latency in the case where
the victim stream did go through the target node should be
higher than the case where it did not. If this was not the case
then either the victim stream did not sufficiently affect the

probe traffic (causing false negatives), or that “echos” of the
victim stream propagated through the network and affected
the probe stream (causing false positives).

The correlation performed was very simple: the template
formed by the modulated traffic from the corrupt server was
multiplied with the probe data and the sum of the result was
evaluated. In more detail, the template function from the
corrupt serverS(t) is:

S(t) =

{

1 if server is sending at sample numbert
0 otherwise

The data from the probe is expressed asL(t) which is the
measured latency of the target Tor node (inµs) at samplet.
L′(t) is the normalised version of the probe data, formed by
dividing L(t) by the mean of all samples.

The correlation,c, is the sum of the product between
S(t) andL′(t), divided by the number of samples where
the corrupt server was sending:

c =

∑

S(t) × L′(t)
∑

S(t)

A number of improvements could be made to this tech-
nique, by using better models of the effect on latency. One
obvious addition is to shift the template in time by an esti-
mate of the latency, or to convolve it with an exponential-
decay function. Also, quantities other than simple latency
could be used, such as a moving variance measure. We have
had satisfactory results with the simple technique, and so
we leave the design of efficient and optimal transient signal
detectors for traffic-analysis for future work.

4 Experimental setup and results

In order to validate the feasibility of the traffic-analysis
attacks, we built and evaluated a simple version of our ap-
proach. The probe computer used was a standard 800 MHz
PC running the Debian GNU/Linux 3.0 operating-system.
Tor version 0.0.9 was set up as being a client only (in
Tor terminology, anOnion Proxy) and modified to choose
routes of length one (not including itself), rather than the
default of three. In addition to the modified Tor software,
the corrupt Tor node consisted of a TCP client and server,
both written in C and carefully crafted to avoid the timing
properties being interfered with by runtime services such as
garbage collection. The interface between the TCP client
and the Onion Proxy is achieved usingsocat [37] to con-
nect to the SOCKS interface of Tor. The targeted Tor node
then connects back to TCP server running on the same ma-
chine.

At regular intervals (in our experiment, every 0.2
seconds) the probe client sent data containing the cur-
rent system time in microseconds (as reported by

gettimeofday()) and optional padding. The TCP
socket used was configured with theTCP NODELAY option
to disable the Nagle algorithm and ensure the data was sent
immediately. Also, the TCP stream establishment and each
segment sent included a nonce, to avoid port scans from in-
terfering with our results. The probe server recorded the
time the segment was sent, and also when the segment was
received, and saved both to a file. While this approach lim-
its us to only probing Tor nodes that allow outgoing TCP
streams (exit nodes), it could be generalised to all nodes if
the attacker controlled a Tor server, even one which was not
approved by the Tor directory server maintainers.

The corrupt server was simulated by a TCP server which
would send pseudorandomly generated data at as fast a rate
as allowed by Tor, for a pseudorandom time period (for our
experiment between 10 and 25 seconds), then stop sending
for another period (between 30 and 75 seconds). The times
at which it stopped and started sending were stored in a file
for later analysis. The victim was simulated by a TCP client
which would receive data and record the time at which each
buffer of data was received and logged this. We recorded the
receipt of data to evaluate how much the timing signature of
the data was being distorted by Tor, however this data would
not be available to an attacker and so was not used in our
correlation calculations. The Tor Onion Proxy on the victim
node was unmodified since it would not be controlled by the
attacker. Againsocat was used for the interface between
the victim client and Tor. The non time-critical parts of the
experiment, such as the starting and stopping of programs
and the collection of results from the remote machines, were
written in Python. The probe server used was hosted in the
University of Cambridge Computer Laboratory. The victim
and corrupt server were run on PlanetLab [11] nodes in two
separate US institutions. The full layout of our system is
shown in Figure 1.

In each experimental run, targeting nodes in turn, the
procedure was as follows. The probe server would be set
to monitor the target node, then after 4 minutes the vic-
tim stream would be created so that its first hop would be
the node monitored (i.e., the furthest away from the corrupt
server, so the timing pattern would be the most distorted).
Monitoring by the probe server would continue for another
4 minutes after the victim stream was closed. In order to
test for false positives, this test was then repeated, except
the victim stream was sent on a path that excluded the tar-
get node.

