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ABSTRACT
Lexical chains have been successfully used in several previ-
ous applications, e.g. topic segmentation and summariza-
tion. In this paper, we address the problem of how to di-
rectly evaluate the quality of lexical chains, in comparison
to a human gold standard. This is in contrast to previous
work, where the formal evaluation either relied on a word
sense disambiguation task or concentrated on the final ap-
plication result (the summary or the text segmentation),
rather than the lexical chains themselves. We present a
small user study of human annotation of lexical chains, and
a set of measures to measure how much agreement between
sets of lexical chains there is. We also perform a small meta-
evaluation to compare the best of these metrics, a partial
overlap measure, to rankings of chains derived by introspec-
tion, which shows that our measure agrees reasonably well
with intuition. We also describe our algorithm for chain
creation, which varies from previous work in several aspects
(for instance the fact that it allows for adjective attribu-
tion), and report its agreement with our human annotators
in terms of our new measure.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCENatural Language Processing

General Terms
Lexical Chains, Human Annotation
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1. INTRODUCTION
An algorithm for creating lexical chains was first proposed

by Morris and Hirst [11] and relies on the theory of lexical
cohesion [4]. A lexical chain is a collection of terms that are
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related within a text by lexico-semantic relations, such as
synonymy or similar relations.

Lexical chains have been used in various applications, such
as automatic text summarization [1, 13], text segmentation
[5, 14], correction of malapropisms [6], and automatic gener-
ation of hypertext links [3]. The exact mechanisms by which
lexical chains are used in these approaches differs from appli-
cation to application. In Barzilay et al, for instance, particu-
larly relevant sentences useful for presentation in a summary
are defined as those that contain many intersecting chains.
In [5], a gap between pseudo-sentences is more likely to be a
topic shift if the number of lexical chains spanning the gap
is low. Importantly, the user never sees the lexical chains
directly; end evaluation of these approaches is performed in
terms of either a word sense disambiguation task [1, 6] or
the end product (summaries, text segmentation, hypertext
output). The quality of the lexical chains themselves is thus
typically not formally evaluated in the existing work.

We propose lexical chains as a framework for a differ-
ent task, automatic text skimming. The goal of an auto-
matic skimmer is to provide an online user with the ability
to browse the text in a document in a way similar to that
of a reader of a printed document. This would allow, for
example, a blind or sight-impaired person to (a) quickly de-
cide whether a document is worth reading (or listening to)
and (b) quickly find specific information within a paper.

Such a skimming system must extract topics, or concepts,
that are important in a document and then organize them
in such a way that they can be browsed quickly. Follow-
ing the premise that a lexical chain can represent a concept
expressed in a document [1], we use lexical chains to build
browsable topic maps for scientific papers.

The domain for our skimmer is scientific articles. We have
built a system for detecting lexical chains in these texts. The
algorithm essentially follows the Silber and McCoy method-
ology [13], but uses a few modifications that are important
in our text type. For instance, we have found in scientific pa-
pers that adjective modification is essential to characterize
topics well.

Our users have direct contact with the lexical chains that
our program outputs. We thus require a different kind of
evaluation from previous work, namely one that formally
evaluates the quality of the chains per se.

For example, consider the two lexical chains in Figure 1
that were automatically generated by our system1. Num-

1The example paper used throughout this article is: Lee,
Lillian (1999). “Measures of Distributional Similarity”. 37th
Annual Meeting of the ACL, pp. 25-32.



1. confusion probability (7), probability (3), positive
probability (1), conditional cooccurrence probability
(1), arbitrary probability distributions (1), probabil-
ity estimate (1), probability distributions (1), proba-
bility estimation (1), probabilities (3), base probabil-
ities (1), base language model probabilities (1), verb
cooccurrence probabilities (1), unigram probabilities
(1), correct probabilities (1), smooth word cooccur-
rence probabilities (1), conditional verb cooccurrence
probabilities (1)

2. values (2), appropriate values (1), actual values (1),
distribution values (1)

Figure 1: Lexical chains automatically generated by
our system for the example paper.

bers appearing in parentheses represent the frequency of the
preceding term in the paper.

