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Section Structure (Struct-1): We noticed that apart from global locational struc-
ture, there is also a section internal locational organization which might be important
for Argumentative Zoning. Introductions usually proceed from the more general to the
more specific, with general knowledge typically coming first and statements about own
work appearing towards the end. In particular, AIM sentences often occur in a typical
position about two-thirds down in introduction sessions.

We also observed that the first and last sentences in other sections often fulfill a
summarizing function, and are often associated with text-organization meta-discourse
(“in this section we will”), which is captured by our TEXTUAL sentences. The sec-
ond and third or second and third-last sentence also often have a special summarizing
function.

The feature Struct-1 divides the section into three equally sized segments,
and additionally singles out the first and the last sentence, and takes together the second
and third sentence as a sixth value, and the second-last plus third-last sentence as a
seventh value.

Paragraph Structure (Struct-2): There is disagreement in the literature whether
paragraph information should be considered as a surface indicator of importance and
topic boundaries. Are paragraphs regarded as logical units by authors, or rather as
layout units?

(Baxendale, 1958) states that due to the hierarchical organization of well-
written research papers, sentences at the beginning and end of the paragraph are more
likely to be “topic sentences”—in 85% of the paragraphs, the topic sentence was the
initial sentence, and in 7% the final. Marcu (1997b) also suggests that paragraph breaks
help readers determine the most important textual units in a text.

In contrast, Longacre (1979) holds that the function of many paragraph breaks
is purely aesthetic, and Starck (1988) conducted an experiment which confirms the
marginal role of paragraphs in higher-level interpretive tasks. The task of human re-
introduction of paragraph breaks led to poor results: only nine of the 17 paragraph
breaks in a text were correctly identified as such by more than 50% of the subjects. We
lean towards the layout argument: we believe that in conference papers, the number
and placement of paragraph breaks will be affected by the question whether or not a
paper was printed in “two-column” style.

Even if we do find crucial information at the beginning and the end of para-
graphs, we still do not know how useful this is for Argumentative Zoning. With re-
spect to other tasks, Hearst (1997) indicates that thematic boundaries do not always
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occur at paragraph boundaries, but Wiebe (1994) states that the information whether
or not a sentence begins a paragraph is useful for her task, namely the determination of
private-state sentences in narrative (subjective vs. objective orientation). In our case,
it seems sensible to assume that CONTRAST sentences are more likely to occur at the
end of a paragraph, but other than that it seems difficult to predict a direct correlation
between paragraph boundaries and argumentative flow. We included the feature in our
heuristics pool to determine its usefulness empirically.

Headlines (Struct-3): Van Dijk (1980) states that in scientific articles, rhetorical
sections are marked by fixed headlines. Knowing which rhetorical section a sentence
belongs to should be directly useful for Argumentative Zoning. For example, Nanba
and Okumura (1999) assume a correlation between rhetorical section and type of ci-
tation. They expect CONTRAST citations to occur more often in the sections Introduc-

tion, Discussion, and Related work, and BASIS citations to occur more often in the
Introduction and the Method section.

However, we have argued in section 3.1 that not all articles in our corpus keep
to a fixed section structure. As a result, we expect the feature Struct-3 to be of use
only in those cases where prototypical headings are available.

Feature Struct-3 classifies the headlines into groupings of similarity on se-
mantic grounds and morphological variants, resulting in the following 15 classes: In-

troduction, Problem Statement, Method, Discussion, Conclusion, Result, Related Work,

Limitations, Further Work, Problems, Implementation, Example, Experiment, Evalua-

tion, Data and Solution. Pattern matching of a range of expressions in the headlines is
applied. If no pattern matches, the value NonPrototypical is assigned.

5.2.1.4. Sentence Length

At first glance, the criterion of sentence length seems to be a trivial criterion which
is not related to relevance or to argumentative zones. For trivial features, we expect
a distribution which is near–identical to the global distribution of categories in the
corpus, and therefore no help for a statistical classifier.

Kupiec et al. report better results when including the Sentence Length feature,
but this point seems to be pertinent to their data coding: captions, titles and headings
are not encoded as such and the sentence length feature can filter them out. In our
corpus, this information is already directly encoded: sentence length thus cannot fulfill
the filtering function.
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But there are some other reasons why sentence length might not be a trivial
feature after all. Sentence length is one indicator of sentence complexity which has
been used in extraction experiments before. Earl (1970) argues that short sentences in
her material are more likely to contain trivial material. Robin and McKeown (1996)
state that complex sentences (conveying a maximal number of facts) are advantageous
as a summary. There are, of course, other criteria for complexity apart from sentence
length. Some measurements try to determine how contentful the sentence is by calcu-
lating the proportion of content words per length, or by measurements of the syntactic
complexity of the sentence.

Sentence length might be a useful feature for Argumentative Zoning due to
the high number of OWN sentences in our corpus, which describe details of the solu-
tion. They contain less meta-discourse than other sentences, and they tend to be less
complex and thus shorter.

5.2.1.5. Syntactic Correlates of the Verb

In text extraction, there have been some efforts to use purely syntactic criteria for
the indication of overall relevance, but most of these proved unsuccessful. Baxen-
dale (1958) used the objects of prepositions as sole representation for the document.
Earl (1970) describes an unsuccessful experiment to correlate global importance to
the parts-of-speech (POS) shape of sentences. However, there were too many different
POS shapes, and she concludes that:

it seems fair to say that indexible and non-indexible sentences cannot be dis-
tinguished by structure alone. (Earl, 1970, p. 321)

Also interesting are experiments differentiating different linguistic factors per
rhetorical sections. These experiments concentrate on the standard four-part fixed
structure (Introduction, Methods, Results, Discussion), which is, as we have argued
before, related to argumentative zones, albeit not in a trivial way (cf. section 3.1).

Verbal syntactic features can be indicators of rhetorical section structure, as
studies like Biber and Finegan (1994) and Milas-Bracovic (1987) show. West (1980),
for example, manually determined and counted the occurrence of that-nominals
(e.g. “the fact that. . . ”) in different rhetorical sections. That-nominals often indicate
knowledge-stating sentences. West found that the density of that-nominals differed
significantly between rhetorical sections: there were statistically more that-nominals
in the Introduction and Discussion sections than in the Results section. The Methods

section has fewer that-nominals than any other section.
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Myers’s (1992) work is particularly relevant to Argumentative Zoning. He de-
scribes properties of sentences stating authors’ knowledge claims (our AIM sentences).
Apart from two non-linguistic features (cue phrases and location), he lists the follow-
ing linguistic features of the main verb in such sentences:

� Verb: “to present”, “to report” or similar

� Tense: Present Perfect

� Person: First

We consider only verbal syntactic features here: voice, tense and the existence
of a modal auxiliary.

Voice (Syn-1): Riley’s (1991) work shows that there is a correlation between rhetor-
ical roles and the use of the passive tense. The explanation for this is that voice is
connected to authors’ perspective. Prescriptive accounts of academic writing advise
writers to avoid the mention of the own person, in order to avoid the impression that
they are unduly interested in the success of their own research. This results in a high
proportion of passive sentences, and often makes texts less readable and more difficult
to understand. If a text is written in this style, it is sometimes difficult to tell who per-
formed a certain research action. Many authors in our collection use the active voice
instead to describe their own work, but nevertheless, there are also articles which use
the passive voice frequently.

Tense (Syn-2): It has been hypothesized that authors use different tenses for different
rhetorical segments (Biber and Finegan, 1994; Milas-Bracovic, 1987) or for certain
argumentative tasks. Aspect and tense have been shown to correlate with discourse
structures (Salager-Meyer, 1992; Hwang and Schubert, 1992; Malcolm, 1987). The
connection between aspectual information (which is predominantly expressed by tense
in English) and argumentation is that aspect signals the state of an activity (“has the

problem been solved or is it unsolved yet?”). For example, the present perfect, being
used for unfinished states, is often associated with pending problems, whereas the use
of past tense, particularly in combination with statements of solution-hood, signal an
accomplishment, i.e. the fact that an end state has been reached.

Another reason why tense should be an interesting feature for Argumentative
Zoning is that many formal guidelines for publication, e.g. in certain journals, require
authors to use past tense for descriptions of previous work, including own previous
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work, and present tense for current work. This distinction, as it is connected to the
attribution of ownership, is particularly important for Argumentative Zoning. On the
other hand, many of the authors in our collection are non-native speakers and might
use tense in an idiosyncratic way.

Modality (Syn-3): The use of modal auxiliaries is one of the correlates for a phe-
nomenon called hedging (cf. Hyland’s (1998) hedging category in figure 3.13, p. 100).
Hedging occurs when authors distance themselves from a scientific statement (Salager-
Meyer, 1994). Other correlates of hedging are adverbials like likely, possibly, maybe

which formed part of Edmundson’s negative cue phrases. Hedging has been proposed
as a signal for rhetorical sections, as it is associated with speculative statements in Dis-

cussion sections. Wiebe (1994) also uses the occurrence of a modal other than “will”
for her subjective/objective distinction.

5.2.1.6. Citation Features

Type of Citation (Cit-1): Citations are a good indication that the topic of the sen-
tence is somebody else’s work; our human annotators use this factor to distinguish
between OTHER and BACKGROUND categories. Thus, the existence or non-existence
of formal citations should prove useful for Argumentative Zoning. We also believe that
mentions of other authors’ names in the text, even if these do not occur in a formal cita-
tion context, have a status similar to full citations. Consider sentence 8 of our example
article:

In Hindle’s proposal, words are similar if we have strong statistical evidence
that they tend to participate in the same events. (S-8, 9408011)

The full citation was used in sentence 5; similarly to the use of pronominal
reference, use of the author’s name avoids repetitiveness. We think that in this sentence
should be logically treated as if it had read “In Hindle’s (1993) proposal”, i.e. as if a
formal citation had been present.

Self Citations (Cit-2): If some own previous work is mentioned in a paper, it is very
likely that the authors mention it because they base their own work on it (BASIS).
Therefore, the fact that previous work is the author’s own should be recognized.

Citation Location (Cit-3): Citations are authorial if they form a syntactically inte-
gral part of the sentence, or parenthetical if they do not (Swales, 1990). We believe that
the attribution of intellectual ownership is more often expressed by authorial citations,
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and that parenthetical citations are often there for other reasons ( “piety, policy, po-
liteness” cf. Ziman (1969)). If this is true, the syntactic type of a citation might prove
useful for Argumentative Zoning.

As authorial citations form the subject of the sentence, they typically occur in
the beginning, whereas most of the parenthetical uses of citations occur in the end of
the sentence. Citation location (Cit-3) captures exactly this aspect.

5.2.2. Meta-Discourse Features

Meta-discourse represents one of the most reliable indicators of rhetorical status and
is potentially very useful for Argumentative Zoning. Other computational approaches
(Marcu, 1997a; Litman, 1996) also exploit meta-discourse, but meta-discourse of a
different kind: short cue phrases belonging to a closed-class vocabulary (e.g. adver-
bials, sentence connectives or general relevance markers like “in sum”). As a result,
the linguistic realization of such meta-discourse phrases tends to be invariant between
disciplines and authors.

But when we looked at realizations of scientific meta-discourse in section 3.2.5,
we found that apart from formulaic, fixed meta-discourse (“to my knowledge”, “in this

paper”), there is another kind of meta-discourse which shows a wide range of syntactic
variation—recall the different ways of expressing intellectual ancestry exemplified in
figure 3.14 (p. 102). It is difficult to see how this type of meta-discourse could be
captured with a fixed list; a more flexible way of analyzing it is needed.

We suggest that one way out of the dilemma of linguistic variation is to discover
prototypical agents and actions individually in a wider range of syntactic contexts,
e.g. in passive and active constructions (Teufel and Moens, In Prep.). Looking at the
examples for the argumentative moves in figures 3.7, 3.9, 3.10, 3.12 and 3.15, one
cannot help noticing that scientific argumentative text abounds in prototypical agents
and actions, which recur in different syntactic disguises. We argue that it should be
enough for Argumentative Zoning to recognize these prototypical actions and agents,
while reading over all agents and actions that are not understood (and which are likely
to refer to the science in the paper). As the patterns themselves are rather prototypical
(“our approach”), pattern matching and syntactic heuristics should be able to find a
large part of these agents and actions.

This would provide a simple profile of the agent/action structure of the doc-
ument: the information of “who-does-what”. We assume that the agent/action struc-
ture is an integral part of the kind of document structure that we are looking for, and
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should help us perform Argumentative Zoning. We also believe that the agent/action
structure provides a deeper, more semantic–oriented kind of text representation than
the text strings themselves. Such intermediate representations have been called for by
Spärck Jones (1999) as a prerequisite for better text summarization strategies.

One last caveat: the phrases we call meta-discourse can have a meta-discourse
interpretation—but they do not always have this interpretation. Litman (1996) uses
machine learning to address the problem that the phrase “so” can function as meta-
discourse or as propositional contents. There are some ambiguity problems associated
with our approach, which we discuss in section 6.2.

5.2.2.1. Formulaic Expressions (Formu)

The Formulaic Expressions Feature is designed to determine and classify explicit meta-
discourse statements of a fixed kind.

Indicator or cue phrases have a long history as features for text extraction,
i.e. for determining global sentence importance. In Edmundson’s (1969) approach,
sentences containing positive cue phrases like superlatives or explicit markers of im-
portance or confidence (“important”, “definitely”) were considered fit for extraction,
whereas other sentences containing stigma words like “hardly”, “unclear”, “perhap-

s”, “for example” (belittling expressions, expressions of insignificant detail or spec-
ulation/hedging) were discouraged from extraction. Edmundson’s list was statistically
acquired and manually corrected. A similar but much more extensive list containing
777 terms (called the Word Control List or WCL) was used in ADAM, the first com-
mercially used automatic abstracting system (Pollock and Zamora, 1975).

More recent work on longer indicator phrases has been done by Paice and col-
leagues (Paice, 1981; Paice and Jones, 1993; Johnson et al., 1993), whereby sentences
containing explicit rhetorical markers like “the purpose of this research is” or “our in-

vestigation has shown that” are considered fit for extraction. Paice (1981) describes the
first implementation of a pattern-matching extraction mechanism relying on indicator
phrases. Paice and Jones (1993) make the method more flexible by supplying a finite
state grammar for indicator phrases specific to the agriculture domain; however, Oakes
and Paice (1999) state that importance cues are often not reliable.

All these approaches use indicator phrases which indicate global sentence

relevance—again, using indicator phrases for the determination of argumentative sta-
tus is different. For example, the phrase “in this paper, we have . . . ” is a very good
overall relevance indicator: it is quite likely that a sentence or paragraph starting with
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Formu: Formulaic Expression Types

Type Example Type Example
GAP INTRODUCTION to our knowledge PREVIOUS CONTEXT elsewhere, we have
OUR AIM main contribution

of this paper
FUTURE avenue for im-

provement
TEXTSTRUCTURE then we describe AFFECT hopefully
DEIXIS in this paper PROBLEM drawback
CONTINUATION following the argu-

ment in
SOLUTION insight

SIMILARITY similar to IN ORDER TO in order to
COMPARISON when compared to

our
POSITIVE ADJECTIVE appealing

CONTRAST however NEGATIVE ADJECTIVE unsatisfactory
DETAIL this paper has also THEM FORMULAIC along the lines of
METHOD a novel method for

X-ing
GENERAL FORMULAIC in traditional ap-

proaches

Figure 5.6: Formulaic Expression Types (Feature Formu)

it will carry important discourse-level information. However, without knowing the fol-
lowing verb, we cannot be sure about the argumentative status of the sentence. It could
continue with “. . . used machine learning techniques for . . . ”, in which case the sen-
tence is likely to be a description of solution/methodology; with a different verb, it
might also be a conclusion (“. . . argued that . . . ”) or a problem statement (“. . . at-

tacked the hard problem of . . . ”).
Our argumentative model in section 3.2 describes typical statements about the

problem-solving processes in research. Our method for finding meta-discourse is to
use pattern-matching on expressions that are expected by the model of argumentation
introduced in section 3.2. We particularly concentrate on those meta-discourse expres-
sions which have become formulaic expressions of scientific writing (cf. Hyland 1998;
Swales 1990).

Our formulaic expressions are bundled into 20 major semantic groups. Fig-
ure 5.6 gives examples for the types of formulaic expressions used in feature Formu.
For example, a marker like “our goal in this paper” is expected to co-occur frequently
with the AIM category, whereas “in the following section” is a good marker for TEX-
TUAL. On the other hand, if we find a negative polarity item in the sentence e.g. “how-

ever”; “no method has. . . ”; “none of the approaches. . . ”, this raises the probability
that we are dealing with a sentence which indicates a flaw of some other work (CON-
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TRAST). Another good indication of a gap in knowledge is the phrase “to our knowl-

edge”. The full list of 396 formulaic patterns is given in appendix D.1.