0 200 400 600 800

0
50

0
10

00
15

00
20

00

time (s)

la
te

nc
y

(m
s)

Figure 2. Probe results showing good correlation (Node K)

4.1 Results

Data from probing 13 Tor nodes4 was collected and pro-
cessed as described in section 3.3 using GNU R [34]. The
correlation quality varied, however for all but 2 nodes it
correctly differentiated the case where the node was car-
rying the victim traffic and the case where the traffic flowed
through other nodes.

Figure 2 shows a good correlation between probe data
in victim traffic. The dots indicate the latency of the probes
and the pattern of the victim stream sent is shown at the bot-
tom. The victim stream received is overlaid to show how the
pattern is distorted by the network. Finally, the horizontal
line indicates the mean latency during the sample period. In
contrast, Figure 3(a) shows the same node being monitored
when the victim stream was being routed elsewhere. Fig-
ure 4 shows a summary of the correlation over all nodes.
For each node, the left bar shows the correlation when the
victim stream was travelling though the node (false negative
test) and the right bar shows the correlation when it was not
(false positive test). The two incorrect results (E and M),
where the correlation was higher when the traffic was not
being sent through the nodes, are highlighted with diagonal

4Out of the 50 Tor nodes that made up the network, at the time, five
were not included so as to check for false positives, and the rest did not
carry the probe or victim stream due to being down or because of exit-
policy restrictions.

shading lines.
None of the results from the false positive test show

any obvious correlation to the traffic pattern, which sug-
gests that “echos” of load are not significantly propagated
through the network. This means that it should be possi-
ble to increase the accuracy of the test simply by running
the test for longer than the 6 minutes in our experiments.
Other options would be to increase the sampling frequency
or to improve the correlation function as suggested in Sec-
tion 3.3. There appears to be significant room for improve-
ment, as shown in Figure 3(b) which was not correctly iden-
tified as being correlated, despite showing visible similarity
to the traffic pattern.

5 Discussion

Our experiments clearly show that Tor streams re-
tain their timing characteristics as they travel through the
anonymising network. Furthermore, these characteristics
affect other streams in such a way that it is possible to
observe them without direct access to the Tor nodes. We
have shown that, as a result, it is possible for an attacker to
discover which Tor server is being used to inject the traf-
fic stream, and degrade the anonymity provided into being
equivalent to a collection of simple proxy servers.

The fact that the timing characteristics of streams are not
substantially altered, and can be used to identify the Tor

0 200 400 600 800

0
50

0
10

00
15

00
20

00

time (s)

la
te

nc
y

(m
s)

(a) Probe results without traffic pattern (Node K)

0 200 400 600 800

10
6

10
8

11
0

11
2

time (s)

la
te

nc
y

(m
s)

(b) False negative (Node E)

Figure 3. Results without positive correlation

A B C D E F G H I J K L M

Target Node

Lo
g

of
 C

or
re

la
tio

n

Pattern present
Pattern absent

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Figure 4. Summary of correlation

nodes carrying them, comes as no surprise. The low latency
requirement of Tor does not allow it to shape the traffic in
any way, and would require large amounts of cover traffic
for these characteristics to be hidden. Since the attack relies
on the indirect measurement of the stream traffic charac-
teristics, a simple minded cover traffic strategy – that only
filled the links with cover traffic – would not work. The
cover traffic should not only fill the links, to confuse a di-
rect observer, but also make sure that it confuses indirect
measurements as presented in this paper. When designing
such a cover traffic strategy it is also important to keep in
mind Wei Dai’s attack [5]: an adversary can try to fill the
victim node with their own traffic, trying to eliminate all
the cover traffic. This is very similar to the indirect mea-
surement of traffic load that we have performed, and shows
that Tor would have to use cover traffic all the time, and not
simply when there is not enough genuine traffic to fill all
the links.