We perceive the first chain in Figure 1 as a good represen-
tation of an important topic in the paper (probabilities), but
not the second one. We want our evaluation method, which
is intrinsic, to pick up on this intuitive difference. We could
choose an extrinsic evaluation of the final product (e.g. to
determine if a user can solve a search task faster with our
system output, than with a different document such as an
abstract), but this evaluation method, like the ones in pre-
vious work, does not directly tell us to which degree lexical
chains are intuitive to humans, and which chains describe
the topics in a paper well. We thus opted to create a “gold
standard” of lexical chains to compare against.

In this paper we report preliminary results from a small
annotation study, where we asked human annotators to man-
ually create lexical chains for two texts. We also developed
and compared coverage and agreement measures that al-
low us to quantify the similarities between lexical chains
created by different humans, and between humans and our
system. We conducted these studies to shed more light on
the question of how much difference there is in human intu-
ition about lexical chains. Additionally we hope to use the
human training material for a filtering component of our
system, as by far the largest problem we encounter is the
over-generation of lexical chains by our automatic method.

Our main contribution in this paper is the methodology
of the human annotation study and the novel measures for
reporting agreement between lexical chains created by dif-
ferent sources. We present measures for how much one single
chain agrees with another single chain, and for how much a
set of chains (representing one paper) agrees with another
set of chains created by a different annotator.

The rest of the paper is structured as follows: the next
section discusses a peculiarity of our task, namely the need
to find local as well as global chains. Section 3 describes our
system. The pilot study for lexical chain annotation is given
in section 4. Section 5, the core of this paper, describes the
coverage and agreement measures between lexical chains.
We then report our system’s results in terms of difference
from each human annotator. The last section gives conclu-
sions.

2. GLOBAL AND LOCAL CHAINS
A scientific paper will have main topics which describe the

principal purpose(s) of the paper. It will also contain more
localized topics. These may be associated with subsections

1. measures (15), distributional similarity measures (8),
similarity functions (7), function (12), functions (14),
divergence (15), similarity measures (8), similarity
metric (3), similarity function (7), metric (8), simi-
larity metrics (2), coefficient (7), measure (6), metrics
(4)

2. distance-weighted (5), distance-weighted averaging
(5), distance-weighted averaging model (1)

Figure 2: Global and local chains.

of the paper, for the purpose of providing more detailed in-
formation. Given a paper, a concept associated with a chain
need not run through the entire paper (“global chain”), but
can also cover only a subset of the paper (“local chain”).
Schematically, this is shown in Figure 3, where the shorter
chains are local, as they refer to localized topics.

A real-world example of a global chain is chain #1 in
Figure 2. This chain represents the topic similarity mea-
sures/metrics. Terms from this chain are used throughout
the example paper by L. Lee, including the title. An exam-
ple of a local chain is #2 in Figure 2. This chain represents
the topic distance-weighted averaging and is only used in
section 1 (Introduction) and section 3 (Empirical Compari-
son.

kappa

distance 
measures

corpus/
corpora

similarity

Figure 3: Examples of local and global chains

We have discussed local chains, and why they are im-
portant in our task. This motivates a slightly unorthodox
approach to chain membership; we allow one term to occur
in more than one chain, unlike previous definitions [1, 13].
This is necessary in order to allow for the parallel existence
of global and local chains that cover similar aspects of a
concept. For instance, the local chain in Figure 4 contains
“divergence” as its most frequent term, a term which also
belongs to a different, global chain. We would not want to
have to exclude all occurrences of divergence from the global
chain, just to enforce the uniqueness constraint.

3. THE SYSTEM
Our lexical chainer is based on the Silber and McCoy gen-

eration algorithm and uses the Barzilay and Elhadad scor-



divergence (15), total divergence (1), skew di-
vergence (5), jensen-shannon divergence (7), kl
divergence (5), outliers (1)

Figure 4: An example local chain.

Text A B C Average
1 3.5% 0% 1.4% 2%
2 10.2% 9.4% 0% 7%

Figure 5: Presence of WordNet relations in human-
generated chains.

ing system. Both approaches used WordNet [10] to group
together related words. The scoring system we use is due
to Barzilay and Elhadad ([1]) scored chains independently
from each other by assigning different scores to each type
of relation. For instance, word repetition contributed the
most points (7), followed by the synset relation (4). Each
of the other relations contributed 1 point. We modify this
scheme by only using synonymy and hypernymy/hyponymy,
like Silber and McCoy.