5.2.2.2. Agentivity Features (Ag-1 and Ag-2)

The recognition of prototypical agents and actions serves to identify scientific meta-
discourse which is less fixed than the phrases covered by the Formu feature. For writing
styles that do not use much meta-discourse it might be particularly advantageous to
determine agents and actions, because they might provide the only superficially marked
correlates of argumentative status. For data collections with large variations in meta-
discourse like ours, it makes sense to classify the agents and actions. Then it does not
matter which particular term the authors use (e.g. “we”, “I” or “one of us”)—these
expressions are represented as the same entity (US AGENT), and automatic processing
can generalize over the same concept.

Possibly the closest related work with respect to agents and actions is that of
Barzilay et al. (1999), which uses overlap of actions and agents to detect the similarity
of events in newspaper paragraphs. However, whereas in our text type prototypical

agents are particularly relevant, in their text type (news stories), any potential agent
needs to be matched.

In our approach, agents and actions are expressed separately and modularly;
their syntactic context is recognized (passive vs. active), and negation is automatically
taken into account. Such an approach is more robust and less error-prone than standard
pattern matching methods which are string-based, as individual subject–verb combi-
nations might easily be forgotten from such lists.

Using syntactic constraints in Agentivity features (i.e. agents and actions)
also increases the precision of pattern matching. As an example, GAP AGENT pat-
tern are designed to find statements expressing the lack of a solution (“no pa-

pers/articles/studies describe a solution to the problem. . . ”). But when GAP AGENT

patterns (e.g. “no articles”) are applied without syntactic restrictions (i.e. anywhere
in the text), the error rate is high: 5 out of the 13 GAP AGENT occurrences in our cor-
pus were erroneous. The problem is polysemy: “article” can mean article-in-a-journal
(the interpretation intended here), or it can also mean the grammatical article (“a” or
“the”). If we, however, search for GAP AGENT patterns only in subject positions (as
determined by our heuristics), we reduce the error due to polysemy completely, and
we get 9 out of 9 occurrences with the correct meaning.

For the practical implementation, we made the decision to give grammatical
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subjects (or by-objects in passive sentences) a special status by encoding them in fea-
ture Ag-1; we disregard grammatical patients (typically direct objects) even though in
many cases the information contained in objects is potentially relevant too (“we solve

the problem of. . . ”). However, we feel that the robust recognition of subjects (agents)
and semantic verbs (agents), as in our approach, is a workable middle ground between
shallow and deep text representation.

Agents (Ag-1): Agent-hood should be a good indicator of Argumentative Zoning,
as it is related to attribution of authorship, which is a defining factor in basically
all of our categories. The main agent groups are US AGENT, GENERAL AGENT and
THEM AGENT.

Authors often have to refer to themselves; we call this agent class US AGENT.
The terms “I”, “we” and “the first author” all refer to this class. Personal pronouns in
1st person (“I” and “we”) are an important help. The Roman number 1, can, however,
be mistaken for the pronoun “I”, as in the following erroneous example:

� AGENT TYPE=“US AGENT” � I � /AGENT � is an interpretation iff� AGENT TYPE=“US AGENT” � I � /AGENT � is a triple � EQN/ �
(S-21, 9408003).

As we do not check for subject-verb agreement, such errors cannot be avoided
in our processing, but they do occur only rarely.

There are also cases where the explicit marking of agenthood might be decep-
tive. A sentence starting with “we” might occasionally have a different function from
describing own work. It might be used to clarify notation, to draw preliminary con-
clusions, to direct the attention of the reader to some non-obvious fact or to explain
the presentational form in which an idea (possibly attributed to somebody else) will be
presented in the article.

For example, authors might state in one sentence that researcher X has intro-
duced a particular algorithm. The next sentence might state that “We will demonstrate

how the algorithm works by way of example”—followed by a long (unmarked) de-
scription of the algorithm. It is clear to humans that these sentences are attributed to X,
and not to the authors. A simple algorithm which assumes that non-marked sentences
always carry the status that the last marked sentence displayed will, however, lead to
the wrong guess that the long segment is attributed to the authors.

Distinguishing previous own work from the current approach is a difficult case.
After such previous own work has been introduced with a self citation, most authors
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use a 1st person pronoun to refer to it, but some authors use a 3rd person pronoun (par-
ticularly if the cited paper is co-authored). However, we found no 3rd singular pronom-
inal reference to own previous work in our corpus. The use of 3rd person pronomina
might have to do with the instructions for double-blind reviewing of papers: The in-
structions specifically state that citations of own previous work should not reveal the
identity of the author, and many authors obviously did not not change the pronomina
after the paper was accepted.

There is a real problem if the description of own previous work is directly
followed by a description of the current work in the paper, and if the authors do not
use an explicit formulaic signal (“in this paper”). In this case, it is almost impossible
to guess where in the text “us” stops to mean “us, previously” and begins to mean “us,

now”.
Noun phrases with a possessive 1st person determiner (“our” or “my”) also in-

dicate own work, if the head of that noun phrase is a prototypical solution (e.g. “theory,

approach, method, algorithm”), as the authors’ approach or solution is often equated
with the players “US”. The solution type list is also used for the METHOD pattern above
in Formu. Our list of solution nouns is given in appendix D.4.

When trying to find mentions of “THEM AGENT” in text, the following patterns
lend themselves well:

� Authorial citations are the best indication of a THEM AGENT.

� The names of other researchers is an equally good indication of a THEM-
AGENT. In our implementation, author names are recognized and are annotated
before processing.

� 3rd person possessive pronoun plus solution nouns (“their system”).

� Personal 3rd pronouns can refer to THEM AGENTs, particularly after formal
references (and if the grammatical number is right). However, 3rd person per-
sonal pronouns might just as well refer to other things: Singular pronouns often
refer to fictional characters in the example sentences. The plural pronoun “they”
can refer to any plural object in the research world, e.g. rules, formulae or trees.

� A demonstrative pronoun plus a solution noun (“this approach”) is ambiguous
between a reference to US AGENT and to THEM AGENT.
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When trying to find mentions of “THEM-GENERAL” in text, the patterns we are
looking for are quite formulaic.

� Some expressions follow the pattern “general people in the field”. We use a list
of professions, e.g. “workers, linguists, computer scientists, researchers. . . ”
and allow for syntactic variations, e.g. modification with typical adjectives.

� Other expressions follow the pattern “previous papers”. We use a list of entities
like “article, paper, work, research” and allow for syntactic variations. All these
groups of nouns can be found in appendix D.4.

� Yet other expressions are variations of the pattern “traditional solutions in the

field”. We use the aforementioned list of solution types.

Figure 5.7 lists the agent types we distinguish. Rather than just the
agent types US AGENT, THEM AGENT and GENERAL AGENT and a fourth type
US PREVIOUS AGENT, there are altogether 13 types. Some of these are non-personal
(pseudo) agents like aims, problems, solutions, absence of solution, or textual
segments: OUR AIM AGENT; PROBLEM AGENT; SOLUTION AGENT; GAP AGENT;
TEXTSTRUCTURE AGENT (“this section”). In other agent types the syntactic form
does not allow to determine the referent unambiguously, e.g. because of pronominal

Ag-1: Agent Types

Type Example
US AGENT we
REF US AGENT this paper
OUR AIM AGENT the point of this study
AIM REF AGENT its goal
US PREVIOUS AGENT the approach given in � REF SELF=YES/ �
REF AGENT the paper
THEM PRONOUN AGENT they
THEM AGENT his approach
GAP AGENT none of these papers
GENERAL AGENT traditional methods
PROBLEM AGENT these drawbacks
SOLUTION AGENT a way out of this dilemma
TEXTSTRUCTURE AGENT the concluding chapter

Figure 5.7: Types of Agents (Feature Ag-1)
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or deictic anaphora (“this approach”). Such forms are clustered together into ambigu-
ity classes with a lower confidence level: REF US AGENT, THEM PRONOUN AGENT,
AIM REF AGENT and REF AGENT. The 168 agent patterns we use are given in ap-
pendix D.2 (p. 339).

It is possible that the agent patterns appear in a position other than subject
position, in which case they still carry some information, even if they are not the agents.
In this case, they are reported under the Formu feature; the 13 Ag-1 classes are thus
added as values to the 20 Formu types, resulting in a total of 33 values for the feature
Formu.

Actions (Ag-2): This section discusses a classification of verbs into semantic classes
which assist Argumentative Zoning. Verbs are not frequently used in NLP experiments,
in contrast to nouns. Klavans and Kan (1998) are an exception in that they use verbal
classes for document classification according to text type and event. They use Lev-
in’s (1993) alternation classes and found that occurrence of communication verbs and
agreement verbs correlated with text type and/or event (e.g. opinion pieces vs. docu-
ments about legal cases or mergers). In contrast to ours their work looks at large text
units (documents) whereas we are interested in using verb information per sentence.

Negation is a phenomenon which should be recognized—there is an essential
difference between the action of “does not solve” and “solves”. Not understanding
this difference would deliver the opposite interpretation to the one intended and thus
undermine the core of our shallow selective text-understanding task. We heuristically
determine if a verb is negated or not.

We use a manually constructed verb lexicon for verb classification, cf. fig-
ure 5.8. The semantics of these verbs mainly comes from the argumentative moves
defined in section 3.2, which are concerned with similarity, contrast, competition, pre-
sentation, argumentation and textual structure. We will describe them in the following:

PRESENTATION ACTIONs include verbs like present, report, state, often re-
ferred to as communication verbs. Myers (1992) performs a pragmatic analysis of such
verbs in combination with knowledge claims; Thomas and Hawes (1994) analyze such
verbs in medical texts, and Thompson and Yiyun (1991) look at presenting verbs in the
context of citations and positive/negative evaluation.

Explicit signalling of the research process ahead is another frequent phe-
nomenon. Research goals can be introduced by stating an interest in a certain research
question (INTEREST ACTION; “aim to”, “attempt to”) or by stating some involve-
ment or affect towards the solving of a problem (AFFECT ACTION; “seek”, “want”
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and “wish”). Direct argumentation verbs (ARGUMENTATION ACTION) include “ar-

gue”, “disagree” and “object to”.
In statements about problem-solving processes (cf. section 3.2.4), verbs of

problem introduction abound (PROBLEM ACTION). These are the ones which state
that a situation is problematic. Examples for verbs in this class are “fail”, “degrade”,

“overestimate”, and “waste”. If there is a lack or need of something, this often
has the same semantics (NEED ACTION; verbs like “lack”, “need”, “be void of”).
Problem-solving actions (SOLUTION ACTION) indicate that a solution has been found
(“solve”, “circumvent”, “mitigate”). Contrast between approaches might be expressed
overtly with CONTRAST ACTION verbs like “clash”, “contrast with”, and “distin-

guish”. BETTER SOLUTION ACTIONs state that one solution solves the problem better
than another. Examples include “outperform” and “increase”). Comparison actions
(COMPARISON ACTION) draw a direct comparison between own and rival approaches
(“compare with”, “test against”). Display-of-awareness verbs (AWARENESS ACTION)
like “know” can be used to show that there is a gap in the literature, or that the own
task is done for the first time, as in the phrase “we know of no approach which. . . ”.

There is a range of ways of stating that aspects of a solution are borrowed from
another one. CONTINUATION ACTIONs include “base on”, “borrow”, “take as our

starting point”. Another way of stating research continuity is to state the simple use of
another solution (USE ACTION; “employ”, “use”); this can be combined with a state-
ment of which aspect of the other solution was changed (CHANGE ACTION; “transfor-

m”, “change”). In some cases, similarity between solutions (SIMILARITY ACTION) is
stated as a signal for intellectual ancestry (“resemble”, “be similar”).

There are generic, prototypical RESEARCH ACTIONS which can be predicted
from the discipline (e.g. “analyze”, “conduct”, “define” and “observe”). Many other
such actions are document specific, describing the creative inventive step of the article.
They can therefore not be predicted. We also look for TEXTSTRUCTURING ACTIONS

such as “outline” and “structure”.
The action lexicon contains a total of 365 verbs; it is reproduced in ap-

pendix D.3 (p. 343). This lexicon also contains phrasal verbs and longer id-
iomatic expressions (e.g., “have to” is a NEED ACTION; “be inspired by” is a CON-
TINUE ACTION).
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Ag-2: Action Types

Type Example Type Example

AFFECT we hope to improve our
results

NEED this approach, however,
lacks. . .

ARGUMENTATION we argue against a
model of

PRESENTATION we present here a
method for. . .

AWARENESS we are not aware of at-
tempts

PROBLEM this approach fails. . .

BETTER SOLUTION our system outperforms
. . .

RESEARCH we collected our data
from. . .

CHANGE we extend 	 CITE/ 
 ’s
algorithm

SIMILAR our approach resembles
that of

COMPARISON we tested our system
against. . .

SOLUTION we solve this problem
by. . .

CONTINUATION we follow Sag (1976) . . . TEXTSTRUCTURE the paper
is organized. . .

CONTRAST our approach
differs from . . .

USE we employ Suzuki’s
method. . .

FUTURE INTEREST we intend to improve . . . COPULA our goal is to. . .
INTEREST we are concerned with

. . .
POSSESSION we have three goals. . .

Figure 5.8: Types of Actions (Feature Ag-2)

5.3. A Prototype System

We have implemented a statistical and a symbolic Argumentative Zoning prototype
system. Our corpus is encoded in XML (eXtensible Markup Language). XML, which
provides a universally recognized platform for data representation, also allows the def-
inition of customized semantic labels. This helps in the encoding of the document’s
semantics, rather than just layout information.

Processing is based on a Unix pipeline. Different phases of the pipeline add
different information (in the form of XML elements and attributes) to an intermediate
XML representation of the document.

The corpus collection and conversion work was initially conducted in summer
1996 by myself and Byron Georgantopoulos, as a joint effort to provide data for differ-
ent projects with the summarization of academic papers. The final conversion pipeline
uses a different implementation, based on the TTT tools available from the HCRC
Language Technology Group (Grover et al., 1999). A version of the corpus collected
during the current work is now available from Tipster SUMMAC (1999).
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5.3.1. Corpus Encoding

The first step in the endeavour to collect a corpus is the design of a corpus encoding
format. On the one hand, one wants to encode as much of the original information as
possible. It is desirable to standardize the encoding such that it expresses the docu-
ment semantics, and abstract away from the physical and typesetting information the
data comes mixed with. Our XML encoding provides rich information about struc-
tural information, e.g. sentences, paragraphs and division structure. The author-written
summary is marked as such. Additional mark-up includes titles, headlines, sentences,
formal citations, author names and the reference list at the end.

Another criterion is data consistency. LATEX, the source encoding of our data, is
unfortunately a very powerful language, offering a wide range of syntactic constructs.
Therefore, similar document semantics might be expressed syntactically differently in
different papers (in the worst case even in the same paper), but our encoding should
treat them alike.

The two goals of information-richness and data consistency often work against
each other. For example, citation handling can be automated in LATEX with the com-
mand \cite, but authors could decide to just type the author name and year. Similarly,
cross references can be expressed with the command \cref; however, some authors
prefer to directly state the actual numerical cross reference. Ideally, our representation
should mark up both facts: the fact that the string “2.2” refers to a cross reference (type
information), and that its identity is “2.2” (string information). However, if authors
used \cref, we do not have the identity of the string (as it is only determined at run-
time of the LATEX system), whereas the textual variant does not give us the information
that the string’s type is a cross reference. We decided to use the structural information
in preference to the string information—in general, we preferred consistency above in-
formativeness in conflict cases. This means that in our encoding type/structural infor-
mation is captured consistently, however sometimes at the price of a small information
loss.

There are some design decisions which were influenced by the fact that corpus
collection took place in collaboration with a project that was less interested in structural
features than the current thesis is. The loss of captions is an example of a wrong but
non-reversible design decision. It was decided in an early processing stage to remove
captions of images and tables. Part of the reason for doing so was data consistency,
as captions cannot always be determined automatically. We realized only later that
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captions often contain information particularly useful for summarization.
It was also decided to remove footnotes, a decision which we do not regret. As

textual material contained in footnotes is marked by the author as less central to the
overall flow of the argumentation, a summarization system might decide to ignore it.
However, for a full representation of a paper, which is not attempted here, footnote text
should be kept. Footnote information might be important if one tries to assess relative
importance of citations, as some marginal references appear only in footnotes.