The interference between the timing characteristics of
different streams is both a benefit for anonymity and at
the same time, a vehicle for attack. One would hope that
streams on the same Tor node would interfere with each
other to such a degree that it is impossible to differenti-
ate them from each other, therefore making it difficult for
an attacker to know which one to trace, which is not the
case. This perfect interference should create ‘echos’ of the
traced stream throughout the network and cause any traffic-
analysis to produce a lot of false positives. Nevertheless,
streams relayed by the same Tor node interfere with each
other just enough to leak information to an adversary con-
trolled stream and thus allow the measurement of the load
of the node. In some sense, Tor exhibits the worst possi-
ble behaviour: not enough interference to destroy individ-
ual stream characteristics, yet enough to allow the remote
measurement of the node’s load.

Two strategies could be employed to protect Tor:per-
fect interferenceandnon-interference. Perfect interference
amongst all streams relayed through the same node means
that the output streams all have the same shape. This means
that the adversary will have a very difficult time determin-
ing which output stream corresponds to the input stream to
be traced. Since Tor relies on a sequence of relays, it would
be interesting to study how long paths would need to be
so that streams would interfere with each other in such a
way that all the outputs of the network would have the same
characteristic. Note, that since the vehicle of this entan-
glement is traffic streams, one needs to assess how many
other streams have beentouched, by being relayed through
the same node, and therefore might become indistinguish-
able with. A second strategy for implementing perfect in-
terference is to shape the stream traffic into another random
shape, either the same for all streams or different for each of
them, yet unlinkable to any particular input stream. Causal-

ity means that this shaping can only be done by delaying
the packets (you cannot send a packet received at timet out
in the network at timet − 1). Therefore any traffic shaping
strategy will inevitably increase the latency of the commu-
nication.

Non-interference between streams can also be used to
protect against our attacks. This would eliminate the covert
channel we use to remotely infer the timing of streams on
Tor nodes. This property could be very difficult to imple-
ment in practice. All streams share a lot of common re-
sources: the Tor packet scheduler, the TCP/IP stack, the
physical network and the CPU of the Tor node. There is
an established methodology for discovering and eliminat-
ing covert channels [22], and it is recognised as a difficult
problem. Even hardened systems exhibit covert channels
of >1 bit/s. These might be tolerable for multilevel se-
cure systems, but would be devastating for anonymous com-
munication systems – in a few seconds an adversary could
distinguish the victim’s communication amongst all of the
streams. This is, because there are inherently fewer actorsto
identify in an anonymous communication system than pos-
sible cryptographic keys or possible documents in a multi-
level system.

5.1 Linkability attack

A variant of our attack can also be used to determine
whether two streams coming out of the same Tor node be-
long to the same initiator. Remember that Tor uses the same
connection to route many streams from the same initiator –
we can use this property to test whether two streams com-
ing out of the Tor network and accessing two corrupt servers
belong to the same user. We determine, using the main at-
tack presented, the Tor nodes that route the two streams.
While the probability that two different initiators use the
same exit node is1/N , the probability that the full path of
three nodes is the same, given that each node was chosen
randomly, is only about1/N3. Therefore the fact that two
streams use the same path strongly indicates that they be-
long to the same initiator. Testing whether a second stream
belongs to the same initiator as an already traced stream, is
cheaper than performing the analysis to start with. The at-
tacker already knows the two nodes on the path of the first
stream and can just test them to confirm that the second
stream belongs to the same connection and initiator.

This attack is especially interesting since it shows that
Tor makes it easier to link two events to the same initiator
than a simple proxy. These events exhibit a particular sig-
nature, that a simple proxy does not have, namely their path
through Tor, which can be uncovered using our attacks. If
our attacks are not eliminated, augmenting the length of the
Tor path, conventionally thought to increase security, would
make it even more vulnerable to this attack. The longer the

common chain of Tor nodes two connections share, the less
likely it is that they belong to different users. The same is
true for the total number of nodes: it is conventionally be-
lieved that more nodes is better for anonymity, but a larger
population of nodes makes common chains less common
and allows for more precise identification. The fact that
empty connections are short lived, and that a stream can exit
at any node in the path might make such attacks slightly less
reliable, but does not solve the underlying problem.