We follow Silber and McCoy’s ([13]) linear time algorithm
for creating chains and performing word-sense disambigua-
tion. This is done by first ranking the chains by score. If the
score of the highest-scoring chain is above a set threshold,
then the chain is added to the final set of lexical chains for
the document. Each word in the chain is then removed from
all other chains, and the chains are rescored and reranked.
This is repeated until there is no chain left that has a score
higher than the threshold and has not already been added
to the final chain list. Each word, therefore, belongs to at
most one lexical chain in the final chain list. In each ap-
proach, only nouns and noun compounds were considered
for membership in lexical chains.

The differences between our lexical chainer and the Silber
and McCoy system are discussed in the subsections that
follow.

3.1 Multi-word scientific terms and WordNet
Scientific papers tend to use a large number of multi-word

terms [7]. Such terms are usually not present in WordNet.
For each noun compound which does not exist in WordNet,
Barzilay and Elhadad assign the compound the WordNet
synset value of the head noun. Analogous to this ‘shared
head’ relation, we additionally define a ‘shared modifier’
relation. This allows two terms which share one or more
modifiers to be included in the same lexical chain (e.g. sim-
ilarity measure and similarity distribution. The decision of
including a ’shared modifier’ relation is supported by our
annotation data (cf. Figure 6).

Stokes [14] found that the WordNet relations played less
of a role in her lexical chains than repetition did. She at-
tributes part of this effect to the sparcity of compound terms
in WordNet. Our annotation results suggest that for scien-
tific texts WordNet relations play an even smaller role than
in news texts, as shown in Figure 5; on average, only 4%
of the relations in our chains correspond to WordNet rela-
tions. This seems to be in line with Justeson and Katz’s
argument technical that terms tend to be repeated instead
of substituted [7]. Indeed all of the WordNet relations we
observed between single-word terms (e.g. probability/chance

distributional similarity measures, similarity
functions, similarity measures, similarity metric,
similarity function, similarity metrics

Figure 6: An example of a lexical chain whose terms
are related by premodification and require a partial
overlap relation.

Text A B C Average
1 29% 42% 37% 36%
2 19% 32% 39% 30%

Figure 7: Percentage of adjectives in human-
generated lexical chains.

and data/corpus).
Additionally we also believe that the word sense disam-

biguation problem is less acute in scientific text, because (1)
the terms are naturally longer and thus more specific, and
(2) word sense variation is lower within a subfield.

3.2 Adjectives
The importance of adjectives as premodifiers in technical

terms in scientific text is well-acknowledged [7]. In addi-
tion, Justeson and Katz report that 4% of the terms in their
dictionary sample are single adjectives or adjective phrases.
Our approach to lexical chaining allows adjectives as mod-
ifiers in noun phrases and as heads of adjective phrases to
be chain candidates.

The data produced by our annotators suggest that hu-
mans do indeed heavily incorporate adjectives into their lex-
ical chains. Overall, 37% of all term types are adjectives or
contain adjectives (30% for annotator A, 41% for annotator
B, and 38% for annotator C). Of the two texts that we had
annotated, Text 1 seems to have more adjectives than text
2 (cf. Figure 7). For text 1, for example, 81% of all of the
human-generated chains contained at least one adjective.

Our decision to include adjectives into lexical chains is in
contrast to previous work in lexical chains: Barzilay and El-
hadad only allow nouns to be considered in creating terms
for lexical chains, as do Morris and Hirst [11] (who work on
Reader’s Digest articles) and Silber and McCoy [13]. Stokes
[15] uses adjectives which form part of a complex proper
noun such as Irish in compound terms like Irish journalist.
We believe that the importance of adjectives varies consid-
erably with genre (Barzilay and Elhadad used newspaper
texts, Morris and Hirst [12] Reader’s Digest articles.

However, we believe that not all adjective in scientific text
are equally important to represent a scientific text accu-
rately. In a term such as statistical significance, statistical
disambiguates the sense of significance whereas an adjective
like higher in higher significance does not. Levi [9] calls
adjectives such as statistical non-predicating. We have im-
plemented an algorithm based on some of her linguistic tests
to filter out predicating adjectives. This algorithm is how-
ever not the focus of the current paper; we will report about
it elsewhere.