Appendix B.1 shows the example paper in XML format after preprocessing,
before feature determination. We will now describe in detail how the document se-
mantics of the papers are encoded in XML. Appendix A.1 gives the DTD (Document

Type Definition) for our corpus. A DTD is a BNF-style description of the hierarchical
and logical structure of an XML file. As DTD syntax is cryptic and might be unknown
to the reader, the following list explains the components in English.

� Title, authors and bibliographic information is marked by elements � TITLE  ,
� AUTHOR  , � AUTHORS  , � FILENO  , � APPEARED 

� A unique citation form is assigned to the document and marked as
� REFLABEL  . The citation form is a mnemonic label consisting of name
and date, and of an optional letter to distinguish references which are ambigu-
ous within the corpus, if needed. The provision of unique citation forms is
important for disambiguation of citations (e.g. for clustering of documents by
bibliographic chaining).

� Divisions: The hierarchical embedding of text segments is encoded by the
� DIV  element, which is recursive. The DEPTH attribute indicates the depth
of embedding of a division. Each division must start with a � HEADER  ele-
ment.

� Headlines are marked as � HEADER  elements, containing (tokenized and
POS-tagged) text.

� Appendices: If appendices occur at some other place in the paper, they are
physically moved to the point directly before the reference list. They do not
receive preferential treatment; instead, they are treated like all other divisions.
The fact that they are appendices can only be read off the headline.

� Paragraphs: Paragraphs are marked as element � P  .
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� Sentences: Sentences are separated and marked as � S � elements. This is im-
portant, as sentences are the base level selection and analysis unit.

� Abstract: The abstract is marked as � ABSTRACT � , and sentences of the ab-
stract are marked as elements � A-S � .

� Correspondences between abstract and document sentences are marked by a
double link: attribute DOCUMENTC in abstract sentences, and attribute AB-
STRACTC in document sentences. This correspondence is determined by a
similarity finding algorithm and manual checking (cf. section 4.1.2.2).

� Images: Images are removed and the place is marked by an empty � IMAGE/ �
element. In cases where the LATEX verbatim environment was used, it was
manually decided whether or not such material counts as an image or as text.

� Tables: Tables are removed (often automatically, sometimes manually), and
their position is marked by an empty � IMAGE/ � element.

� Bullet point lists: Bullet items are manually marked up as such by as an optional
attribute of sentences (TYPE=ITEM). Paragraphs as well as sentences can be
bullet items.

� Cross references: Cross references are automatically or manually marked as
empty elements � CREF/ � . Manual effort was needed to find corresponding
numbers (“figure 1”) and replace them by � CREF/ � . For consistency reasons,
we erased the numbers themselves, as they were not in all cases available.

� (Linguistic) example sentences are manually marked up as � EXAMPLE � .

� Equations: any kind of mathematical formula that could not be expressed in
ASCII was manually (sometimes automatically) replaced by empty element
� EQN/ � . There might be cases of inconsistencies with formulas like P(A,B)
which might be expressed as ASCII or as as � EQN/ � , depending on whether
the author used the LATEX math mode or not.

� Bibliography list: During bibliographic processing, the bibliography list at the
end is marked as � REFERENCE � . It consists of single � REFERENCE �
items, each referring to a formal reference. Within these reference items, names
of authors are marked as � SURNAME � elements, and years as � YEAR � .
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� Formal citations: During preprocessing, formal citations are marked automat-
ically as � REF � wherever the latex command \cite was used; otherwise,
bibliographic processing automatically marks them. Self references are auto-
matically recognized by comparing the names of the author(s) of the paper
with all author names associated with the reference. They are marked using the
attribute SELF.

� Names of other authors: Author names occurring in running text without a data
are marked up as � REFAUTHOR � during the bibliographic processing step.

� Formulaic expressions: if formulaic expressions are recognized during feature
determination, they are marked as � FORMULAIC � , with an attribute speci-
fying the formulaic expression type.

� Agents: if prototypical agents are recognized during feature determination, they
are marked as � AGENT � , with an attribute specifying the agent type.

� Actions: if prototypical actions are recognized during feature determination,
they are marked as � ACTION � , with an attribute specifying the action type.

5.3.2. Preprocessing

We chose all papers from CMP LG which fulfilled the following criteria:

� Date: We collected all papers put on the archive between 04/94 and 05/96.

� Format: The LATEXsource had to be available (in addition to a PostScript ver-
sion of the paper), and the paper had to pass our conversion pipeline automat-
ically; about 20% did not pass or showed too many errors such that manually
correction would have been too inefficient.

� Abstract: The papers had to have an abstract.

� Type: The papers had to be published in the proceedings of the main or student
session, or of a workshop of one of the following conferences: The Annual

Meeting of the Association for Computational Linguistics (ACL), The Meet-

ing of the European Chapter of the Association for Computational Linguistics

(EACL), the Conference on Applied Natural Language Processing (ANLP),
and the International Conference on Computational Linguistics (COLING).
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As a result of being published in conference or workshop proceedings, the
length of the papers was restricted by the publishing rules of the corresponding pro-
ceedings. The PostScript versions of the papers are between 3 and 10 pages long; most
papers are between 6 and 8 pages long.

The corpus consists of 333,634 word tokens (counting punctuation as a token),
the average number of tokens per paper was 4170, ranging from 1301 to 7635 tokens.
The total number of document sentences is 12471, average per paper is 156, ranging
from 45 to 322. The total number of abstract sentences is 356, average per paper is
4.5, ranging between 2 and 13 sentences.

Our papers’ original format was LATEX source. The first processing steps are a
text format conversion from LATEX source to XML format: LATEX source is converted
into HTML with the program Latex2html (Drakos, 1994; Latex2Html, 1999); the re-
sulting HTML format is then transformed into XML format with a range of perl

scripts. The pipeline is fully implemented, but some manual correction effort is still
needed as the pipeline works imperfectly. This is due to the difficulty of deducing
semantic markup from layout information:

� LATEX is a rich language, offering a wide range of syntactic constructs which
are difficult to standardize.

� Latex2html has certain weaknesses, e.g. the inability to deal with LATEX macros.

� Our XML encoding contains some information which no automatic processing
can perform yet (e.g. the determination of (linguistic) example sentences in
text).

As a result of the preprocessing/conversion step, text is in a format in which
paragraphs are marked up, but words are not separated yet, and sentences are not
marked either. The next step is a pipeline to provide linguistic mark-up, and to de-
termine the values of the features, as described in the next section.

5.3.3. Feature Determination

We will now describe how features are automatically determined in running text. Fig-
ure 5.9 shows the single steps of processing; it also shows which feature values each
processing step provides.
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Figure 5.9: Feature Determination Steps

We will describe the practical algorithm for determining the value for each fea-
ture. We will also give contingency tables for each feature. Whenever 100% correctness
of a feature cannot trivially be assumed, we have also performed an evaluation of the
reliably of the heuristics used.

5.3.3.1. Tokenization

Tokenization is the first step in our feature determination pipeline. We used software
distributed as the TTT (Text Tokenization) System by the HCRC Language Technology
Group Grover et al. (1999). The tokenization grammar was written by Claire Grover;
it performs separation of word tokens from the ASCII stream. Tokenization provides
information needed for feature Cont-1.
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Cont-1 AIM BAS BKG CTR OTH OWN TXT Total
0 129 193 658 537 1801 7517 172 11007
1 78 33 62 59 213 919 51 1415
Total 207 226 720 596 2014 8436 223 12422

Figure 5.10: Contingency Table for tf/idf Feature (Cont-1)

In order to calculate the tf/idf score wi � j, we use the following formula:

wi � j � fi � j � log � N
ni �

wi � j: weight for a word ki in document d j
ni: number of documents containing word ki
fi � j: frequency of word ki in document d j
N: number of documents in collection

The n top-scoring words according to the tf/idf method are chosen as content
words; sentence scores are then computed as a weighted count of the content words in
a sentence, meaned by sentence length. The m top-rated sentences obtain score 1, all
others 0. We received best results with n � 10 and m � 40. The contingency table is
given in figure 5.10.

5.3.3.2. Headline Matching

Headlines are used for two features in our implementation, Struct-3 and Cont-2 (cf.
figures 5.11 and 5.12 for contingency tables).

For the feature Struct-3, we pattern match the headline against 89 patterns
which correspond to 16 prototypical headlines. If there is a hierarchical nesting of
divisions, the headlines of the deeper embedded sections are considered first. If no
pattern matches, the value Non-Prototypical is assigned. We can see that more than
45% of all sentences (5576/12422) are not covered by prototypical section headings,
i.e. they cannot be easily associated with a rhetorical section. This is in agreement with
our argumentation in section 3.1.

Cont-2 is the title method. In our implementation, title scores are determined
as the mean frequency of n (or less) title word occurrences (excluding stop-list words).
If the title contains more than n non-stoplist words, the n top-scoring words according
to the tf/idf method are chosen. Again, the m top-scoring sentences receive the value 1,
all other sentences 0. Best results in this case were received with n=10 and m=18. One
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Struct-3 AIM BAS BKG CTR OTH OWN TXT Total
Introduction 102 48 382 185 434 368 89 1608
Implementation 1 18 5 24 262 791 9 1110
Example 1 10 16 27 112 459 6 631
Conclusion 62 14 4 39 27 454 3 603
Result 2 7 33 480 6 528
Evaluation 4 3 1 10 27 427 5 477
Solution 1 7 18 21 78 280 4 409
Experiment 11 4 9 19 306 1 350
Discussion 4 4 3 19 19 277 7 333
Method 1 7 4 26 40 163 6 247
Problems 3 7 14 9 20 95 1 149
Related Work 2 3 5 41 75 19 1 146
Data 1 6 102 109
Further Work 1 71 72
Problem Statement 1 1 5 1 2 42 52
Limitations 1 1 4 9 5 2 22
Non-Prototypical 25 89 258 174 850 4097 83 5576
Total 207 226 720 596 2014 8436 223 12422

Figure 5.11: Contingency Table for Headline Feature (Struct-3)

Cont-2 AIM BAS BKG CTR OTH OWN TXT Total
0 128 161 571 437 1546 6201 178 9222
1 79 65 149 159 468 2235 45 3200
Total 207 226 720 596 2014 8436 223 12422

Figure 5.12: Contingency Table for Title Feature (Cont-2)

variant of the method additionally takes words occurring in all headlines into account,
but we received better results using only title words.

5.3.3.3. Bibliographic Processing

Bibliographic processing determines information important for features Cit-1,

Cit-2 and Cit-3. For the bibliographic processing we used a grammar written in
the specific syntax of the program fsgmatch, which is provided with TTT. The gram-
mar was originally written by Colin Mattheson; we changed it to suit our purposes.
Bibliographic processing includes the following processing:

� The reference list at the end is parsed according to a grammar for bibliographic
entries. This grammar anticipates typical citation styles. Author names and
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dates are marked up as such, and a � REFLABEL � element is constructed
for each bibliographic entry, based on this information.

� The last names of all cited authors are put into a special lexicon, and the body
of the text is searched in a second pass for these names.

� If the last names appear in a typical citation context (i.e. with a year, with or
without brackets), they are wrapped as XML-elements � REF � . If they occur
on their own, they are marked as � REFAUTHOR � . If the LATEX command
\cite was used, nothing needs to be done, as � REF � elements are already
marked.

� Each reference is checked for overlap of one of the cited authors with the au-
thors of the article (by comparison of all cited authors with the � AUTHOR �
field). If such an overlap is determined, the reference is marked as a self cita-

tion. That means that the common abbreviation “et al.” in citations in running
text is resolved into all cited author names. This piece of information is only
available from the reference list (even for human interpretation).

After all � REF � and � REFAUTHOR � in a sentence have been marked up,
Cit-1 reports the existence of either of these (if a sentence contains both � REF � and
� REFAUTHOR � , the value Citation is chosen, cf. contingency table in figure 5.13).
Cit-2 reports whether or not a reference is a self reference, cf. contingency table in
figure 5.14). In cases where a self citation and a non-self-citation appear in one sen-
tence, the self citation is given preference. Cit-3 gives the location of the reference(s)
in order to distinguish authorial from parenthetical citations, cf. contingency table in
figure 5.15. In cases of more than one reference in a sentence, “Citation-Beginning” is
given preference over both “Citation-Middle” and “Citation-Ending”, and “Citation-
Ending” is given preference over “Citation-Middle”.

Cit-1 AIM BAS BKG CTR OTH OWN TXT Total
Citation 17 163 79 96 482 290 5 1132
Author name 7 18 1 52 128 71 2 279
No Citation 183 45 640 448 1404 8075 216 11011
Total 207 226 720 596 2014 8436 223 12422

Figure 5.13: Contingency Table for Citation Feature (Cit-1)
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Cit-2 AIM BAS BKG CTR OTH OWN TXT Total
Citation to Other

Work
12 112 75 78 391 240 3 911

Citation to Own
Previous Work

5 51 4 18 91 50 2 221

No Citation 190 63 641 500 1532 8146 218 11290
Total 207 226 720 596 2014 8436 223 12422

Figure 5.14: Contingency Table for Citation Type Feature (Cit-2)

Cit-3 AIM BAS BKG CTR OTH OWN TXT Total
Citation-Beginning 11 7 16 110 24 168
Citation-Middle 5 61 13 50 153 97 379
Citation-Ending 12 91 59 30 219 169 5 585
No Citation 190 63 641 500 1532 8146 218 11290
Total 207 226 720 596 2014 8436 223 12422

Figure 5.15: Contingency Table for Citation Location Feature (Cit-3)

5.3.3.4. Sentence Boundary Disambiguation

Determining sentence boundaries is important for each single feature, as sentences are
our units of classification. However, some feature values can be determined directly
after this step, namely the features Length (Sentence Length), Struct-1 (Position in
Section), Struct-2 (Position in Paragraph), and Loc (Absolute Location).

We use the sentence boundary disambiguator provided with TTT (ltstop) and
add some perl code to assign identifiers to sentences. We also had to write some code
to mend some of the systematic mistakes the automatic method performed. We fixed
such errors with symbolic rules. For example, in the following sentence the system
failed to recognize a sentence break after a variable consisting of a single letter:

 S ! [ "#"#" ] we make use of parameters (“dependency parameters”)  EQN/ !
for the probability, given a node h and a relation r, that w is an r-dependent of
h. Under the assumption that the dependents of a head are chosen indepen-
dently from each other, the probability of deriving c is:  %$ S !

(S-190, 9408014)

Figures 5.16, 5.17, 5.18 and 5.19 give the contingency tables for features
Length, Struct-1, Struct-2 and Loc, respectively. For feature Length, the value
0 means that the sentence was shorter than a fixed threshold (here: 15 tokens including
punctuation), 1 means that it was longer than the threshold.
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Length AIM BAS BKG CTR OTH OWN TXT Total
0 31 41 190 105 554 2507 102 3530
1 176 185 530 491 1460 5929 121 8892
Total 207 226 720 596 2014 8436 223 12422

Figure 5.16: Contingency Table for Sentence Length Feature (Length)

Struct-1 AIM BAS BKG CTR OTH OWN TXT Total
First third 24 23 195 104 366 1174 22 1908
Second third 36 48 190 169 736 2518 25 3722
Last third 22 25 64 118 307 1600 27 2163
First sentence 57 35 92 19 89 332 32 656
Last sentence 15 14 7 25 51 487 40 639
Second or third sentence 33 43 129 55 205 793 26 1284
Second-last or third-

last sentence
20 38 43 106 260 1532 51 2050

Total 207 226 720 596 2014 8436 223 12422

Figure 5.17: Contingency Table for Section Structure Feature (Struct-1)

Struct-2 AIM BAS BKG CTR OTH OWN TXT Total
Initial 117 92 267 135 601 2532 73 3817
Medial 56 87 306 289 971 3779 68 5556
Final 34 47 147 172 442 2125 82 3049
Total 207 226 720 596 2014 8436 223 12422

Figure 5.18: Contingency Table for Paragraph Feature (Struct-2)

For the feature Struct-1, the section is separated into three equally sized por-
tions (measured in sentences). In those cases where a sentence is in a specific position
within the section, the resulting values are “overwritten” over the tri-section values.

As far as feature Struct-2 is concerned, if a paragraph contains only one sen-
tence, that sentence receives the value Initial. If a paragraph contains only two sen-
tences, the first sentence receives the value Initial and the second the value Final.