5.2 Variants of our attack

The attack we have presented so far relies on a probe
stream being routed through a Tor node to detect the tim-
ing of a modulated communication stream from a corrupt
server. Using the principle that timing information leaks
from one stream to the other, we could conceive quite a few
variants of this attack.

Firstly, we could modulate the probe traffic that is sent to
the victim Tor node in a loop and try to detect the effects on
requests sent by the initiator of the anonymous communica-
tions. In cases where the traffic is mainly from the victim
to the server, the corrupt server does not have much oppor-
tunity to significantly modulate the traffic load, so this may
be the only option. The difficulty with this approach is that
the normal method of probing all Tor nodes in the network
simultaneously is problematic, since the modulation of the
victim stream will be the combination of the load induced
on all three of the Tor nodes along the path.

An alternative would be to probe each Tor node in turn,
but for a given stream lifetime, this would reduce the probe
duration and thus accuracy. Instead, the attacker could
probe all nodes, but using a different, “orthogonal” pattern
for each node, so the resulting combination observed can
be decomposed into the original components. An adaptive
attack could be mounted by, for example, probing all nodes
in the network briefly and observing the result. While this
short test will have a poor accuracy, it could be used to elim-
inate some nodes known not to be on the path. The remain-
ing nodes could be probed again (possibly with a longer
pattern) further eliminating more nodes. This process is re-
peated until only three nodes remain. Another option is to
probe some fraction of the nodes at one time; if the resulting
stream is affected then at least one node on the path must be
in that fraction, if not then all nodes in that group can be
eliminated from consideration. The above techniques could
be combined together.

If the attacker does not have total control over the cor-
rupt server and can only monitor the link but not modify
the load, then there are still variants of our attack that can
be used. One is to use the probe-modulation variant above.
Another is to take advantage of a known traffic pattern ob-
served on the corrupt server. Since this pattern cannot be

optimised, the attack may take longer to reach a result, but
the traffic may still be suitable for inducing an observable
effect on the intermediary Tor nodes. One could mount at-
tacks without any monitoring if the traffic being sought has
known characteristics, which can be observed on the Tor
nodes it is being sent through.

If an attacker can neither directly observe nor change the
traffic on the corrupt server, it may be possible to infer the
load by the attacker using the server and observing the re-
sponse time, in a similar way to how the Tor nodes are moni-
tored. An attacker could also alter the load of the destination
server by modulating a denial of service (DoS) attack on it.
When the DoS attack is running, the load of the victim con-
nection should be decreased and so decrease the load of the
Tor nodes on the path it is travelling. Recent research [25]
has shown that by exploiting the TCP back-off algorithm,
it is possible to mount an effective and difficult to trace de-
nial of service attack without large resources. Techniques
similar to this could also be used in the probe-modulation
variant and to design better patterns for the corrupt server
to send, so the influence on other Tor connections through
each node is maximised.

The above attacks allow the nodes used to relay a particu-
lar stream to be identified, which already severely degrades
anonymity. In order to identify the initiator, the attacker
must look at incoming connections to all three nodes. If re-
sources are limited, then it would be desirable to identify
the entry node, to target monitoring. This could be done by
estimating how much the induced traffic pattern is shifted as
it travels through the network. We did not perform this be-
cause our probe sampling frequency was too low (every 0.2
seconds) to show effects on the scale of typical Tor latency.
However, once an attacker has found the three nodes on the
connection path, he could probe these at higher frequency,
to watch for the precise timing of the pattern. Another pos-
sibility is to look at the distortion of the induced pattern.As
it progresses through the network, noise will be added, so
it is likely the node showing the 3rd best correlation is the
entry node.

5.3 Attack costs

Our attack is feasible for the adversary anticipated by
the Tor designers and can be mounted without direct access
to the communication links of the Tor nodes. To reliably
perform the attacks, each Tor node in the network should
be observed all the time. Assuming there areN Tor nodes,
we therefore requireN probe streams going through them
– a set of machines, or a single machine connected to the
Internet with a low-latency connection suffices. This means
that the cost of the attack isO(N) since it increases linearly
with the number of nodes in the Tor network.