3.3 Non-uniqueness of chain membership
Silber and McCoy restrict each term to appearing in only

one chain. The “best” chain for a given term is chosen and
that term is removed from the rest of the chains. Our chainer



1. probability (15), probability estimation (1), condi-
tional cooccurrences probability (2), cooccurrence
probability (2), probability distribution (1), confu-
sion probabilities (1), frequencies (3), conditional verb
cooccurrence probabilities (2), relative frequencies (2),
unigram probabilities (1), word cooccurrence probabil-
ities (2), conditional probabilities (3), likelihoods (1),
base probabilities (3), likely (2), probability estimate
(2)

2. cooccurrences (3), cooccurrence probability (2), word
cooccurrence probability (2), cooccurrence pair (1),
conditional verb cooccurrence (1), verb-object cooc-
currence pairs (1)

Figure 8: Membership of a term in a global and a
local chain.

allows a term to appear in multiple chains. In scientific pa-
pers, a term may intuitively belong to a global topic and
to a local topic. For example, chain #1 in Figure 8 rep-
resents the global topic probability and contains the term
cooccurrence probability. Chain #2 in the same figure repre-
sents the local topic cooccurrence and also contains the term
probability cooccurrence.

The annotation guidelines allow the possibility of using a
term in more than one chain but leaves the decision up to
the annotators. All three of the current annotators used at
least one term in more than one chain.

4. PILOT STUDY
Measuring the extent to which human intuitions about

lexical chains agree is an interesting task, both from a psy-
cholinguistic viewpoint as well as from a practical one. A
lexical chaining algorithm was first proposed by Morris and
Hirst [11], based on the idea of lexical cohesion as in [4].
Even though it seems clear that most humans intuitively
understand the concept of lexical chains, few experiments of
the psycholinguistic plausibility of actual chain construction
have been performed. Morris and Hirst [12] present a pilot
study of the subjectivity of readers’ perceptions of relations
between words that make up lexical chains. The domain for
this study was a collection of general-interest articles taken
from Reader’s Digest. Five subjects were asked to read the
first 1.5 pages of an article and mark each word group that
they perceived. For each word group, they identified pairs
of related words and the relation between them. The sub-
jects agreed on a subset of the word groups while also having
individual variation.

They point out that the “degree of individual difference
or subjectivity in text understanding is likely to vary with
text type.” It is thus necessary for us to collect annotators’
perception and agreement data for the text type we work
on, scientific domain.

As we already motivated, we also have practical reasons
for creating a manual training set of lexical chains: we need
them to directly evaluate the quality of our automatically
created lexical chains, and we intend to use them as training
material to learn to recognize weak chains in order to remove
them from the final lexical chain set.

Because of our focus on scientific papers, we decided to
also perform annotation, choosing to randomly select papers
from the ACL anthology as our data.

Experimental design is as follows: We use three anno-

tators, who are given a set of materials as described be-
low. Annotator A is a doctoral student in computer sci-
ence. Annotator B is the second author of this paper, and
annotator C is the first author of this paper. The anno-
tators are given unrestricted time to create sets of terms
that they judge to be related given the context of the pa-
per. Each set of terms then represents one lexical chain.
The guidelines are four pages long and essentially describe
the task as follows: A term can comprise a single word or
a combination of words, all taken directly from the text.
Words used in terms may be nouns, adjectives, or adverbs.
Possible relationships between terms in a chain are men-
tioned which include inflectional variance, synonymy, hy-
pernymy/hyponymy, holonymy, and meronymy.

There are no limits placed on the size of lexical chains
or the number of chains needed to describe a document.
We found that there are many intuitive similarities between
chains created by our annotators. There are also many dif-
ferences, such as in the number of chains used and in the
exact terms that are used.

For the ongoing annotation experiment, human annota-
tors are given a collection of materials including a list of all
words in the paper together with part-of-speech tags gen-
erated by RASP [2]. Each annotator is also given a list of
maximal noun phrases automatically extracted from the pa-
per. Use of these lists is optional, but they are provided as
different visualizations of the terms in the paper.

To measure the agreement between two annotators we
need a metric that will do the following:

1. When comparing two lexical chains, one chain should
be penalized for not covering its topic as well as a
competing chain.

2. When comparing two sets of lexical chains, one chain
set should be punished for not covering the paper as
well as a competing chain set.

3. A chain set should be penalized for splitting chains (i.e.
using two chains to describe the same topic), in com-
parison to having identical chains (non-split chains),
but it should penalize it less than in a situation where
one of the split chains is missing or replaced with ir-
relevant terms.