Values of the feature Loc are determined by dividing the sentence number of
the document by 20, and assigning values according to the diagram in figure 5.5. Doc-
ument areas corresponding to A, B, C, D, I, J are one twentieth of the document in
length, E, G, H one tenth, and value F two fifth.
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Loc AIM BAS BKG CTR OTH OWN TXT Total
A 51 18 261 69 167 70 22 658
B 30 18 114 94 186 146 29 617
C 24 20 83 55 199 216 24 621
D 12 12 82 41 160 289 27 623
E 17 25 60 52 363 682 38 1237
F 7 81 104 178 680 3864 66 4980
G 2 11 12 21 121 1052 10 1229
H 6 19 1 30 62 1130 4 1252
I 23 11 31 43 514 2 624
J 35 11 3 25 33 473 1 581
Total 207 226 720 596 2014 8436 223 12422

Figure 5.19: Contingency Table for Absolute Location Feature (Loc)

5.3.3.5. POS-Tagging

Part of speech tagging provides vital information for complex pattern matching algo-
rithms further on in the pipeline (Formulaic pattern matching, Agent Matching, Action
Matching). It is performed using the program ltpos, distributed with TTT and writ-
ten by Andrei Mikheev. It assigns one of the tags of the BROWN tagset (Francis and
Kucera, 1982) to each token in text.

As later processing heuristics depend on the correct determination of finite
verbs, we needed to determine the error rate of POS tagging. We manually checked
the assignment of finite verbs, i.e. the tags VBP, VBZ and VBD on a random sample
of 100 sentences containing finite verbs. We compared the automatic POS-tag with the
POS-tag we thought should have been assigned. In the 100 sentences, there were 184
finite verbs, 174 of which the system recognized (recall of 95%). Most of the non-
recognition errors were present verbs which the system erroneously tagged as singular
or plural nouns. The system erroneously tagged an additional 14 tokens as finite verbs
(precision of 93%). These words were mostly past participles in reduced relative clause
constructions. We feel that this is a solid tagging performance, stable enough to base
our further heuristic processing on it.

5.3.3.6. Formulaic Pattern Matching

We have determined a total of 396 formulaic patterns (cf. appendix D.1). As we use a
finite-state replace mechanism, these patterns multiply out to many more actual strings.
The lexical group of @TRADITIONAL ADJECTIVES for example includes 37 ad-
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jectives like classic or long-standing, and this lexical group is contained in 29 patterns.
There are 44 different lexical groups (cf. the concept lexicon appendix D.4). Some of
the patterns use POS place-holders which are checked against the POS-tags of words
in running text.

Additionally, the 168 agent patterns are also considered as formulaic patterns,
wherever they do not occur as the subject of the sentence. The decision to include these
into the Formu feature was explained in section 5.2.2.2.

Pattern matching procedures on such a large scale are slow. We reduce the num-
ber of comparisons necessary with a trigger mechanism: only to those sentences con-
taining a trigger (a rare word which covers as many patterns as possible) are searched,
and they are searched only for those patterns which do contain the trigger. Triggers are
marked by the signal & directly in the pattern.

Figure 5.20 gives the contingency table for Formu. It lists first occurrence of a
formulaic pattern in the text. The restriction to one value per sentence is necessary for
the Naive Bayes classifier.

5.3.3.7. Syntactic Processing

Syntactic processing determines the verbal features (Syn-1, Syn-2, Syn-3) and
negation. It also determines the base form of the semantic verb, to be used for feature
Ag-2. The first step of the algorithm is the determination of finite verbs in the sentence,
information which is made available by the POS-Tagging. The next step is a finite state
algorithm which checks left and right context of the finite verb for verbal forms of in-
terest which might make up more complex tenses. Such forms are searched within the
assumed clause boundaries, and additionally within a fixed window of 6 to the right of
the finite verb. Negation is determined by a simple heuristic that searches for a list of
32 negation-items in the surrounding window of 5 items. The list of negation-items is
given in appendix D.4 (p. 345).

The syntactic heuristics can contain errors, either due to errors in our algorithm
or due to wrong POS-Tagging. We performed an evaluation on the aforementioned 100
sentences. Counting success and failure on the 174 finite verbs correctly determined
by POS-Tagging, we found that the heuristics for negation and modality worked
without any errors in our sample (100% accuracy), that there were 2 errors in the tense
heuristics (99% accuracy) and 7 errors in the voice heuristics, 2 of which are due to
POS-Tagging errors (where a past participle was not recognized in a passive sentence).
The remaining 5 voice errors correspond to a 98% accuracy. Voice errors are particu-
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Formu AIM BAS BKG CTR OTH OWN TXT Total
GAP INTRODUCTION 1 1 6 8
OUR AIM 6 2 8
DEIXIS 1 1 2 3 45 3 55
SIMILARITY 2 3 1 1 7 4 18
COMPARISON 1 9 6 6 22
CONTRAST 11 41 17 100 169
DETAIL 1 1 1 36 39
METHOD 28 17 16 14 57 117 10 259
PREVIOUS CONTEXT 1 2 3
FUTURE 1 20 21
AFFECT 6 6
PROBLEM 10 3 12 62 87
SOLUTION 1 7 4 29 81 3 125
IN ORDER TO 2 1 3 1 10 51 68
POSITIVE ADJECTIVE 27 23 86 88 185 936 16 1361
NEGATIVE ADJECTIVE 11 9 65 133 143 680 2 1043
THEM FORMULAIC 4 1 5
AIM REF AGENT 13 2 20 7 26 121 2 191
TEXTSTRUCTURE AGENT 2 3 5 21 83 114
GAP AGENT 1 3 4
REF AGENT 9 27 31 43 138 468 44 760
GENERAL AGENT 2 19 14 50 49 1 135
THEM PRONOUN AGENT 3 2 25 22 56 210 4 322
US PREVIOUS AGENT 2 1 3
REF US AGENT 59 16 2 8 6 63 6 160
US AGENT 21 21 40 32 74 959 24 1171
COMPARISON FORMULAIC 1 9 6 6 22
THEM AGENT 5 53 16 29 169 86 4 362
— 17 40 364 142 987 4262 21 5833
Total 207 226 720 596 2014 8436 223 12422

Figure 5.20: Contingency Table for Formulaic Expressions Feature (Formu)

larly undesirable, as they have knock-on effects on agent determination. An exam-
ple for such a voice error is the following sentence (underlined; syntactic information
about clause-like units is attached to the respective finite verb):

At the point where John ' FINITE TENSE=“PRESENT” VOICE=“ACTIVE”

MODAL=“NOMODAL” NEGATION=“0” ACTIONTYPE=“0” ( knows ' /FINITE ( the truth
' FINITE TENSE=“PRESENT PERFECT” VOICE=“PASSIVE” MODAL=“NOMODAL” NEGA-

TION=“0” ACTIONTYPE=“0” ( has ' /FINITE ( been processed, a complete clause
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)
FINITE TENSE=“FUTURE PERFECT” VOICE=“ACTIVE” MODAL=“NOMODAL” NEGA-

TION=“0” ACTIONTYPE=“0” * will ) /FINITE * have been built. (S-15, 9502035)

This error was caused by the fact that the threading of auxiliaries in our algo-
rithm did not foresee this particular combination of voice and tense. Note that apart
from the voice error, everything else is correct. The high level of accuracy achieved in
the syntactic processing is not a trivial result, as the processing encompasses compli-
cated combinations of voice, complex tenses and modal auxiliaries, as exemplified by
the following corpus example:

The actor )
FINITE TENSE=“PRESENT CONTINUOUS” VOICE=“ACTIVE” MODAL=

“NOMODAL” NEGATION=“0” ACTIONTYPE=“0” * is )
/FINITE * always running

and )
FINITE TENSE=“PRESENT” VOICE=“ACTIVE” MODAL=“NOMODAL” NEGATION=“0”

ACTIONTYPE=“AFFECT” * decides )
/FINITE * at each iteration whether to

speak or not (according to turn-taking conventions); the system )
FINITE

TENSE=“PRESENT” VOICE=“ACTIVE” MODAL=“NOMODAL” NEGATION=“NEGATED”

ACTIONTYPE=“NEED” * does ) /FINITE * not need to wait until a user utterance)
FINITE TENSE=“PRESENT” VOICE=“PASSIVE” MODAL=“NOMODAL” NEGATION=“0”

ACTIONTYPE=“RESEARCH” * is )
/FINITE * observed to invoke the actor, and)

FINITE TENSE=“PRESENT” VOICE=“ACTIVE” MODAL=“MODAL” NEGATION=“NEGATED”

ACTIONTYPE=“0” * need )
/FINITE * not respond to user utterances in an

utterance by utterance fashion. (S-137, 9407011)

Contingency tables for features Syn-1, Syn-2 and Syn-3 can be found in fig-
ures 5.21, 5.22 and 5.23, respectively.

It can be the case that more than one finite verb occurs in a sentence, but our
main classification method allows only one feature value per feature. All other factors
being equal, we prefer verbs in the beginning of the sentence, for two reasons: in the
case of coordination, we assume that the more important material might have been
presented first; in the case of subordination, we assume that matrix verbs carry more
information with respect to meta-discourse. We choose the values associated with the
first verb for which Ag-1 and Ag-2 returns a non-zero value, or, if not applicable, those
for which Ag-1 returns a non-zero value, or, if not applicable, those for which Ag-2

returns a non-zero value. Failing all of these alternatives, we chose the values of the
first verb in the sentence.
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Syn-1 AIM BAS BKG CTR OTH OWN TXT Total
Active 175 149 407 446 1214 5079 168 7638
Passive 20 62 109 76 363 1286 39 1955
NoVerb 12 15 204 74 437 2071 16 2829
Total 207 226 720 596 2014 8436 223 12422

Figure 5.21: Contingency Table for Voice Feature (Syn-1)

Syn-2 AIM BAS BKG CTR OTH OWN TXT Total
Present Tense 134 158 444 410 1265 5033 177 7621
Present Continuous 4 8 6 18 99 1 136
Past Tense 15 35 23 66 182 819 6 1146
Past Continuous 2 7 9
Past Perfect 1 7 8
Present Perfect 35 10 33 27 88 185 3 381
Future 11 4 8 13 21 211 20 288
Future Continuous 3 3
Future Perfect 1 1
NoVerb 12 15 204 74 437 2071 16 2829
Total 207 226 720 596 2014 8436 223 12422

Figure 5.22: Contingency Table for Tense Feature (Syn-2)

Syn-3 AIM BAS BKG CTR OTH OWN TXT Total
Non Modal 186 195 422 462 1437 5545 200 8447
Modal 9 16 94 60 140 820 7 1146
NoVerb 12 15 204 74 437 2071 16 2829
Total 207 226 720 596 2014 8436 223 12422

Figure 5.23: Contingency Table for Modal Feature (Syn-3)

5.3.3.8. Action Matching

Action Matching determines the value of feature Ag-2 (contingency table in fig-
ure 5.24). It relies on the processing done in the syntactic processing, which deter-
mines the semantic verb along with the finite verb, and also determines whether or not
negation was present. Depending on the tense, semantic and finite verb can be the same
word. Our algorithm thus performs a distinction between auxiliary and full verb sense
for “have”, “be” and “do”. The base form of the semantic verb is determined and it
is checked if it is contained in the action lexicon.
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Ag-2 AIM BAS BKG CTR OTH OWN TXT Total
Positive

AFFECT 2 5 3 11 68 89
ARGUMENTATION 4 2 2 6 26 62 6 108
AWARE 1 1 2 4
BETTER SOLUTION 1 1 3 9 5 38 57
CHANGE 4 11 13 11 58 187 5 289
COMPARISON 3 1 2 8 5 50 2 71
CONTINUE 2 21 8 1 20 54 106
CONTRAST 1 5 1 19 1 27
COPULA 24 28 156 112 410 1675 6 2411
FUTURE INTEREST 1 4 21 26
INTEREST 35 4 27 19 56 209 11 361
NEED 2 19 21 42 186 270
POSSESSION 2 2 25 16 43 204 292
PRESENTATION 78 25 38 39 196 533 105 1014
PROBLEM 1 10 26 18 86 1 142
RESEARCH 11 29 47 38 181 831 17 1154
SIMILAR 10 2 2 8 17 39
SOLUTION 11 16 31 50 135 455 11 709
TEXTSTRUCTURE 1 3 2 3 14 66 27 116
USE 3 22 26 21 98 341 3 514

Negated
AFFECT 2 1 10 13
ARGUMENTATION 2 2 12 16
AWARE 3 1 4
BETTER SOLUTION 1 1 1 3
CHANGE 2 3 1 10 16
COMPARISON 2 1 3
CONTINUE 1 3 1 5
CONTRAST 1 1
COPULA 3 18 28 34 209 292
FUTURE INTEREST 1 1
INTEREST 4 1 18 23
NEED 1 4 5 26 36
POSSESSION 5 3 3 46 1 58
PRESENTATION 3 4 2 17 26
PROBLEM 2 1 8 11
RESEARCH 4 5 3 53 65
SOLUTION 4 13 4 46 67
USE 2 5 2 14 23
0 24 46 259 124 623 2857 27 3960

Figure 5.24: Contingency Table for Action Feature (Ag-2)
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If the base form is found in the lexicon, its Action Type is returned; otherwise
ActionType 0 is returned (examples for this can be seen in the example sentences on
p. 209, where no negation was detected, and where the only two Actions recognized
were a (negated) NEED ACTION—“the system does not need to wait” and a (passive)
RESEARCH ACTION—“a user utterance is observed”).

In our sample of 100 sentences containing finite verbs, there were no errors
introduced in the action type determination step. Appendix B.7 (p. 300) gives an im-
pression of the output of our algorithm on the example article. Recognized actions are
shown in light blue boxes; the table on p. 301 gives the corresponding action types.

5.3.3.9. Agent Matching

Agent Matching determines the value of feature Ag-1 (contingency table in fig-
ure 5.25). The algorithm is as follows:

1. Start from the next (initially, the first) finite verb in the sentence;

2. Search for the agent either as a by-PP to the right, or as a subject-NP to the left,
depending on the voice associated with the finite verb. The search algorithm
tries to stay within the clause that belongs to the finite verb, i.e. it will not cross
assumed clause boundaries (e.g. commas or other finite verbs).

3. If one of the Agent Patterns matches within that area in the sentence, return the
Agent Pattern and its Agent Type. Else return Agent 0.

4. Repeat Steps 1, 2, 3 until there are no more finite verbs left.

We first evaluated the correctness of the algorithm by randomly taking 100
sentences which contain agent patterns. These 100 sentences contained 111 agents.
Apart from erroneous voice determination (cf. section 5.3.3.7), errors could also po-
tentially be introduced by our heuristic for clauses, which never steps over commas
and is stopped by appositions, for example.

But in 105 of our sample cases, the agent pattern was syntactically correct:
the pattern was matched as prescribed in the pattern, and the matched string agent
covered the entire subject of the sentence (active case) or the by-PP with the agent-
interpretation (passive case). In 5 of the 111 sentences, the pattern was only part of
a subject NP (typically the NP in a post-modifying PP), as in the following examples
(recognized patterns underlined):
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the relations in the models (S-131, 9408014)
the problem with these approaches (S-12, 9504017)

We argue that these cases should not be counted as errors, as they still give
an indication of which type of agents the NP should be associated with. In the one
sentence with a complete error, this error was due to a mistagging at the POS-Stage
(100% precision). No agent pattern that should have been identified was missed (100%
recall). Appendix B.7 also shows the output of the agent recognition for the example
paper (pink boxes).

Ag-1 AIM BAS BKG CTR OTH OWN TXT Total
US AGENT 107 85 53 71 114 1456 93 1979
OUR AIM AGENT 10 1 5 16
THEM AGENT 24 9 56 224 59 372
THEM PRONOUN AGENT 2 31 24 57 232 1 347
GENERAL AGENT 1 13 15 28 34 1 92
US PREVIOUS AGENT 2 3 37 10 52
REF AGENT 10 22 20 56 95 374 9 586
REF US AGENT 34 3 2 3 1 20 4 67
AIM REF AGENT 7 10 1 9 42 69
TEXTSTRUCTURE AGENT 2 1 4 6 59 72
GAP AGENT 5 3 8
SOLUTION AGENT 1 3 5 14 45 3 71
PROBLEM AGENT 6 2 8 60 76
— 35 87 573 354 1423 6090 53 8615
Total 207 226 720 596 2014 8436 223 12422

Figure 5.25: Contingency Table for Agent Feature (Ag-1)

5.3.4. Statistical Classifiers

There are many machine learning algorithms which are able to classify items into
predefined categories, given a set of sentential features. Supervised methods take in-
formation into account which can only be provided externally (the “correct” answer)
whereas unsupervised techniques learn without such external provision of the correct
answer.