Note that higher volumes of traffic in the Tor network

would make the quality of the observation poorer and de-
grade the performance of the attack. Therefore, there is a
hidden cost that has yet to be estimated, which rises with
the number of streams relayed by each node. At the same
time, any increase in latency that might hinder the attacker,
by making the remote measurements less precise, will in-
evitably also increase the latency of genuine Tor traffic.
Therefore we are again confronted with the choice of in-
creasing the security of the system, versus keeping the la-
tency as low as possible.

Aside from observing the nodes, an adversary is assumed
to have the ability to modulate the replies of a dishonest ac-
cessed server. The simplest way of doing this is by deceiv-
ing anonymous users and making them access an attacker
controlled server. This way, arbitrary data streams can be
sent back and forth, and get detected. Where Tor is used
to access an HTTP [19] (web) service, the attacks can be
mounted much more simply, by includingtraffic-analysis
bugswithin the page, in the same way as web bugs [3, 12]
are embedded today. These initiate a request for an invis-
ible resource that, due to the HTTP architecture, can have
an unconstrained traffic shape and characteristic. The at-
tacker can then simply try to detect them, using our attack
as described.

5.4 Understanding the traffic artifacts

As described earlier, our attack is based on the fact that
the traffic characteristics of streams are hardly affected by
Tor, and that these characteristics leak into other streams
sufficiently so that they can be remotely estimated. It is
interesting to study how these processes are taking place in
practice.

Streams interfere with each other at all levels. At the
highest level, Tor routers relay a set of streams using a non-
blocking polling strategy presented in Figure 5. Each of the
relayed streams is polled to see if any data is available to
be relayed. If data is available, it is processed, otherwise
the next stream is considered. This strategy in itself ensures
that a different stream being relayed will delay the probe
stream, and leak information about the latency of the node.

Aside from the polling strategy, streams relayed by Tor
share the operating-system resources, the TCP/IP stack, the
network and the hardware of the Tor node. The operating-
system scheduler could influence the timing of the streams
by allocating more resources when the node relays more
traffic, or less when then node is mostly waiting for more in-
put. Memory management operations could also take more
time if data is being routed. The TCP protocol would back-
off if the link is congested. Finally the network has a fixed
capacity, and has to be shared amongst connections. All
of these contribute to the latency of the probe data being
influenced by the volume of data relayed by the Tor node.

/* Tor main loop */
for(;;) {

timeout = prepare_for_poll();
...
/* poll until we have an event,

or the second ends */
poll_result = tor_poll(poll_array, nfds, timeout);
...
/* do all the reads and errors first,

so we can detect closed sockets */
for(i=0;i<nfds;i++)

/* this also marks broken connections */
conn_read(i);

/* then do the writes */
for(i=0;i<nfds;i++)

conn_write(i);

/* any of the conns need to be closed now? */
for(i=0;i<nfds;i++)

conn_close_if_marked(i);
...

}

/* Read from connection */
static void conn_read(int i) {
...
if(!(poll_array[i].revents & (POLLIN|POLLHUP|POLLERR)))

if(!connection_is_reading(conn) ||
!connection_has_pending_tls_data(conn))

return; /* this conn should not read */
...
connection_handle_read(conn) < 0) {
...

}

Figure 5. The Tor 0.0.9 polling code

Figure 2 illustrates this. It is clear that the probe data (top)
can be used to infer the volume of the actual traffic sent
(bottom).

Other traffic patterns have been observed in the measure-
ment data that are not yet fully explained. These could be
artifacts of the measurement technique, that by its indirect
nature can only act as an estimate of the load, or genuine
latency introduced by the remote Tor node. We present here
two examples that could be used to perform traffic-analysis,
if they were linked with particular states of the Tor nodes.

Figure 6(a) shows the results of probes against an exit
node in the Tor network. Again, the top graph represents
the latency over time of probe traffic, while the bottom rep-
resents the times the corrupt server was sending data. Note
that the latency of the probes seems to be quantised into
four or five bands – even when a high volume of traffic is
injected. The quantisation could be explained by the lack of
precision or quantisation of the measurement process. An-
other explanation is that the bands are formed by measuring
the node when one, two, three or four other streams are be-
ing served at the time. This seems to match with the experi-
mental data: only four clusters are visible when the corrupt
server is not relayed, and five when the stream is present.
This technique could be developed to extract information
about the number of streams relayed – and in turn used to
infer the beginning and termination of a stream.