4. A chain set should be penalized for merging chains
(i.e. combining multiple concepts into one chain); see
above.

We use a token-based approach to comparing chains rather
than a type-based approach because we believe term repe-
tition in scientific texts to be a strong indicator of the rele-
vance of topics.

Section 5 describes some coverage and agreement mea-
sures that we are using to evaluate lexical chains and sets of
lexical chains.

5. COVERAGE AND AGREEMENT MEA-
SURES

5.1 Comparing lexical chains
In this section we compare four measures for computing

the similarity between two lexical chains. We discuss the



properties of each measure and how they affect the useful-
ness of the measure for our task.

When comparing two lexical chains x and y, two (not
necessarily equal) agreement measurements are important:

1. The degree to which y is covered by or similar to x

2. The degree to which x is covered by or similar to y

To compute chain set agreement between two annotators
(or chain set similarity between two papers), we find (for
each chain in chain set A) the best match in chain set B,
according to either measure detailed below. Adding together
the agreement scores for each match gives us Equation 1.

m(A, B) =
X
x∈A

m1(x, B)|x|
|A| . (1)

m(A, B) measures the degree to which all chains in A cover
any of the chains in B.

5.2 Cosine measure
For a baseline, we use the standard cosine metric. Each

lexical chain is represented as a vector of term frequencies.
Of the measures considered here, the cosine metric is the
only one that is symmetric.

5.3 KL distance
Another comparison measure that we evaluated is the

Kullback-Leibler (KL) distance [8]. It is a measure of simi-
larity between two distributions, as defined in Equation 2.

KL(P, Q) =

nX
i=0

pi log2(
pi

qi
), (2)

where P = (p0, ..., pn) and Q = (q0, ..., qn) are probability
distributions.

We compare chains by representing each chain as a vector
of relative term frequencies. Suppose we wish to compare
chains X and Y . Since both distributions in Equation 2
must contain the same number of points, we set the length
of the vector for chain X and the length of the vector for
chain Y equal to the order of the union of the terms in X and
Y . This means that for two chains that do not have exactly
the same terms, their corresponding vectors will contain 0-
values representing terms missing from the chain. Since each
value in P and Q must be nonzero for KL, we perform simple
add-one smoothing.

5.4 Strict term overlap
We also consider simple term overlap

c(x, y) =
|x ∩ y|
|y| . (3)

Two chains x and y are treated as sets of tokens (with
multiplicity).

We measure the coverage of B by x as

m1(x, B) = max
y∈B

c(x, y). (4)

Similarly, we measure the coverage of x by B as

Measure A→B A→C B→C
Cosine 18% 0% 7%
KL 82% 62% 71%
Strict overlap 100% 62% 71%
Partial overlap 100% 69% 86%

Figure 9: Agreement between automatically
matched chains and manually matched chains for
Text 1.

Measure B→A C→A C→B
Cosine 8% 0% 8%
KL 38% 42% 71%
Strict overlap 69% 84% 67%
Partial overlap 69% 84% 67%

Figure 10: Agreement between automatically
matched chains and manually matched chains for
Text 1.

m2(x, B) = max
y∈B

c(y, x). (5)

Note that m1(x, B) and m2(x, B) need not be maximized
by the same y ∈ B.

5.5 Partial term overlap
We modify our overlap measure by allowing partially over-

lapping terms to count as partial matches. The overlap mea-
sure in Equation 3 only recognizes exact term matches, but
semantics is shared between terms even if there is a partial
overlap (e.g., in modifiers or heads). We assign a weight of
0.3 to this relation.

5.6 Preliminary results

5.6.1 Testing the measures
To test the four measures described above, we look for the

strongest chain matches between two annotators. That is,
given two annotators A and B, each chain from annotator
A is matched with the most similar chain from annotator
B, and vice versa. Performing this task using each measure
gives us four sets of chain matches for each annotator pair
(going one direction). Each set of matches is then compared
to a manually generated set of chain matches for the same
annotator pair.

As we can see in Figures 9-13, the cosine metric performs
badly when matching chains. This is primarily because a
metric based on the inner product of two vectors does not
issue a penalty when vectors of different lengths are com-
pared (an attractive property in IR when comparing doc-
uments with queries). Thus, the chains that are found to
match using this metric may have high frequency terms in
common but may also contain several other terms not shared
by other chains.