For our task, we use a set of supervised methods because we only have a small
set of data (unsupervised methods typically need much more data), and because super-
vised learning provides the convenient built-in feature of a simple intrinsic evaluation.
Also, we follow Kupiec et al. (1995) who have received good results with a simple
classifier for the task of determining global sentence relevance (text extraction).
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P + s , S -F1 .0/0/0/1. Fk 243 P 5 F1 6878797:6 Fk ; s < S = P 5 s < S =
P 5 F1 6878787:6 Fk = >

P 5 s < S = ∏k
j ? 1 P 5 Fj ; s < S =

∏k
j ? 1 P 5 Fj =

P @ s A S BF1 C#D#D#DEC Fk F : Probability that sentence s in the source text is included in sum-
mary S, given its feature values;

P @ s A S F : Probability that a sentence s in the source text is included in sum-
mary S unconditionally; compression rate of the task (constant);

P @ Fj B s A S F : probability of feature-value pair occurring in a sentence which is
in the summary;

P @ Fj F : probability that the feature-value pair occurs unconditionally;
k: number of feature-value pairs;
Fj: j-th feature-value pair.

Figure 5.26: Kupiec et al.’s (1995) Naive Bayesian Classifier

After having determined a baseline performance with a Naive Bayesian classi-
fier, we then use a more sophisticated method to improve the results of classification.
It estimates a better prior probability from the context in terms of the surrounding
categories.

5.3.4.1. Naive Bayes

Kupiec et al. were the first to report extraction experiments using a statistical classifica-
tion method for heuristic combination for determination of global sentence relevance.

Kupiec et al. use the Naive Bayesian Classifier given in figure 5.26. The target
value is an estimate of the probability of a sentence to be contained in the abstract,
given its feature values. P + Fj - s , S 2 . In order to estimate this value, probabilities asso-
ciated with individual events (features) are accumulated; P + Fj 2 and P + Fj - s , S 2 can be
estimated from the corpus by raw frequencies. The feature combination applied in a
Naive Bayesian model is extremely simple: all conditional probabilities are multiplied.

Kupiec et al. use cross-validation for measuring the success of their classifier:
the system extracts sentences from a test document, using a model which was acquired
not using any information in the test document. Evaluation can then be measured in
precision and recall by the simple criterion of co-selection between gold standard and
extracted material. Precision gives the percentage of all sentences selected correctly
(co-selected with the gold standard) over the total number of sentences selected. Re-
call gives the percentage of sentences selected correctly (co-selected with the gold
standard) over all sentences in the target extract.
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In Kupiec et al.’s evaluation, the numerical values for precision and recall are
always identical: they use the information of how many gold standard summaries each
test document has (though this information would not be available for completely new
test documents without abstracts), and their method then extracts the same number
of sentences. The method Kupiec et al. chose is a less time consuming way to get
an estimation of the cross-over point. (To measure the cross-over point, compression
rates are manipulated such that the function of precision and recall can be plotted; the
cross-over point of the two functions is then reported.) Another commonly accepted
combination of precision and recall is F-measure (van Rijsbergen, 1979).

In (Teufel and Moens, 1997), we report a duplication of Kupiec et al.’s experi-
ment for text extraction. With different data and two types of gold standards, but with
similar features to Kupiec et al., we achieved favourably comparable results (cf. the
left two columns in figure 5.27). In Kupiec et al.’s case, the best precision and recall of
44% was reached by combining location, cue phrase and sentence length features; in
ours, the best result of 68% was achieved using all five features.

Kupiec et al. Our replication
Heuristics Individual Cumulative Individual Cumulative
Cue Phrases 33% 33% 55% 55%
Location 29% 42% 32% 65%
Sentence Length 24% 44% 29% 66%
tf/idf 20% 42% 17% 67%
Capitalization + tf/idf 20% 42% —
Title — 21% 68%
Baseline 24% 28%

Figure 5.27: Results of our Duplication of Kupiec et al.’s (1995) experiment

But here we adapt Kupiec et al.’s Naive Bayesian formula (figure 5.26) for
Argumentative Zoning, resulting in the formula given in figure 5.28. As far as the
notation is concerned, let us assume we have n features F0 to Fn G 1; a feature is then
known as Fj, with 0 H j I n. Each of the features Fj has k j different values V jr, with 0 H
r I k j. There are m target categories C0 to Cm G 1; a target category is then known as Ci,
with 0 H i I m. In our case, m is 7 (whereas Kupiec et al. perform binary classification;
m J 2), n is 16, and the k j vary from 2 for j= 0,1,6 (Cont-1, Cont-2, Length) to
40 for j=15 (Ag-2).
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F4=Struct-2 C0=
AIM

C1=
BAS

C2=
BKG

C3=
CTR

C4=
OTH

C5=
OWN

C6=
TXT

Total

V4 K 0=Initial n0
4 K 0=

117
n1

4 K 0=
92

n2
4 K 0=

267
n3

4 K 0=
135

n4
4 K 0=

601
n5

4 K 0=
2532

n6
4 K 0=

73
n4 K 0= 3817

V4 K 1=Medial n0
4 K 1=

56
n1

4 K 1=
87

n2
4 K 1=

306
n3

4 K 1=
289

n4
4 K 1=

971
n5

4 K 1=
3779

n6
4 K 1=

68
n4 K 1= 5556

V4 K 2=Final n0
4 K 2=

34
n1

4 K 2=
47

n2
4 K 2=

147
n3

4 K 2=
172

n4
4 K 2=

442
n5

4 K 2=
2125

n6
4 K 2=

82
n4 K 2= 3049

Total n0=
207

n1=
226

n2=
720

n3=
596

n4=
2014

n5=
8436

n6=
223

N= 12422

Figure 5.29: Contingency Table for Paragraph Feature

P L Ci MV0 N x O0PQPRPQO Vn S 1 N y T4U P L Ci T P V V0 W x N8X8X8X:NVn Y 1 W y ZCi [
P V V0 W x N8X8X8X:NVn Y 1 W y []\ P L Ci T ∏n Y 1

j ^ 0 P V V j W r ZCi [
∏n Y 1

j ^ 0 P V V j W r [

P _ Ci `V0 a x b#c#c#cEb Vn d 1 a y e : Probability that a sentence has target category C i, given its feature
values V0 a x, . . . , Vn d 1 a y, with 0 f x g k0 and 0 f y g kn d 1;

P _ Ci e : Probability that a sentence has target category C i (prior);
P _ Vj a r `Ci e : Probability of feature-value pair V j a r occurring with target category

Ci;
P _ Vj a r e : Probability of feature value V j a r (rth value of Feature Fj);

Figure 5.28: Our Adaptation of Kupiec et al.’s (1995) Naive Bayesian Classifier

The first part of the second formula, P L Ci T , is called the prior probability, and
the second part P V V0 W x N8X8X8X:NVn Y 1 W y ZCi [

P V V0 W x N9X8X8X:NVn Y 1 W y [ is called the posterior probability. The first derivation
is due to Bayes’ Theorem; the second is specific to the Naive Bayesian formula and
only legal under the Independence Assumption, i.e. the assumption that all features are
statistically independent L P L F1 O F2 ThU P L F1 Tji P L F2 T ). If, however, the data show that
certain features are statistically dependent on each other—and to a certain degree this
can be expected, as it is difficult to define features that are statistically independent—
the Naive Bayes method will not result in an absolutely accurate language model.

We will now describe how the conditional probability P L V j N r MCi T needed for
Naive Bayesian classification can be calculated from the contingency tables.

For example, in figure 5.29 (repeated from figure 5.4), the vertical totals n j N r
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give the occurrence counts of feature value V j k r (n j k r is a short notation for frequency
f l Vj k r m ); the horizontal totals ni (or f l Ci m ) give the occurrence counts of category Ci,
and the data cells ni

j k r (or f l V j n r n Ci m ) give the number of occurrences of category Ci

with feature value V r
j . N is the number of all items.

Then the desired probability P l V4 k 1 oC0 m , i.e. the probability that a sentence dis-
plays the feature value V4 k 1 (Medial) of feature Struct-2 , given that the target class
of the sentence is AIM, with i p 0, j p 4 and r p 1 (C0=Aim; F4 = Struct-2; and
V4 k 1=Medial), can be estimated by corpus frequencies f l V j n r n Ci m and f l Ci m as fol-
lows:

P l Vjr oCi m p f l V j n r n Ci m
f l Ci m p o ni

j k r o
o ni o

P l Medial oAim m p P l V4 k 1 oC0 m p o n0
4 k 1 o
o n0 o p 56

207
p 0 q 27 q

It is obvious that for each category Ci and for each feature Fj, the following
equality holds:

k j r 1

∑
r s 0

P l Vj k r oCi m p 1

Naive Bayes estimates the prior probability P l Ci m by simple unigram fre-
quency:

P l Ci m p o ni o
oN o

P l Aim m p 207
12422

p 0 q 0166

The reverse probability is P l Ci oVj k r m : the probability that, on the basis of a given
observed feature V j k r, the sentence will be classified as Ci. This probability is not used
in our calculation.

Naive Bayes estimates the posterior under the independence assumption, but
we suspect that our features are not really independent. Intuitively it is clear that they
must be related to each other: certain agents, for example GENERAL AGENT, tend to
occur more often in initial locations in the document. This interaction is highly relevant
for our experiment. However, it is less obvious which of the features (if any) is directly
related to sentence length. A more sophisticated classifier for the posterior probability
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P t V0 u x v8w8w8w:vVn x 1 u y yCi z
P t V0 u x v9w8w8w:vVn x 1 u y z does not simply derive the posterior by multiplication of the single

probabilities; it determines which features are independent and only multiplies their
conditional probabilities. Because of this, we expect better classification results for
more sophisticated classifiers. We use two such algorithms, the rule-learning classifier
RIPPER (Cohen, 1995, 1996) and a Maximum Entropy-based classifier (Mikheev, To
Appear).

5.3.4.2. N-Gram Modelling

In Naive Bayes, not only the posterior, but also the prior is estimated in a very simple
manner: it is constant all over the document. However, our model of the typical flow of
argumentation predicts typical patterns in our texts. We know that a sentence is more
likely to be of category AIM, for example, if the previous sentence was a CONTRAST

(introducing a gap), than if the previous sentence was an OTHER sentence (neutrally
describing other work)—even if we do not know anything about the features of the
sentence to be classified yet. The simple Bayesian classifier, however, does not exploit
this fact, i.e. it does not use the context.

N-gram models estimate a more accurate prior by taking the context of a sen-
tence, in terms of surrounding categories, into account. N-gram models are typically
used over letters in statistical language processing, but we apply them to whole sen-

tences instead. The prior can then be written as P { Ci
m |Cm } 1 ~0�Q�R�Q~ Cm } o � , for the m-th

sentence in the document, instead of P { Ci � . The index o � 1 is called the order of the
ngram model. A system of order o � 1 takes o items before the one to be classified into
account—a bigram model (o � 1 = 2) uses the formula P { Ci

m |Cm } 1 � .
We ran experiments with N-gram models of order 2, 3 and 4 to estimate the

priors, after we first determined the posterior probabilities with the Naive Bayesian
model.

P { Ci
m |V0 v x ~0�Q�R�Q~ Vn } 1 v y �4� P { Ci

m |Cm } 1 ~0�R�Q�R~ Cm } o � P { Ci � ∏n } 1
j � 0 P { Vj v r |Ci �

∏n } 1
j � 0 P { Vj v r �

For parameter estimation, we use the Edinburgh Speech Tools Library (Taylor
et al., 1999), which use the Viterbi algorithm to maximize the prior probabilities.

5.3.5. Symbolic Rules

We have provided a set of symbolic rules for the determination of the four non-basic
categories AIM, TEXTUAL, BASIS and CONTRAST. The rules rely on the sentential
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features (mainly the Agentivity features), and provide a high-precision, low-recall ex-
traction. For many applications, precision is more important than recall: few sentences
might be sufficient, provided that they can be determined with a high level of confi-
dence.

The first step in the algorithm is to assign each sentence scores for each of the
categories, whereby several factors are taken into account. These scores are assigned
by symbolic rules. Figures 5.30 and 5.31 give the rules for AIM scores. We use two
different algorithms for choosing sentences: Method I takes all sentences whose score
is above threshold, whereas Method II only takes two sentences who are above thresh-
old: one in the beginning, and one in the end (i.e., one from the introduction and one
from the conclusions). Method II is only used for AIM sentences.

We empirically established good threshold values for the scores assigned in
the symbolic processing. Figure 5.32 shows how the thresholds relate to precision and
recall values achieved with both algorithms on AIM sentences. For high thresholds,
Method II achieves a very high precision, albeit a little lower recall than Method I.
This might be the method of choice for determining AIM sentences with a high level
of certainty. For example, with Method II, the score of 11 gives us a 96% precision and
a 23% recall. For lower thresholds (this might be good for determining “second best”
candidates), Method I is advantageous, as Method II cannot achieve recall higher than
48% in our case (not all AIM sentences occur in the beginning and end of a document,
and some documents contain more than two AIM sentences).

5.4. Intrinsic Evaluation

Evaluation of the systems relies on 10-fold cross-validation: the model is trained on a
training set of 72 documents, leaving 8 documents out at a time (the test set). The model
is then used on the test set to assign each sentence a probability for each category R,
and the category with the highest probability is chosen as answer for the sentence. This
is repeated for all ten folds. The baselines for this task were discussed in section 4.2.

5.4.1. Naive Bayes Model

As Naive Bayes does not automatically ignore useless features, and as performance
with bad features decreases, the first question is if all of our features are good dis-
ambiguators, or if some of the features do not contribute any useful information. Fig-
ure 5.33 shows the results of a 10-fold cross-validation.
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Condition Score

Start Score = 0
If sentence in beginning Score + 1
If sentence not in beginning Score – 1
If Ag-1 = OUR AIM AGENT and Ag-2 = COPULA (non-negated) and first action in sen-
tence and beginning (i.e. Loc = A, B, C, D or E

Score = 8

If Ag-1 = OUR AIM AGENT and Ag-2 = COPULA (non-negated) and first action in sen-
tence and not beginning

Score = 6

If Ag-1 = OUR AIM AGENT and Ag-2 = COPULA (non-negated) and not first action in
sentence and beginning

Score = 6

If Ag-1 = OUR AIM AGENT and Ag-2 = COPULA (non-negated) and not first action in
sentence and not beginning

Score = 4

If Ag-1 = US AGENT and Ag-2 = PRESENTATION ACTION (non-negated) and first action
in sentence and beginning

Score = 6

If Ag-1 = US AGENT and Ag-2 = PRESENTATION ACTION (non-negated) and first action
in sentence and not beginning

Score = 4

If Ag-1 = US AGENT and Ag-2 = PRESENTATION ACTION (non-negated) and not first
action in sentence and beginning

Score = 4

If Ag-1 = US AGENT and Ag-2 = PRESENTATION ACTION (non-negated) and not first
action in sentence and not beginning

Score = 2

If Ag-1 = US AGENT and Ag-2 = INTEREST ACTION (non-negated) and first action in
sentence and beginning

Score = 5

If Ag-1 = US AGENT and Ag-2 = INTEREST ACTION (non-negated) and first action in
sentence and not beginning

Score = 3

If Ag-1 = US AGENT and Ag-2 = INTEREST ACTION (non-negated) and not first action
in sentence and beginning

Score = 3

If Ag-1 = US AGENT and Ag-2 = INTEREST ACTION (non-negated) and not first action
in sentence and not beginning

Score = 1

If Ag-1 = (REF )US AGENT and Ag-2 = SOLUTION ACTION (non-negated) and first
action in sentence and beginning

Score = 3

If Ag-1 = (REF )US AGENT and Ag-2 = SOLUTION ACTION (non-negated) and first
action in sentence and not beginning

Score = 2

If Ag-1 = (REF )US AGENT and Ag-2 = SOLUTION ACTION (non-negated) and not first
action in sentence and beginning

Score = 1

If Ag-1 = (REF )US AGENT and Ag-2 = SOLUTION ACTION (non-negated) and not first
action in sentence and not beginning

Score = 0

If Ag-1 = (REF )US AGENT and Ag-2 = ARGUMENTATION ACTION (non-negated) and
first action in sentence

Score = 3

If Ag-1 = (REF )US AGENT and Ag-2 = ARGUMENTATION ACTION (non-negated) and
not first action in sentence

Score = 2

If Ag-1 = REF AGENT and Ag-2 = INTEREST ACTION (non-negated) and first action in
sentence

Score = 4

If Ag-1 = REF AGENT and Ag-2 = INTEREST ACTION (non-negated) and first action in
sentence

Score = 3

If Ag-1 = REF AGENT and Ag-2 = PRESENTATION ACTION (non-negated) and first ac-
tion in sentence

Score = 3

If Ag-1 = REF AGENT and Ag-2 = PRESENTATION ACTION (non-negated) and not first
action in sentence

Score = 2

Figure 5.30: Symbolic Scores for AIM Sentences (1 of 2)
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Condition Score