0 100 200 300 400 500 600 700

0
50

0
10

00
15

00
20

00

time (s)

la
te

nc
y

(m
s)

(a) Horizontal line artifacts

100 200 300 400 500

0
20

0
40

0
60

0
80

0

time (s)

la
te

nc
y

(m
s)

(b) End of session artifacts

Figure 6. Artifacts under investigation

Figure 6(b) illustrates a completely different type of traf-
fic pattern. After the last burst of traffic from the corrupt
server (bottom) the latency of the probe traffic exhibits a
very peculiar pattern, it goes up six times each time falling
back into the average latency. This event has been observed
many times in conjunction with the closure of a Tor con-
nection, and could be due to time devoted in tearing down
connections. If such events can be observed, the connec-
tion tear down could be tracked through the network to gain
information about the route of a connection.

Aside from the precise load information extracted from
the probe traffic, these secondary traffic artifacts could also
be used to perform traffic analysis and assess which Tor
server is being used to relay the target traffic. Therefore a
strategy to eliminate information leakage into other streams
should also try to eliminate these artifacts.

6 Conclusions

We have presented an attack against Tor, a deployed and
well used, anonymising protocol. This attack can be per-
formed by a modest adversary, using powers well within
the restricted Tor threat model. In fact, we show that the
anonymising network itself can be used to route probe traf-
fic and gather information otherwise available only to a
global passive adversary.

In November 2004 we performed extensive experiments
on current Tor nodes and found them to be susceptible to
our attack. This does not give us the ability to trace the
actual originator of the communication, since we do not
have the ability to observe who is connected to a Tor node.
Nevertheless our attacks greatly degrade the anonymity pro-
vided by Tor, by allowing adversaries to discover the path
of a Tor connection and thereby reducing the protection to
the level provided by a collection of simple proxy servers.
We expect the same attack to be usable against other low-
latency anonymising network designs, since none of them
have been specially hardened against it.

Furthermore, since Tor reuses the same path for multi-
ple streams within a short time interval, our attacks allow
different operations to be linked to the same initiator with
greater certainty. The observable path of each stream can
act as an identifier or identity that links streams amongst
themselves and to the initiator – a property that makes Tor
weaker than a simple proxy when it comes to protecting the
unlinkability of actions.

We discussed some strategies that could be used to pro-
tect Tor against our attacks. They all, to some degree, in-
volve an increase in the latency of the communication. They
also highlight the need for a full covert-channel analysis of
such anonymising networks, to assess whether any informa-
tion that could be used for traffic-analysis is leaked to other
streams that are potentially observable by an adversary.

This attack brings the field of anonymous communica-
tions even closer to more traditional computer security dis-
ciplines. On one hand we show that the literature on covert
channel analysis and elimination is directly applicable and
necessary to truly secure Tor. On the other hand, our attack
relies on using Tor nodes as oracles that disclose their load
– therefore not requiring a global observer. Similar tech-
niques have been used in the past in breaking cryptographic
protocols, by using and combining the services they pro-
vide. It is the first time that such techniques are applied for
traffic-analysis of anonymous communication systems.

Acknowledgements

Paul Syverson and Roger Dingledine, part of the team
that designed Tor, have provided us with very useful feed-
back and information concerning the architecture of Tor and

the true impact of our attacks. This work would not have
been possible without the dedication of the volunteers run-
ning Tor nodes.

George Danezis is supported by the Cambridge-MIT In-
stitute (CMI) project on ‘Third generation peer-to-peer net-
works’ and part of this work was done while visiting MIT
CSAIL and the Brown University Watermyn Coop. Steven
J. Murdoch is supported by a scholarship from the Carnegie
Trust for the Universities of Scotland.

References

[1] A. Acquisti, R. Dingledine, and P. F. Syverson:. On the eco-
nomics of anonymity. In R. N. Wright, editor,Financial
Cryptography, volume 2742 ofLecture Notes in Computer
Science, pages 84–102. Springer, 2003.