The shared-modifier algorithm had a slight improvement
over the overlap measure when finding chain matches, and
thus outperformed the KL distance and the baseline.

5.6.2 Comparing rankings
Using the chain match scores given by the measures, we

can rank the strength of the chain matches. For each mea-



Measure A→B A→C C→B
Cosine 29% 17% 27%
KL 86& 67% 73%
Strict overlap 86% 83% 64%
Partial overlap 86% 83% 91%

Figure 11: Agreement between automatically
matched chains and manually matched chains for
Text 2.

Measure B→A B→C C→A
Cosine 0% 30% 13%
KL 88% 80% 75%
Strict overlap 75% 80% 75%
Partial overlap 100% 80% 75%

Figure 12: Agreement between automatically
matched chains and manually matched chains for
Text 2.

sure we compare the top five chains to a manual ranking
of the top five chain matches for each annotator pair. We
only consider the top five matches to avoid having to com-
pare match strengths between chains with little in common.
Since the cosine metric performed so poorly when finding
matches, we only compared rankings for the other three
measures.

Figure 14 shows the agreement between top matches se-
lected by the different measures and those selected manually.

6. CONCLUSIONS AND FUTURE WORK
Our main contributions in this paper are our methodol-

ogy of the human annotation study and a comparison of
four similarity measures (including a new measures based
on shared modifiers) for reporting agreement between lexical
chains created by different sources. Our annotation study
covers the scientific domain with the goal of training a lexical
chaining system for scientific papers.

This pilot study explores the extent to which human-
generated lexical chains agree in the domain of scientific
texts. In future work, we will investigate the role that
non-uniqueness of term membership plays in creating local
chains. As we build our gold standard we hope to deter-
mine the importance of adjectives in human-generated lexi-
cal chains in the scientific domain.

Limitations of our preliminary study are:

1. We have too few annotators and use too few papers
for an extensive study of lexical chain agreement in
the scientific domain. This will be expanded in later
work.

2. Our coverage and agreement measures do not yet han-

Measure Text 1 Text 2
Cosine 6% 20%
KL 61% 78%
Strict overlap 74% 76%
Partial overlap 78% 86%

Figure 13: Average agreement between automati-
cally matched chains and manually matched chains.

Match KL Strict overlap Partial overlap
A→B 2 3 3
B→A 2 2 2
B→C 2 2 2
C→B 3 2 2
A→C 2 4 4
C→A 4 2 2

Figure 14: Number of chain matches ranking in the
top five as compared to the manually ranked top five
matches.

dle all of the cases that we want to consider (e.g. the
merger of two chains). The comparison ranking pro-
duced by our measures and presented in this paper
compares well with an intuitive ranking for the most
important matches, but compares badly overall.

Future work will address the problems mentioned above.
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5. cooccurrence, cooccurrences, cooccurrence (6), cooccurrences (3), word
cooccurrence (2), neighborhood (1), closest neighbors (1), nearest neigh-
bors (2)

6. probability, estimate, estimation, probability estimation (1), estimate
(4), similarity-based estimation (1), probability estimate (2), estimates
(2)

7. comparison, empirical, empirical comparison (3), comparison (5)

8. distributions, potential proxy distributions (2), distributional (8), prob-
ability distributions (2), distributions (8), potential proxy distributions
(2), joint distribution (1), product distribution (1)

9. training, corpus, training corpus (2), training set (2), training partition
(1), training corpus (2), training data (4)

10. probabilities, probability (15), conditional cooccurrence probability (2),
probability distributions (2), chance (2), distributions (8), probabilities
(10), verb cooccurrence probabilities (2), smooth word cooccurrence prob-
abilities (2), base language model probabilities (2), confusion probability
(7), unigram probabilities (1), likelihoods (1), conditional verb cooccur-
rence probabilities (1), mathematical certainty (1)

11. events, data, events (5), data (11), bigrams (1), words (7), word pair (1),
cooccurrences (3), words (7), data (11), nouns (6), verbs (11), cooccur-
rence pair (1), noun (2), corpus (2), adjectives (1), pairs (4), noun-verb
pair (1), noun-verb-verb triple (1), test triple tokens (1), test instance (1)