If Ag-1 = AIM REF AGENT and Ag-2 = COPULA (non-negated) and first action in sen-
tence

Score = 4

If Ag-1 = AIM REF AGENT and Ag-2 = COPULA (non-negated) and not first action in
sentence

Score = 3

If Ag-1 = (REF )US AGENT and Ag-2 = RESEARCH ACTION (non-negated) Score = 1
If Formu = HERE FORMULAIC and beginning Score + 5
If Formu = METHOD FORMULAIC and Ag-2 = (PRESENTATION ACTION or INTER-
EST ACTION) and Ag-1 = (REF US AGENT or REF AGENT or *AIM* AGENT)

Score + 5

If Struct-3 = Introduction Score + 2
If Struct-3 = Conclusion Score + 2
If Struct-1 = First-sentence Score + 2
If very first sentence in document Score + 1
If the previous sentence contained contrastive material (GAP, PROBLEM ACTION,
AWARE ACTION, CONTRAST FORMULAIC, negated SOLUTION ACTION), and begin-
ning

Score + 2

If Ag-1 = US AGENT Score + 1
If there was a textstructure sentence in the past 3 sentences Score – 1
If there is a DETAIL FORMULAIC in the sentence Score – 1
If Ag-1 = REF( US?) AGENT and Ag-2 = TEXTSTRUCTURE ACTION Score – 2
If last sentence was classified as TEXTUAL Score – 3
If Ag-1 = (ref )?us agent and Ag-2 = PRESENTATION ACTION and Syn-2 = Present and
not beginning

Score – 2

If Ag-1 = TEXTSTRUCTURE AGENT and Ag-2 = (TEXTSTRUCTURE ACTION or
PRESENTATION ACTION or INTEREST ACTION or RESEARCH ACTION) or Formu =
TEXTSTRUCTURE FORMULAIC or formu = TEXTSTRUCTURE AGENT

Score = 0

If there is a US PREVIOUS FORMULAIC in the sentence Score = 0
If there is a FUTURE FORMULAIC in the sentence Score = 0

Figure 5.31: Symbolic Scores for AIM Sentences (2 of 2)

Feature Alone Left out Feature Alone Left out
Cont-1 K=–.12 .37 Syn-2 K=–.12 .37
Cont-2 K=–.12 .37 Syn-3 K=–.12 .37
Struct-1 K=–.12 .36 Cit-1 K=+.18 .38
Struct-2 K=–.12 .37 Cit-2 K=+.13 .38
Struct-3 K=+.05 .35 Cit-3 K=+.12 .38
Loc K=+.17 .34 Formu K=+.06 .35
Length K=–.12 .37 Ag-1 K=+.07 .36
Syn-1 K=–.12 .37 Ag-2 K=–.11 .35

Figure 5.33: Performance of Individual Features (Naive Bayes)

The first column in figure 5.33 (“Alone”) corresponds to classification with
a model using only the given feature, whereas the second column (“Left out”) cor-
responds to a model using all other features but the given one. Some of the weaker
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Figure 5.32: Effect of Threshold on Symbolic AIM Sentence Extraction

features are not predictive enough on their own to break the dominance of the prior;
in that case, they behave just like Baseline B1 (K=–.12). A distinctive feature has a
good classification on its own, and leads to a decreased performance if left out. The
numbers show that some of the weaker features contribute some predictive power in
combination with others, even if not on their own.

We measured the best performance using the features Cont-1, Cont-2,

Loc, Struct-1, Struct-2, Struct-3, Length, Syn-1, Syn-2, Syn-3,

Cit-1, Formu, Ag-1 and Ag-2. Results only decreased when combinations of the
citation features were used together; we assume this is due to the fact that these
features encode redundant information with respect to each other; they are not
independent. Appendix B.8 shows the output of the Naive Bayesian model on the
example paper. The system’s annotation achieved a Kappa value of K=0.41 on the
example paper.

In an experiment between one annotator (C) and the statistical method, the
observed reproducibility is K=.39 (N=12421, k=2), which corresponds to percentage
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MACHINE (NAIVE BAYES)

AIM CTR TXT OWN BKG BAS OTH Total

AIM 131 8 11 33 14 7 5 209

CTR 22 124 2 259 80 24 86 597

TXT 13 3 138 51 6 5 7 223

HUMAN OWN 116 116 62 7623 163 96 257 8433

BKG 28 40 3 257 305 11 76 720

BAS 14 9 4 48 5 91 56 227

OTH 8 71 10 1115 198 122 489 2013

Total 332 371 230 9386 771 356 976 12422

Figure 5.34: Confusion Matrix: Human vs. Automatic Annotation, Naive Bayes

accuracy of 71.2%.
Note here that the system is not asked to annotate abstract sentences, so that

N is lower than it would have been in a comparable experiment involving only human
annotators. This number cannot be directly compared to experiments like Kupiec et
al.’s because in their experiment a compression of around 3% was achieved whereas
we classify each sentence into one of the categories.

When the Naive Bayesian Model is added to the pool of 3 coders, the repro-
ducibility drops from K=.71 to K=.54 (N=3446, n=4). This reproducibility value is
equivalent to the value achieved by 6 human annotators with no prior training, as in
Study III.

Figure 5.34 depicts the confusion matrix for the classification. We can see that
the system guesses too few OTHER and CONTRAST sentences, but overestimates the
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AIM CTR TXT OWN BKG BAS OTH

Precision 39% 33% 60% 81% 40% 26% 50%
Recall 63% 21% 62% 91% 42% 40% 24%

Figure 5.35: Precision and Recall per Category, Naive Bayes

number of BASIS sentences.
Figure 5.35 shows that the system performs well on AIM sentences, which can

be determined with a recall of 63% and a precision of 39%. These values are more
directly comparable to Kupiec et al.’s results of 44% precision and 44% recall for
extracted sentences, even though not all of the sentences extracted by their method
would have fallen into our AIM category. The other easily determinable category for
the automatic method is TEXTUAL (p=60%; r=62%), whereas the results for the other
non-basic categories are relatively lower—as are the human annotation results.

The results achieved with the more complicated statistical techniques were not
much better. RIPPER (Cohen, 1995, 1996) achieved an error rate of 27.66% +/- 0.35%
(a bit better than our error rate of 29%) in a ten-fold cross-validation. When the clas-
sifier described in Mikheev (To Appear) was used on our data, the classification was
minimally better than both the Naive Bayes model and RIPPER, but training this model
is very time consuming.

5.4.2. N-Gram Model

We measured performance of different n-gram models as before by 10-fold cross-
validation. The best performance was achieved with a bigram model. This model
achieved K=.41 (n=2,N=12422) when compared to Annotator C alone (P(A)=0.703,
P(E)=0.492), and K=.56 (N=3334, n=4, P(A)=0.795, P(E)=0.537) when added to the
pool of three annotators. Thus, adding the bigram model does improve performance.
Appendix B.9 (p. 303) shows the output of the bigram model on the example paper. If
we compare it to the output of the Naive Bayes model (p. 302), we notice that the con-
textual information introduced by the bigram model has added useful aspects to the
annotation. For example, the Naive Bayes model did not annotate the two sentences
dealing with Hindle’s approach (bottom of the first column) as either OTHER or CON-
TRAST; instead, it just left them as BACKGROUND. Because of the high probability of
CONTRAST sentences preceding AIM sentences, the Viterbi algorithm chose to mark



226 Chapter 5. Automatic Argumentative Zoning

MACHINE (BIGRAM)

AIM CTR TXT OWN BKG BAS OTH Total

AIM 124 10 12 27 25 3 8 209

CTR 20 122 3 208 138 15 91 597

TXT 13 4 133 51 11 3 8 223

HUMAN OWN 107 138 68 7220 459 99 342 8433

BKG 9 20 3 141 454 5 88 720

BAS 18 14 4 69 12 80 30 227

OTH 3 97 7 797 395 117 597 2013

Total 294 405 230 8513 1494 322 1164 12422

Figure 5.36: Confusion Matrix: Human vs. Automatic Annotation, Bigram Model

them as CONTRAST; the fact that the posterior probability for CONTRAST was slightly
lower than the posterior probability for AIM was overridden by the prior probabilities.
Similarly, the erroneously tagged TEXTUAL sentence at the end of the introduction is
corrected by the bigram model into CONTRAST.

In general, the bigram model tends to annotate longer segments; posterior prob-
abilities have to be high to break this preference, i.e., to start new segments. This also
introduces errors, e.g., the long CONTRAST segment at the end of the second column
which was not perceived to be there by either human annotator. Overall, the bigram
model’s annotation reached a Kappa value of 0.35 on this particular paper, i.e. perfor-
mance decreased when compared to the Naive Bayesian model.

For the case of human vs. bigram model, the confusion matrix in figure 5.36
was recorded. Figure 5.37 shows precision and recall values for individual categories.
In contrast to the Naive Bayesian model, the recognition results for the categories AIM,
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AIM CTR TXT OWN BKG BAS OTH

Precision 42% 30% 58% 85% 30% 25% 51%
Recall 59% 20% 60% 86% 63% 35% 30%

Figure 5.37: Precision and Recall per Category, Bigram Model

OTHER and OWN are higher, and those for the categories CONTRAST, TEXTUAL,
BASIS and BACKGROUND lower.

5.4.3. Symbolic Rules

The symbolic rules do not aim at a full-coverage recognition of all categories. Rather,
they provide a high-precision, low-recall coverage of the four non-basic categories
AIM, TEXTUAL, BASIS and CONTRAST. The evaluation of the success of these rules
can therefore not be measured by Kappa (which would require a full-coverage classi-
fication), but only by precision and recall of these four categories. Precision and recall
was varied by changing the threshold.

Figure 5.38 presents precision and recall plots for the non-basic categories. The
results show that it is possible to determine AIM and TEXTUAL sentences in a scientific
article with high precision, albeit with considerably lower recall. This is a good result,
which in itself justifies the Agentivity features. The result is also in agreement with
our results from chapter 4 which showed that AIM sentences (and to a lesser degree
TEXTUAL sentences) are also recognized most robustly of all categories by humans.
They state knowledge claims—it is important for authors to bring the own knowledge
claims across—or organize the text. Typically, they are expressed in a formalized way.
BASIS and CONTRAST sentences have a less prototypical syntactic realization, and
they also occur at less predictable places in the document. Therefore, it is far more
difficult for both machine and human to recognize such sentences.

Figure 5.38 also shows the best stochastic results for the non-basic categories
(dots) for comparison. The results for AIM and CONTRAST are better with the sym-
bolic system, whereas the reverse is the case for the categories BASIS and TEXTUAL.

5.5. Results of System Run on Unseen Material

An ad-hoc test was performed on a paper randomly drawn from the archive. It was pre-
processed with minimal manual intervention and then put through the argumentative
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Figure 5.38: Precision and Recall of Symbolic Sentence Extraction

zoner. The output of the Naive Bayesian model is given in figures 5.39 and 5.40, and
the output of the bigram model is given in figures 5.41 and 5.42 so that the reader can
inspect the result.

The only difference in performance which can be expected when moving from
seen to unseen text has to do with the features based on meta-discourse (Formu, Ag-1

and Ag-2), as the list of expressions was expanded manually during system devel-
opment, whenever the system’s results showed phrases not previously contained in
the lists. All other features are rather independent of the question whether or not the
system developer sees more data. One would hope that the common meta-discourse
phrases are covered by the list, and that expressions not encountered in the first 80
papers would be rather specialized and infrequent.

It is difficult to assess to what extent our features treat unseen text adequately,
because there are no gold standards for the unseen test. We report an experiment with
a predecessor of the three meta-discourse features in Teufel and Moens (1997). We
divided our corpus (then 123 articles, including articles which did not appear in ACL,
EACL, COLING or ANLP conferences) into three parts. We pretended that one third
was “unseen”, by using only those 1423 formulaic expressions for extraction which
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Termination Properties

Marc Dymetman -- 9605023 -- Coling 94

A-0 We present, in easily reproducible terms , a simple transformation for offline-parsable grammars which results in a provably
terminating parsing program directly top-down interpretable in Prolog . A-1 The transformation consists in two steps : A-2 
removal of empty productions , followed by : A-3 left-recursion elimination . A-4 It is related both to left-corner parsing ( where
the grammar is compiled ,  rather than interpreted through a parsing program , and with the advantage of guaranteed termination in
the presence of empty productions ) and to the Generalized Greibach Normal Form for DCGs ( with the advantage of implementation
simplicity ) .

Motivation

S-0 Definite clause grammars ( DCGs ) are one of the simplest and most widely used unification grammar formalisms. S-1 They
represent a direct augmentation of context-free grammars through the use of ( term ) unification ( a fact that tends to be masked by
their usual presentation based on the programming language Prolog ) . S-2 It is obviously important to ask whether certain usual 
methods and algorithms pertaining to CFGs can be adapted to DCGs , and this general question informs much of the work concerning 
DCGs , as well as more complex unification grammar formulisms ( to cite only a few areas : Earley parsing , LR parsing , left-corner
parsing , Greibach Normal Form ) .

S-7 Our aim in this paper is to propose a simple transformation for an arbitrary OP DCG putting it into a form which leads to the 
completeness of the direct top-down interpretation by the standard Prolog interpreter : parsing is guaranteed to enumerate all 
solutions to the parsing problem and terminate . S-8 The existence of such a transformation is known : in Dymetman 1992a , 
Dymetman 1992b , we have recently introduced a " Generalized Greibach Normal Form " ( GGNF ) for DCGs, which leads to 

rather complex (it involves an algebraic study of the fixpoints of certain equational systems representing grammars . ) . S-10 Our
aim here is to present a related , but much simpler , transformation , which from a theoretical viewpoint performs somewhat less 
than the GGNF transformation ( it involves some encoding of the initial DCG , which the GGNF does not , and it only handles
offline-parsable grammar , while the GGNF is defined for arbitrary DCGs ) , but in practice is extremely easy to implement and
displays a comparable behaviour when parsing with an OP grammar .

termination of top-down interpretation in the OP case. S-9 However , the available presentation of the GGNF transformation is

S-3 One essential complication when trying to generalize CFG methods to the DCG domain lies in the fact that , whereas the parsing
problem for CFGs is decidable , the corresponding problem for DCGs is in general undecidable . S-4 This can be shown easily as a
consequence of the noteworthy fact that any definite clause program can be viewed as a definite clause grammar " on the empty string " ,

of definite clause programs therefore implies the undecidability of the parsing problem for this subclass of DCGs , and a fortiori for 
DCGs in general . S-6 In order to guarantee good computational properties for DCGs , it is then necessary to impose certain 
restrictions on their form such as offline - parsability ( OP ) , a nomenclature introduced by Pereira and Warren 1983 , who define
an OP DCG as a grammar whose context-free skeleton CFG is not infinitely ambiguous , and show that OP DCGs lead to decidable
parsing problem .

DCGs . S-24 He proves that this transformation respects declarative equivalence , and also shows , using a model -theoretic

S-22 We remarked in Dymetman et al. 1990 that this transformation is closely related to left-corner parsing " , but did not

parsing " , which has some similarity to the above transformations , but which is applied to definite clause grammars, rather than

approach , the close connection of his transformation with left-corner parsing Rosenkrantz and Lewis 1970 , Matsumoto et al. 1983 ,

S-21 presents the declarative semantics of the grammar . 

Pereira and Shieber 1987 . 

S-27 Due to the space available , we do not give here correctness proofs for the algorithm presented , but expect to publish them
in a fuller version of this paper . S-28 These algorithms have actually been implemented in a slightly extended version , where they

prealably eliminated from the grammar , a problem which is shared by the usual left-corner parser-interpreter . 

are also used to decide whether the grammar proposed for transformation is in fact offline-parsable or not .

S-25 It must be noted that the left-recursion elimination procedure can be applied to any DCG ,whether OP or not. S-26 Even in 
the case where the grammar is OP , however , it will not lead to a terminating parsing algorithm unless empty productions have been

A Simple Transformation for Offline-Parsable Grammars and its

Abstract

S-11 The transformation consists of two steps : S-12 empty-production elimination and S-13 left-recursion elimination .