[2] D. Agrawal, D. Kesdogan, and S. Penz. Probabilistic treat-
ment of mixes to hamper traffic analysis. InIEEE Sympo-
sium on Security and Privacy, pages 16–27, Berkeley, CA,
USA, May 2003. IEEE Computer Society.

[3] A. Alsaid and D. Martin. Detecting web bugs with bugnosis:
Privacy advocacy through education. InPrivacy Enhancing
Technologies (PET 2002), San Francisco, CA, May 2002.

[4] A. Back, I. Goldberg, and A. Shostack. Freedom systems 2.1
security issues and analysis. White paper, Zero Knowledge
Systems, Inc., May 2001.

[5] A. Back, U. Möller, and A. Stiglic. Traffic analysis at-
tacks and trade-offs in anonymity providing systems. In
I. S. Moskowitz, editor,Information Hiding workshop (IH
2001), volume 2137 ofLNCS, pages 245–257. Springer-
Verlag, April 2001.

[6] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes:
A system for anonymous and unobservable Internet access.
In H. Federrath, editor,Designing Privacy Enhancing Tech-
nologies, volume 2009 ofLNCS, pages 115–129. Springer-
Verlag, July 2000.

[7] A. Blum, D. Song, and S. Venkataraman. Detection of inter-
active stepping stones: Algorithms and confidence bounds.
In Recent Advances in Intrusion Detection: 7th Interna-
tional Symposium, RAID 2004, Sophia Antipolis, France,
September 2004.

[8] R. Bohme, G. Danezis, C. Diaz, S. Kopsell, and A. Pfitz-
mann. Mix cascades vs. peer-to-peer: Is one concept su-
perior? InPrivacy Enhancing Technologies (PET 2004),
Toronto, Canada, May 2004.

[9] P. Boucher, A. Shostack, and I. Goldberg. Freedom systems
2.0 architecture. White paper, Zero Knowledge Systems,
Inc., December 2000.

[10] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
24(2):84–88, February 1981.

[11] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Over-
lay Testbed for Broad-Coverage Services.ACM SIGCOMM
Computer Communication Review, 33(3), July 2003.

[12] R. Clayton, G. Danezis, and M. G. Kuhn. Real world pat-
terns of failure in anonymity systems. In I. S. Moskowitz,

editor,Information Hiding, 4th International Workshop, vol-
ume 2137 ofLNCS, pages 230–245. Springer-Verlag, April
2001.

[13] G. Danezis. Statistical disclosure attacks. In Gritzalis,
Vimercati, Samarati, and Katsikas, editors,Security and Pri-
vacy in the Age of Uncertainty, (SEC2003), pages 421–426,
Athens, May 2003. IFIP TC11, Kluwer.

[14] G. Danezis. The traffic analysis of continuous-time mixes.
In Proceedings of Privacy Enhancing Technologies work-
shop (PET 2004), volume 3424 ofLNCS, May 2004.

[15] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion:
Design of a type III anonymous remailer protocol. InIEEE
Symposium on Security and Privacy, Berkeley, CA, 11-14
May 2003.

[16] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, IT-
22(6):644–654, 1976.

[17] R. Dingledine and N. Mathewson. Tor spec. Tech-
nical report, The Free Haven Project, October 20
2004. http://www.freehaven.net/tor/cvs/
doc/tor-spec.txt.

[18] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. InProceedings of the 13th
USENIX Security Symposium, August 2004.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. RFC 2616, Network Working Group, June 1999.

[20] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. In V. Atluri, editor,ACM Con-
ference on Computer and Communications Security (CCS
2002), pages 193–206, Washington, DC, November 2002.
ACM.

[21] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Introducing
tarzan, a peer-to-peer anonymizing network layer. In P. Dr-
uschel, M. F. Kaashoek, and A. I. T. Rowstron, editors,In-
ternational workshop on Peer-to-Peer Systems (IPTPS), vol-
ume 2429 ofLNCS, pages 121–129, Cambridge, MA, March
2002. Springer-Verlag.

[22] V. D. Gligor. A Guide to Understanding Covert Channel
Analysis of Trusted Systems. National Computer Security
Center, 1993. NCSC-TG-030, Version 1.