12. probability, probability distributions, probability (15), probability
distributions (2), chance (2), average (6), statistically (2), insignificant
(1), unsmoothed (1), frequencies (3), smooth (2), relative frequencies (2),
likelihoods (1), joint distribution (1), product distribution (1), unigram
frequencies (1), error rate (4), statistic (1), t-test (1), significance level
(1), mathematical certainty (1)

Figure 15: Annotator A’s lexical chains for the ex-
ample paper.
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Appendix
Figures 15 and 16 show all of the chains constructed by two
of the annotators for the example paper. Numbers appear-
ing in parentheses represent the frequency of the preced-
ing term in the paper. Terms appearing in bold are chain
representatives and were automatically extracted from the
manual chains.

1. similarity, similarity (28), distributional similarity measures (8), simi-
larity functions (7), distributional similarity (7), semantic similarity (1),
similarity measures (8), similarity metric (3), similar words (5), new sim-
ilarity metrics (2), extreme dissimilarity (1), similarity-based estimation
(1), inherently better similarity ranking (2), good similarity metric (3)

2. probabilities, probability (15), probability estimation (1), conditional
cooccurrences probability (2), cooccurrence probability (2), probability
distribution (1), confusion probabilities (1), frequencies (3), conditional
verb cooccurrence probabilities (2), relative frequencies (2), unigram prob-
abilities (1), word cooccurrence probabilities (2), conditional probabilities
(3), likelihoods (1), base probabilities (3), likely (2), probability estimate
(2)

3. distribution, distribution (6), proxy distributions (2), probability distri-
bution (1), average distribution (1), joint distribution (1), product distri-
bution (1), empirical distribution (1)

4. unseen, sparse data (2), low frequency events (1), unseen cooccurrences
(2), unseen word pair (1), unseen (8), unseen pairs (1), sparseness (1)

5. training, training set (2), estimate (4), training partition (1), test-set
bigrams (1), training corpus (2), test sets (1), test-set performance (2)

6. concurrence, cooccurrences (3), cooccurrence probability (2), word cooc-
currence probability (2), cooccurrence pair (1), conditional verb cooccur-
rence (1), verb-object cooccurrence pairs (1)

7. method, backoff, backoff method (2), interpolation method (1), backoff
smoothing method (1)

8. distance-weighted, averaging, distance-weighted (5), distance-weighted
averaging (5), distance-weighted averaging model (1)

9. divergence, divergence (15), total divergence (1), skew divergence (5),
jensen-shannon divergence (7), kl divergence (5), outliers (1)

10. significant, statistically significant (2), significant (3), significance level
(1)

11. evaluation, pseudoword disambiguation task, evaluation (3), pseu-
doword disambiguation task (1), empirical results (1), decision task (3),
empirical comparison (3), evaluation methodology (1), binary decision
task (3), experimental framework (1), correct answer (1), paired t-test
(1), prediction tasks (1)

12. information theoretic metric, similarity metric, information-theoretic
metric (1), similarity metric (3), similarity measures (8), cosine metric (2),
jaccard coefficient (1), jensen-shannon divergence (7), kl divergence (5),
nonparametric measure (1), correlation (1), mutual information (1), value
difference metric (2), dice coefficient (1), l2 norm (1), l1 norm (3), statistic
(1), euclidean distance (1), skew divergence (5), alpha - skew divergence
(5), good similarity metric (3), similarity function schema (1)

13. performance, average, performance (10), precision (1), average perfor-
mance (3), average error rate (4), test-set performance (2)

14. nouns, verbs, nouns (6), verbs (11), transitive verbs (1), head noun (1),
direct object (1), similar adjectives (1), frequent nouns (1), noun-verb pair
(1), noun-verb-verb triple (1)

15. smoothing, unsmoothed, smoothing (1), unsmoothed (1), smoothed
base language model (5)

16. model, language, language model (5), language model probabilities (2),
language modeling (1), smoothed base language model (5), model (9)

17. neighbors, neighborhood (1), neighbors (3), nearest neighbors (2)

18. function, weighting, weight, weighting (1), weight function (1)

19. substitutability, substitutability (1)

20. generalization, asymmetric, novel, symmetric, symmetric (2),s novel
asymmetric generalization (1)

21. information, negative, negative information (1)

22. translations, mutual, translations (1), mutual translations (1)

Figure 16: Annotator B’s lexical chains for the ex-
ample paper.