S-14 The empty-production elimination algorithm is inspired by the usual procedure for context-free grammars . S-15 But there
are some notable differences , due to the fact that removal of empty-productions is in general impossible for non-OP DCGs. S-16
The empty-production elimination algorithm is guaranteed to terminate only in the OP case. S-17 It produces a DCG declaratively
equivalent to the original grammar .
S-18 The left-recursion elimination algorithm is adapted from a tranformation proposed in Dymetman et al. 1990 in the context of 
a certain formalism ( " Lexical Grammars " ) which we presented as a possible basis for building reversible grammars . S-19 The key
observation ( in slightly different terms ) was that , in a DCG , if a nonterminal g is defined literally by the two rules ( the first of which
is left-recursive ) :
[IMAGE]
S-20 then the replacement of these two rules by the three rules ( where <EQN/> is a new nonterminal symbol , which
represents a kind of " transitive closure " of d ) :
[IMAGE]

give details . S-23 In a recent paper  Johnson forthcoming introduces " a left-corner program transformation for natural language

that is , as a DCG where no terminals other than <EQN/> are allowed on the right-hand side of rules . S-5 The Turing - completeness

Figure 5.39: Unseen Document 9605023, Automatic Argumentative Zoning by Naive
Bayes (1 of 2)
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[IMAGE]

S-30 For instance the grammar consisting in the nine rules appearing above the separation in fig. <CREF/> is transformed into  
the grammar ( see figure ) :
[IMAGE]

S-31 The transformation can be logically divided into two steps: S-32 an encoding of DCG into a "generic " form DCG’ , and
S-33 a simple replacement of a certain group of left-recursive rules in DCG’ by a certain equivalent non left-recursive group of
rules , yielding a top-down interpretable DCG’’ . S-34 An example of the transformation <EQN/> is given in fig. <CREF/> .
S-35 The encoding is performed by the following algorithm :

{IMAGE}
S-36 The procedure is very simple . S-37 It involves the creation of a generic nonterminal g(X) , of arity one , which performs
a task equivalent to the original nonterminals <EQN/> . S-38 The goal <EQN/> , for instance , plays the same role for parsing a
sentence as did the goal <EQN/> in the original grammar . 
S-39 Two further generic nonterminals are introduced : t(X) accounts for rules whose right-hand side begins with a terminal , 
while d(Y,X) accounts for rules whose right-hand side begins with a non-terminal. S-40 The rationale behind the encoding is
best understood from the following examples , where <EQN/> represents rule rewriting :
[IMAGE]

S-44 The left-recursion elimination is now performed by the following " algorithm " :
[IMAGE]

seen that , relative to DCG’’ , for any string w and for any ground term z , the fact that g(z) rewrites into w  -- or , equivalently ,

into wk , and such that w is the string concatenation <EQN/> . S-47 From our previous remark on the meaning of d(Y, X) , this 
can be interpreted as saying that " constituent x is a left-corner of constituent z " , relatively to string w . 

S-45 In this transformation , the new nonterminal <EQN/> plays the role of a kind of transitive closure  of d . S-46 It can be

that there exists a ground term x such that <EQN/> rewrites into w -- is equivalent to the existence of a sequence of ground terms
<EQN/> and a sequence of strings <EQN./> such that t(x1) rewrites to w1, d(x1, x2) rewrites into w2, ... , d(xk -1, xk) rewrites

Empty-production elimination

Left-recursion elimination

S-41 The second example illustrates the role played by d(Y, X) in the encoding. S-42 This nonterminal has the following
interpretation : X is an " immediate " extension of Y using the given rule . S-43 In other words , Y corresponds to an 
" immediate  left corner " of X . 

S-29 It can be proven that , if DCG0 is an OP DCG , the following transformation , which involves repeated partial evaluation of
rules that rewrite into the empty string , terminates after a finite number of steps and produces a grammar DCG without empty-
productions which is equivalent to the  initial grammar on non-empty strings :

S-48 The grammar DCG’’ can now be compiled in the standard way -- via the adjunction of two " differential list " arguments --

program will enumerate all solutions to the parsing problem and terminate after a finite number of steps .
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Termination Properties

Marc Dymetman -- 9605023 -- Coling 94

A-0 We present, in easily reproducible terms , a simple transformation for offline-parsable grammars which results in a provably
terminating parsing program directly top-down interpretable in Prolog . A-1 The transformation consists in two steps : A-2 
removal of empty productions , followed by : A-3 left-recursion elimination . A-4 It is related both to left-corner parsing ( where
the grammar is compiled ,  rather than interpreted through a parsing program , and with the advantage of guaranteed termination in
the presence of empty productions ) and to the Generalized Greibach Normal Form for DCGs ( with the advantage of implementation
simplicity ) .

Motivation

S-0 Definite clause grammars ( DCGs ) are one of the simplest and most widely used unification grammar formalisms. S-1 They
represent a direct augmentation of context-free grammars through the use of ( term ) unification ( a fact that tends to be masked by
their usual presentation based on the programming language Prolog ) . S-2 It is obviously important to ask whether certain usual 
methods and algorithms pertaining to CFGs can be adapted to DCGs , and this general question informs much of the work concerning 
DCGs , as well as more complex unification grammar formulisms ( to cite only a few areas : Earley parsing , LR parsing , left-corner
parsing , Greibach Normal Form ) .

S-7 Our aim in this paper is to propose a simple transformation for an arbitrary OP DCG putting it into a form which leads to the 
completeness of the direct top-down interpretation by the standard Prolog interpreter : parsing is guaranteed to enumerate all 
solutions to the parsing problem and terminate . S-8 The existence of such a transformation is known : in Dymetman 1992a , 
Dymetman 1992b , we have recently introduced a " Generalized Greibach Normal Form " ( GGNF ) for DCGs, which leads to 

rather complex (it involves an algebraic study of the fixpoints of certain equational systems representing grammars . ) . S-10 Our
aim here is to present a related , but much simpler , transformation , which from a theoretical viewpoint performs somewhat less 
than the GGNF transformation ( it involves some encoding of the initial DCG , which the GGNF does not , and it only handles
offline-parsable grammar , while the GGNF is defined for arbitrary DCGs ) , but in practice is extremely easy to implement and
displays a comparable behaviour when parsing with an OP grammar .

termination of top-down interpretation in the OP case. S-9 However , the available presentation of the GGNF transformation is

S-3 One essential complication when trying to generalize CFG methods to the DCG domain lies in the fact that , whereas the parsing
problem for CFGs is decidable , the corresponding problem for DCGs is in general undecidable . S-4 This can be shown easily as a

that is , as a DCG where no terminals other than <EQN/> are allowed on the right-hand side of rules . S-5 The Turing - completeness
of definite clause programs therefore implies the undecidability of the parsing problem for this subclass of DCGs , and a fortiori for 
DCGs in general . S-6 In order to guarantee good computational properties for DCGs , it is then necessary to impose certain 
restrictions on their form such as offline - parsability ( OP ) , a nomenclature introduced by Pereira and Warren 1983 , who define
an OP DCG as a grammar whose context-free skeleton CFG is not infinitely ambiguous , and show that OP DCGs lead to decidable
parsing problem .

DCGs . S-24 He proves that this transformation respects declarative equivalence , and also shows , using a model -theoretic

S-22 We remarked in Dymetman et al. 1990 that this transformation is closely related to left-corner parsing " , but did not
give details . S-23 In a recent paper  Johnson forthcoming introduces " a left-corner program transformation for natural language
parsing " , which has some similarity to the above transformations , but which is applied to definite clause grammars, rather than

approach , the close connection of his transformation with left-corner parsing Rosenkrantz and Lewis 1970 , Matsumoto et al. 1983 ,

S-21 presents the declarative semantics of the grammar . 

Pereira and Shieber 1987 . 

S-27 Due to the space available , we do not give here correctness proofs for the algorithm presented , but expect to publish them
prealably eliminated from the grammar , a problem which is shared by the usual left-corner parser-interpreter . 

are also used to decide whether the grammar proposed for transformation is in fact offline-parsable or not .

the case where the grammar is OP , however , it will not lead to a terminating parsing algorithm unless empty productions have been

A Simple Transformation for Offline-Parsable Grammars and its

Abstract

consequence of the noteworthy fact that any definite clause program can be viewed as a definite clause grammar " on the empty string " ,

S-11 The transformation consists of two steps : S-12 empty-production elimination and S-13 left-recursion elimination .

S-14 The empty-production elimination algorithm is inspired by the usual procedure for context-free grammars . S-15 But there
are some notable differences , due to the fact that removal of empty-productions is in general impossible for non-OP DCGs. S-16
The empty-production elimination algorithm is guaranteed to terminate only in the OP case. S-17 It produces a DCG declaratively
equivalent to the original grammar .
S-18 The left-recursion elimination algorithm is adapted from a tranformation proposed in Dymetman et al. 1990 in the context of 
a certain formalism ( " Lexical Grammars " ) which we presented as a possible basis for building reversible grammars . S-19 The key
observation ( in slightly different terms ) was that , in a DCG , if a nonterminal g is defined literally by the two rules ( the first of which
is left-recursive ) :
[IMAGE]
S-20 then the replacement of these two rules by the three rules ( where <EQN/> is a new nonterminal symbol , which
represents a kind of " transitive closure " of d ) :
[IMAGE]

S-25 It must be noted that the left-recursion elimination procedure can be applied to any DCG ,whether OP or not. S-26 Even in 

in a fuller version of this paper . S-28 These algorithms have actually been implemented in a slightly extended version , where they

Figure 5.41: Unseen Document 9605023, Automatic Argumentative Zoning by Bigram
(1 of 2)
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[IMAGE]

S-30 For instance the grammar consisting in the nine rules appearing above the separation in fig. <CREF/> is transformed into  
the grammar ( see figure ) :
[IMAGE]

S-31 The transformation can be logically divided into two steps: S-32 an encoding of DCG into a "generic " form DCG’ , and
S-33 a simple replacement of a certain group of left-recursive rules in DCG’ by a certain equivalent non left-recursive group of
rules , yielding a top-down interpretable DCG’’ . S-34 An example of the transformation <EQN/> is given in fig. <CREF/> .
S-35 The encoding is performed by the following algorithm :

{IMAGE}
S-36 The procedure is very simple . S-37 It involves the creation of a generic nonterminal g(X) , of arity one , which performs
a task equivalent to the original nonterminals <EQN/> . S-38 The goal <EQN/> , for instance , plays the same role for parsing a
sentence as did the goal <EQN/> in the original grammar . 
S-39 Two further generic nonterminals are introduced : t(X) accounts for rules whose right-hand side begins with a terminal , 
while d(Y,X) accounts for rules whose right-hand side begins with a non-terminal. S-40 The rationale behind the encoding is
best understood from the following examples , where <EQN/> represents rule rewriting :
[IMAGE]

S-44 The left-recursion elimination is now performed by the following " algorithm " :
[IMAGE]

seen that , relative to DCG’’ , for any string w and for any ground term z , the fact that g(z) rewrites into w  -- or , equivalently ,

into wk , and such that w is the string concatenation <EQN/> . S-47 From our previous remark on the meaning of d(Y, X) , this 
can be interpreted as saying that " constituent x is a left-corner of constituent z " , relatively to string w . 

S-45 In this transformation , the new nonterminal <EQN/> plays the role of a kind of transitive closure  of d . S-46 It can be

that there exists a ground term x such that <EQN/> rewrites into w -- is equivalent to the existence of a sequence of ground terms
<EQN/> and a sequence of strings <EQN./> such that t(x1) rewrites to w1, d(x1, x2) rewrites into w2, ... , d(xk -1, xk) rewrites

Empty-production elimination

Left-recursion elimination

S-41 The second example illustrates the role played by d(Y, X) in the encoding. S-42 This nonterminal has the following
interpretation : X is an " immediate " extension of Y using the given rule . S-43 In other words , Y corresponds to an 
" immediate  left corner " of X . 

S-29 It can be proven that , if DCG0 is an OP DCG , the following transformation , which involves repeated partial evaluation of
rules that rewrite into the empty string , terminates after a finite number of steps and produces a grammar DCG without empty-
productions which is equivalent to the  initial grammar on non-empty strings :

S-48 The grammar DCG’’ can now be compiled in the standard way -- via the adjunction of two " differential list " arguments --

program will enumerate all solutions to the parsing problem and terminate after a finite number of steps .
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into a Prolog program which can be executed directly. S-49 If we started from an offline-parsable grammar DCG0 , this 
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Seen Unseen
Cue Phrase Feature 60.9 54.9
All Features 71.6 65.3
Baseline 29.1

Figure 5.43: Performance of Meta-Discourse Features; Unseen and Seen Data

were compiled from the other two parts. The advantage of this was that we now had
gold standards for the “unseen” part, and we could compare the system’s performance
with both lists. Performance decreased significantly on unseen data, but not catastroph-
ically, as can be seen from figure 5.43 (values refer to relevance-extraction, and are
given in precision = recall values, in Kupiec et al. style). Even though the task is not
the same, and the cue phrase method has been improved since to form our more recent
meta-discourse features Formu, Ag-1 and Ag-2, we still conclude from this experi-
ment that meta-discourse features can be rather stable, even if only two thirds of the
data is taken into account.

5.6. Conclusion

Annotator Kappa Raw Agr. Random Agr.
System:

Naive Bayes .39 71% 54%
Naive Bayes + Bigram .41 70% 49%

Humans:
Task-trained .71 87% 56%
Non task-trained (avg.) .51 76% 49%

Baselines:
Most frequent category -.12 68% 71%
Random, uniform distribution -.10 14% 22%
Random, observed distribution 0 48% 48%

Figure 5.44: Results of Human and Automatic Argumentative Zoning, I

Figures 5.44 and 5.45 summarize all evaluation results. If we compare humans and
automatic results we see that there is still plenty of room for improvement for our sys-
tems. However, the automatic performance results are also a lot better than random,
as the distance from the K=0 point (the most sensible baseline for our task) shows.
Argumentative Zoning is a new task, so there are no direct numerical values to com-
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pare our prototype’s performance with. When compared to Kupiec et al.’s result, both
an earlier implementation (Teufel and Moens, 1997) and the current results compare
favourably, if we consider our systems’ success on AIM sentences. Additionally, if all
one wants are extracted AIM and TEXTUAL sentences, our symbolic rules provide a
good solution: both our implementations are much better at categorizing TEXTUAL

and AIM sentences than they are at categorizing BASIS and CONTRAST sentences.

ROWN

Baselines

System (NB + Bigram)

R

0 .1 .2 .3 .4 .5 .6 .8 .9 1-.1 .7

K

Humans, non-task trained

Humans, task trained

Figure 5.45: Results of Human and Automatic Argumentative Zoning, II

However, statistical classification is still rather noisy. We assume that the main
reason for this is lack of training data: we were training on only 72 documents. How-
ever, as corpus collection and manual annotation with such a high level of document
semantics is rather time consuming, it was not possible in the time frame of this thesis
to expand the training data.

We believe that numerically high results are not absolutely required for a work-
able system. We see Argumentative Zoning as a forgiving task. Language is redundant,
and the most important pieces of information will be repeated in the paper. Names of
other peoples’ solutions, for example, or references to based-on solutions, get repeated
over and over—recognizing them once is enough to get the right kind of information
into our RDP slot. We often found in the human annotation experiment that different
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versions of annotation on one paper still essentially contained the same information,
i.e. would have resulted in similar RDPs. This effect would probably also apply to
papers which are less than optimally zoned by an automatic process.

We see our results as an indication that we are on the right track for a difficult
task, even though they are still modest at present. Some of the features known from
text extraction have reconfirmed their usefulness for a new task. Our new features for
argumentative sentence classification, which are based on agents and actions, have
managed to increase our statistical results, and they have also provided useful input to
the symbolic classification results.





Chapter 6

Conclusions

In this thesis, we have introduced a new task for document management, which we call
Argumentative Zoning. Argumentative Zoning is the analysis of the argumentative sta-
tus of sentences in scientific articles. Figure 6.1 shows how argumentative zones (and
their derivatives, RDPs or Rhetorical Document Profiles) act as intermediaries between
the reader and the writer. It also shows the setup of the experiments we performed to
explore the task of Argumentative Zoning: a system for automatic Argumentative Zon-
ing is evaluated intrinsically by comparison to human Argumentative Zoning. At the
same time, the human annotation provides training material for the system.

Automatic AZ

similarity-based model

group words
avoid data sparseness

Aim

"similar" wordsSolution

data sparseness
evaluate alternative analyses...Background

RDPReader Writer

Manual AZ

Argumentative
Zoning

Training material

Intrinsic Evaluation

Figure 6.1: Overview of Argumentative Zoning Experiments
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6.1. Contribution of the Thesis

The main theoretical claim of this thesis is that empirical discourse analysis can con-
tribute towards the problem of document characterization in a document retrieval en-
vironment. We exemplify this by applying an analysis of prototypical scientific ar-
gumentation, Argumentative Zoning, to scientific articles. We claim that the type of
document structure that argumentative zones capture is dominant in this text type, and
also particularly useful for our task.