[23] I. Goldberg. A Pseudonymous Communications Infrastruc-
ture for the Internet. PhD thesis, UC Berkeley, December
2000.

[24] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion
routing. Communications of the ACM, 42(2):39–41, 1999.

[25] Guirguis, Mina, Bestavros, Azer, and I. Matta. Exploiting
the Transients of Adaptation for RoQ Attacks on Internet
Resources. InProceedings of ICNP’04: The 12th IEEE In-
ternational Conference on Network Protocols, Berlin, Ger-
many, October 2004.

[26] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. In
Network and Distributed Security Symposium — NDSS ’96,
pages 2–16, San Diego, California, February 1996. IEEE.

[27] D. Kesdogan, D. Agrawal, and S. Penz. Limits of anonymity
in open environments. In F. A. P. Petitcolas, editor,Infor-
mation Hiding workshop (IH 2002), volume 2578 ofLNCS,
pages 53–69, Noordwijkerhout, The Netherlands, 7-9 Octo-
ber 2002. Springer-Verlag.

[28] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright.
Timing attacks in low-latency mix-based systems. In
A. Juels, editor,Proceedings of Financial Cryptography (FC
’04). Springer-Verlag, LNCS 3110, February 2004.

[29] N. Mathewson and R. Dingledine. Practical traffic analysis:
Extending and resisting statistical disclosure. InProceed-
ings of Privacy Enhancing Technologies workshop (PET
2004), LNCS, May 2004.

[30] U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman.Mix-
master protocol version 2. Technical report, Network Work-
ing Group, May 25 2004. Internet-Draft.

[31] I. S. Moskowitz, R. E. Newman, D. P. Crepeau, and A. R.
Miller. Covert channels and anonymizing networks. In
Workshop on Privacy in the Electronic Society (WPES
2003), Washington, DC, USA, October 2003.

[32] I. S. Moskowitz, R. E. Newman, and P. F. Syverson. Quasi-
anonymous channels. InCommunication, Network, and In-
formation Security (CNIS 2003), New York, USA, 10–12
December 2003.

[33] A. Pfitzmann, B. Pfitzmann, and M. Waidner. ISDN-mixes:
Untraceable communication with very small bandwidth
overhead. In W. Effelsberg, H. W. Meuer, and G. Müller, ed-
itors, GI/ITG Conference on Communication in Distributed
Systems, volume 267 of Informatik-Fachberichte, pages
451–463. Springer-Verlag, February 1991.

[34] R Development Core Team.R: A language and environ-
ment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2004. ISBN 3-900051-07-0
http://www.R-project.org/.

[35] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous connections and onion routing.IEEE Journal on Se-
lected Areas in Communications, 16(4):482–494, May 1998.

[36] M. Rennhard and B. Plattner. Introducing MorphMix: Peer-
to-Peer based Anonymous Internet Usage with Collusion
Detection. InWorkshop on Privacy in the Electronic Society
(WPES 2002), Washington, DC, USA, November 2002.

[37] G. Rieger et al. socat – multipurpose relay.http://www.
dest-unreach.org/socat/.

[38] A. Serjantov and P. Sewell. Passive attack analysis for
connection-based anonymity systems. InEuropean Sympo-
sium on Research in Computer Security (ESORICS 2003),
Gjovik, Norway, 13–15 October 2003.

[39] P. F. Syverson, G. Tsudik, M. G. Reed, and C. E. Landwehr.
Towards an analysis of onion routing security. In H. Fed-
errath, editor,Designing Privacy Enhancing Technologies,
volume 2009 ofLNCS, pages 96–114, Berkeley, CA, USA,
25-26 July 2000. Springer-Verlag.

[40] J. Young and E. M. On obtaining “lawful interception” doc-
uments.http://www.quintessenz.org/etsi.

[41] Y. Zhang and V. Paxson. Detecting stepping stones. In9th
USENIX Security Symposium, August 2000.

[42] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On flow
correlation attacks and countermeasures in mix networks. In
Proceedings of Privacy Enhancing Technologies workshop
(PET 2004), volume 3424 ofLNCS, May 2004.