While Argumentative Zoning relies on rhetorical effects which are specific to
the text type, it is independent of the subject matter treated. We have shown that the
task of Argumentative Zoning is defined well enough for humans to be able to perform
it consistently.

We have identified sentential features which correlate with the argumentative
status of the given sentence. The existence of these correlates means that human an-
notation behaviour can in principle be simulated automatically. We have provided al-
gorithms for the determination of these features. The more complicated features aim
at modelling meta-discourse as an expression of prototypical scientific argumentation;
we use linguistic heuristics and pattern matching to this end.

The practical contributions of this thesis are threefold:

� Corpus collection (section 5.3.2): we have collected and XML-encoded a sub-
stantial amount of unrestricted, “naturally occurring” scientific text from a sci-
entific web archive. As collection proceeded in an unbiased way, we expect the
corpus to be representative for the source.

� Development of annotation scheme for Argumentative Zoning (section 3.3): we
have defined an annotation scheme for the argumentative status of sentences
which is consistent and informative. The reproducibility and stability of the
annotation scheme was evaluated by an experiment with two unrelated, task
trained human annotators (section 4.3).

� Implementation of a prototype system for automatic Argumentative Zoning: we
have provided evidence that this annotation scheme can be automatically ap-
plied (chapter 5). The prototype uses supervised learning on the basis of the
previously hand-annotated corpus. The approach relies on corpus-based robust
features, well-known from traditional text extraction work, but it is accompa-
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nied by a new, more linguistically motivated pattern matching to find prototyp-
ical agents and actions.

We have argued in chapter 2 that RDPs (Rhetorical Document Profiles) are
document profiles which are specially useful for partially informed readers in a DR
environment, and that they can be used for the production of tailored summaries and
more informative citation information. Argumentative Zoning, as explored in this the-
sis, is a necessary and useful subtask for the generation of RDPs; however, this thesis
does not accomplish the generation of RDPs. In the next section, we will sketch which
tasks still need to be done in order to construct RDPs.

6.2. Future Work

6.2.1. RDP Generation

One avenue of future work is obvious: the algorithm for actually creating RDPs is not
implemented yet. However, we have already given the outline of the two main parts of
the algorithm:

� Determination of most appropriate slot fillers (in section 2.1.1);

� Association of identifiers of other approaches with the sentence expressing au-
thor’s stance (in section 3.4). More advanced approaches for this subtask are
discussed in the following.

Similarity matching between sentences could be used to determine the best
filler for those slots which are filled by entire sentences (e.g. BACKGROUND). Differ-
ent similarity measures are imaginable, from simple surface based algorithms like the
Longest Common Substring as used by us in earlier work (cf. section 4.1.2.2), to more
complicated ones like LIKEIT (Yianilos, 1997). Similarity as defined by vector space
models is another option (Salton, 1971). One could, however, apply a deeper approach
based on agent and action comparison, similar to Barzilay et al.’s (1999) work, and we
would advocate this.

Given the stage of development reached in the thesis, extrinsic evaluation
would be premature. Eventually, we envisage a task-based evaluation scenario, where
the performance of subjects using RDPs for a certain task (e.g. question answering
or relevance decision) is compared to a control group working with sentence extracts,
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and a group working with full documents. Such evaluation needs a clear definition of
the task of information foraging for uninformed readers. The right task definition is
not easy to find, particularly as user studies concentrating on this user group are rare
(chapter 2). We are convinced at this point that simple relevance decision is under-
defined and cannot be used as a task; we expect that a clearer picture of the best task
for extrinsic evaluation will emerge during the actual generation of RDPs.

6.2.2. Improving the Prototype

We have shown in chapter 5 that it is possible to find patterns in the extracted senten-
tial features with a relatively simple implementation and simple statistical techniques.
As a result, our system can simulate human annotation behaviour to a certain degree.
However, there are many aspects in which the existing prototype could be improved.

One could imagine a cascading system which performs an analysis of the
agent-and-action structure of the text prior to the classification of the full annotation
scheme. The first step, the attribution of intellectual ownership, could be learned from
text annotated with the basic annotation scheme, by associating the patterns with agents
(US AGENT—THEM AGENT—GENERAL AGENT). In a second step, the finer distinc-
tions could be applied.

In a cascading system, the high-precision rules described in section 5.3.5 could
act as “sure-fire” rules: evidence of different levels of certainty could be collected be-
fore a statistically-based search, and “sure-fire” rules could provide the starting point,
similar to the system presented by Mikheev et al. (1998).

In particular the actions are a topic which requires more research. We have
created the action lexicon (figure 5.8; page 195) manually, based only on our intuitions
after inspecting the corpus. But no clear methodology for creating the lexicon has
emerged yet. We would like to perform tests varying the verbs included in the action
lexicon and the classes assigned. Independent information sources like Levin’s (1993)
alternation classes, or WordNet (Klavans and Kan, 1998) could be used. And a more
systematic way to create this lexicon would be to use learning in a bottom-up way.

We observed problems with verbal ambiguity: the same verbs are sometimes
used in a meta-discourse interpretation and sometimes not. This is illustrated by the
following examples:
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CONTINUATION ACTION:
For our analysis of gapping, we follow Sag (1976) in hypothesizing [ �#�#� ]

(S-38, 9405010)

Not a CONTINUATION ACTION:
From this or-node we follow an arc labelled Id [ �#�#� ] (S-73, 9405022)

CONTRAST ACTION:
Hobbs’ ordering of entities from a previous utterance varies from Brennan et
al.’s [ �#�#� ] (S-104, 9410006)

Not a CONTRAST ACTION:
The number of test contexts varies from word to word [ �#�#� ] (S-78, 9503025)

The examples seem to imply that an analysis of the syntactic context, in this
case, the direct object, might help, but we fear the problem lies deeper. Given that we
want to avoid the need for full text comprehension, traditional Word Sense Disam-
biguation (Schütze, 1998; Yarowsky, 1995) might help.

Apart from verbal polysemy, there are some other specific concepts which
supposedly indicate meta-discourse, but which are problematic for our approach, e.g.
“goals”, “topic” and “similarity”. These concepts are used at the object level (science)
in some papers, e.g. in logic programming, discourse modelling and in statistical NLP:

The speaker attempts to achieve this goal by building a description of the
object that she believes will give the hearer the ability to identify it when it is
possible to do so. (S-6, 9405013)

The substructure check makes only sense if the semantics � EQN/ � of the
current goal is instantiated. (S-69, 9405004)

The sentential topic Hanako is the only possible antecedent of this zero
subject in this example. (S-13S, 9405028)

In those models, the relationship between given words is modeled by analogy
with other words that are in some sense similar to the given ones.

(S-11, 9405001)

In experiments not reported here in detail, we have tried to ameliorate this
problem by excluding those Ag-1, Ag-2 and Formu patterns which contain “charac-
teristic” words for this document, as determined by a tf/idf measure. The idea was that
if a phrase which we intended to indicate meta-discourse occurred far more often than
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expected in a given document, then there was a chance that it is a concept at an object
level. However, these experiments did not result in higher recognition results. We have
to conclude that this is another problem which requires further enquiry.

Finding identifiers of other work is important for building RDPs (cf. above).
Whereas this task is easy in the cases where a formal citation is present, it is much
harder to identify well-known names of solutions in text, e.g. as in the following sen-
tence:

I argue that Hidden Markov Models are unsuited to the task [. . . ]
(S-9, 941002)

Only later in the text, “Hidden Markov Models” are associated with particular re-
searchers:

Hidden Markov Models (HMMs) (Huang et al., 1990) offer a powerful statis-
tical approach to this problem [. . . ] (S-24, 941002)

However, the identification of “Hidden Markov Models” as a solution name
would have several advantages in this context:

� The names would be fillers of the RDP slots “SOLUTION ID” (parts of the
complex slots BASIS/CONTINUATION and RIVAL/CONTRAST). Such a char-
acterization of other work is more informative than formal citations in many
cases, as names of solutions have more continuity than single papers and sin-
gle researchers.

� A list of such names could help the uninformed reader acquire an overview of
the field (cf. chapter 1). Names of commonly advocated solutions might help
identify schools of thought, in this case, groups of researchers who have in-
vented Hidden Markov Models or who work with them. Named problems, e.g.
“data sparseness” also occur frequently in our texts, and their identification
would be similarly useful to uninformed readers.

� Identifying names of solutions would help improve the agent feature, as re-
searchers’ names are often substituted with (named) approaches or solutions
they are well-known for. At the moment, the sentence above would not be
classified as part of prototypical argumentation, because the agent is not rec-
ognized as THEM AGENT, but if the authors had used the expression “Huang

et al.’s (1990) approach” it would. This lack of parallelism makes the method
less robust towards writing style.
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Recent advances in named entity recognition have made the association task
technically feasible, cf. the results of the Named Entity Recognition Task in MUC-7,
where F-measures are in the range of 93% for domain-specific text (MUC-7, 1998).

Note that there are typically contexts in the article where the association of
“THEM” or “US” with a solution name is easier than in other contexts. Consider the
following sentence:

LHIP provides a processing method which allows selected portions of the in-
put to be ignored or handled differently. (S-5, 9408006)

This sentence (and the role of “LHIP” in the argumentation) can only be un-
derstood in the context of a sentence several sentences earlier:

This paper describes LHIP (Left-Head Corner Island Parser), a parser de-
signed for broad-coverage handling of unrestricted text. (S-0, 9408006)

The sentence would have to be interpreted completely differently in the context
of the following (imaginary) sentence:

Gold et al. (1989) introduced LHIP (Left-Head Corner Island Parser), a
parser designed for broad-coverage handling of unrestricted text.

Recognition of “LHIP” in close proximity with the phrase “in this paper”

could add “LHIP” to a list of solutions associated with the authors, whereas in the
other (fictional) case, it would have been added to a list of approaches associated with
Gold et al. (THEM AGENT).

There is one other possibility how agent recognition could be made more
robust, and that is by anaphora resolution. As reported in section 5.2.2.2, not all
agent classes are ambiguous. In fact, in many of them, interpretation is unam-
biguous (THEM AGENT, US AGENT); in others, we have found a strong tendency
that the intended interpretation is almost always present (TEXTSTRUCTURE AGENT,
OUR AIM AGENT, US PREVIOUS AGENT, REF US AGENT, GAP AGENT, SOLU-
TION AGENT, PROBLEM AGENT). However, a high level of ambiguity is associ-
ated with the classes REF US AGENT, THEM PRONOUN AGENT, AIM REF AGENT,
REF AGENT. Most of these ambiguities are between US AGENT and THEM AGENT,
but the agent class THEM PRONOUN AGENT is actually ambiguous between
THEM AGENT and any plural objects in the scientific domain the paper is talking
about, e.g. rules, arcs, probabilities. Examples for correct and incorrect interpreta-
tion of THEM PRONOUN AGENTs can be found in appendix B.7; p. 300. For example,
agents no. 4 and 16 have the wrong interpretation.
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We performed a simulation experiment to determine the distribution of
US AGENT, THEM AGENT and GENERAL AGENT for the most frequent of the ambigu-
ous classes, REF AGENT. There were 632 occurrences of REF AGENT in the corpus
(only 586 of which were used in the Naive Bayesian classification and the symbolic
rules; the others were not the first agent in the sentence). We wanted to determine if
anaphora resolution prior to classification would improve end results, so we manually
simulated a perfect anaphora resolution algorithm by classifying the phrases by their
referent: 436 (69%) of the 632 REF AGENTs were classified as US AGENT, 175 (28%)
as THEM AGENT, and 20 (3%) as GENERAL AGENT.

As a result of this manual disambiguation, the performance of the Ag-1 feature
for the Naive Bayesian model increased dramatically from K=.07 to K=.14, making it
the third best feature after Cit-1 (K=.18) and Loc (K=.17); cf. figure 5.33 (p. 222).
Classification results using the 14 successful features increased from K=.39 to K=.42.
These results are surprisingly good, considering that we removed only one ambiguous
class. Even though a practical anaphora resolution model would not achieve 100%
correctness as we did in our simulation, our experiment still points to the fact that
good anaphora resolution would make statistical classification less noisy by potentially
removing the need for ambiguity classes, and that it could potentially be of great value
for automatic Argumentative Zoning.

6.2.3. Learning Meta-discourse Expressions

The current experiments have shown that sentential features, particularly meta-
discourse phrases, can help us perform Argumentative Zoning. It is a practical prob-
lem of how to arrive at good patterns other than manually generating them. There are
some approaches which learn cue phrases automatically from text, either by ngram-
techniques (Samuel et al., 1998, 1999) or by tf/idf style frequency techniques (Hovy
and Lin, 1999; Hovy and Liu, 1998). Learning would be particularly useful for the
clustering of values, which we have so far done manually. We performed some ex-
periments with n-grams over words as approximations for indicator phrases (Teufel,
1998); these experiments showed over-fit and were thus not conclusive.

We take this as an indication that our corpus is still too small to automatically
learn good patterns. The learning of agent and action patterns, however, is planned for
the future, when our corpus of scientific articles will hopefully be expanded consider-
ably.
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6.2.4. Redefining the Annotation Task

The task of Argumentative Zoning could be refined by using a more fine-grained unit
of annotation and classification. Currently, we use sentences; part of the reason for this
decision was practical, as sentence boundary disambiguators like the one we use work
very reliably. However, we came across many examples where a border between two
argumentative zones cuts across a sentence:

However, this is not very satisfactory because one of the goals of our work
is precisely to avoid the problems of data sparseness by grouping words into
classes. (S-41, 9408011)

While we know of previous work which associates scores with feature struc-
tures (Kim, 1994) [sic] are not aware of any previous treatment which makes
explicit the link to classical probability theory. (S-9, 9502022)

In the first case, there is a borderline between a CONTRAST and an AIM zone
which cuts across the sentence, in the second between an OTHER and CONTRAST

zone. Cases like this confuse both symbolic and stochastic accounts of Argumentative
Zoning, as correlates of both zones can be found in the sentence, but only one target
outcome is annotated.

Our experience with the heuristics for action and agent detection in sections
5.3.3.7 have shown that it is theoretically possible to dissect the sentence into clause-
like units—though we have so far used this information only for feature determination.
These heuristics rely only on the most likely finite verbs in the sentence as determined
by a POS-Tagger. Even though a definition of a clause as centered around a finite verb
is simplistic (cf. also the discussions in section 3.5 in the context of RST), and even
though such heuristics are not correct in all cases, we nevertheless argue that a clause-
based approach would have advantages for Argumentative Zoning. The finer unit of
annotation is intuitively more appealing, as clauses map more directly to propositions.
A move towards the clause would thus be a move towards a slightly deeper represen-
tation.

Another way to improve the task of Argumentative Zoning would be to ask the
subjects to indicate a relevance-level (or confidence-level) for the annotation of each
sentence. This would indicate how well suited the sentence is to serve as an RDP slot.
Of course, such instructions would result in a higher training effort, but would also
provide us with a more valuable gold standard for the task.
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6.2.5. Application to a Different Domain

Finally, we take a look at the kinds of texts treated. We have assumed that argumenta-
tive moves and zones are to be expected in all scientific research articles, as they are
based on the function associated with the text type, i.e. the goal of justifying the valid-
ity of the research presented. We have concluded from this that our annotation scheme
should in principle apply to all kinds of scientific research articles. One of the reasons
for choosing computational linguistics articles was the interdisciplinary nature of the
field, which would make the corpus a difficult test bed. Nevertheless, our claim would
find a more rigorous verification if we could successfully apply the analysis to texts of
a different domain.

It is plausible that some of the meta-discourse we found is specific to our cor-
pus. Research by Hyland (1998) confirms that there are differences in meta-discourse
between domains. In that case, an approach which learns new cue phrases from text,
as mentioned above, would be particularly useful for porting our implementation to a
new domain.

It might also be the case that our young, interdisciplinary domain contains par-
ticularly many argumentative moves of explicit comparison. In such domains, contrast
with other researchers and intellectual ancestry is very important, as there are many
methodologies, which are often identified by similarities to and contrast with existing
ones. It might thus be the case that other domains do not express comparisons to other
work as overtly as our texts do.

We have used conference articles in this thesis. Practical reasons have kept us
from using journal articles as data so far: the difficulty of corpus collection due to
copy right problems, and due to the increased length and subsequent time effort of
human experiments. In principle, however, we are particularly interested in journal
articles, for several reasons. On the one hand, they can be expected to be of higher tex-
tual quality, as they are more rigorously edited. On the other hand, as journal articles
are much longer, they pose a particularly difficult problem for current summarization
approaches, as these do not take large-scale discourse structure into account. As the
scientific argumentation in journal articles is basically the same as in conference arti-
cles, we are confident that our scheme should be applicable to journal articles at least
as consistently as to conference articles.
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