
Flexible Interfaces in the Application of Language
Technology to an eScience Corpus

C.J. Rupp, Ann Copestake, Simone Teufel, Benjamin Waldron
Computer Laboratory, University of Cambridge

Abstract
We describe two key interfaces used in an architecture for applying a range of Language
Technology tools to a corpus of Chemistry research papers, in order to provide a basis of
robust linguistic analyses for Information Extraction tasks. This architecture is employed
in the context of the eScience project ‘Extracting the Science from Scientific Publications’
(a.k.a. SciBorg), as described in Copestake et al. (2006). The interfaces in question are
the common representation for the papers, delivered in a range of formats, and the coding
of various types of lingustic information as standoff annotation. While both of these in-
terfaces are coded in XML their structure and usage are quite distinct. However, they are
employed at the main convergence points in the system architecture. What they share is
the ability to represent information from diverse origins in a uniform manner. We empha-
sise this degree of flexibility in our description of the interface structures and the design
decisions that led to these definitions.

1 Introduction
The purpose of this paper is to document two in-
terface structures that play a crucial role in the ar-
chitecture of the eScience project ‘Extracting the
Science from Scientific Publications’ (also known
as SciBorg). The project’s aims and the architec-
ture itself are described in more detail in Copestake
et al. (2006).
As the official project title suggests, SciBorg is
concerned with Information Extraction (IE) from
published scientific research, in this case Chem-
istry. However, the real challenge of the project lies
in the comprehensive application of current Lan-
guage Technology to an extensive corpus of re-
search papers to provide robust linguistic analsyses,
on which various Information Extraction tasks can
be based. As we are, effectively, mining the text of
Chemistry research, we feel it is appropriate to re-
fer to the corpus of research papers as an eScience
corpus.
In this context, the most significant interfaces are:
the common representation for the papers as an in-
put to the analysis tools and the pool of resulting
analyses. We emphasise the flexibility required in
both of these interfaces, but for different reasons.
While the research papers may be delivered in a
range of formats, an adequate common represen-
tation for both content and formatting information
economises on the number of interfaces to be sup-
ported, as long as the cost of maintaining the con-

verion processes can be kept to a minmum. In ap-
plying existing analysis tools, at different levels of
analysis, we attempt to maximise the synergies be-
tween the available components, although the com-
ponents themselves were not, necessarily, devel-
oped with this in mind. This means that interface
structure that brings the analyses together must ac-
commodate those interactions.
We adopt a common XML markup for the research
papers and a standoff annotation formalism for the
coding of various types of linguistic information.
While both of these interfaces are coded in XML
their structure and usage are quite distinct. What
they share is the ability to represent information
from diverse origins in a uniform manner.

2 The SciBorg Corpus
The SciBorg project is concerned with Information
Extraction from published Chemistry research pa-
pers. The three publishers affiliated to the project:
The Royal Society of Chemistry (RSC), Nature
Publishing Group (NPG) and International Union
of Crystallography (IUCr), have provided a cor-
pus of recently published papers. Delivery is ei-
ther in the form of XML, or (in the case of IUCr)
in SGML that is easily converted to XML. How-
ever, the original XML encoding is specific to the
publishers, following a DTD defined for their own
needs. Obviously, there are far fewer interfaces to
maintain, if we convert all the papers in the corpus
to a common XML encoding, so that subsequent



processing modules only have to interface with one
XML encoding. For this purpose we have adopted
an XML schema that has been developed over the
course of several projects for the precise purpose
of representing the logical structure of scientific re-
search papers. Nevertheless, some adaptations to
the schema were require for the specific needs of
a corpus collected in well-defined XML encodings
of publishers’ markup. We have named the result
SciXML, intuitively XML for Science.

3 The Development of SciXML
SciXML originates in XML markup for the logical
structure of scientific papers in Computational Lin-
guistics (Teufel and Moens, 1997; Teufel, 1999). It
has subsequently been employed to corpora from a
variety of disciplines, including Cardiology (Teufel
and Elhadad, 2002) and Genetics (Hollingsworth
et al., 2005).
What is equally significant is that these corpora,
while consistent in the function of their texts, were
collected from a variety of different sources and
in varying formats, so that conversions to SciXML
have been defined from: LaTeX, HTML and PDF
(via OCR). The conversion from low level format-
ting produced a cumulative effect on the immediate
precursor for our SciXML schema. The more func-
tional levels of the markup were impoverished, as
only distinctions that affected the formatting could
be retrieved. The handling of lists was rather sim-
plified and tables excluded, because of the diffi-
culty of processing local formatting conventions.
Equally, the applications had no necessity to rep-
resent papers in full formatting, so information like
the modification of font faces at the text level was
excluded. While footnotes were preserved these
were collected at the end of the paper, effectively as
end notes, alongside the vestigial representations of
tables and figures, chiefly their captions.
SciBorg has the advantage of access to publishers’
markup which supports functional or semantic dis-
tinctions in structure and provides a detailed cod-
ing of the content and structure of lists and tables,
rather than just their formatting on the page. How-
ever, we envisage IE applications which involve
some rendering of the paper contents in a readable
form, e.g. in authoring and proof reading aids for
Chemists. While not as detailed as the publishers
page formatting we would require the paper content
to be recognisable, exploiting HTML as a cheap so-
lution to any more complex display problems. This
implies retaining more of the explicit formatting in-
formation, particularly at the text level. In practice,
this has meant the addition of inline markup for font
face selections and some inclusion of LaTeX ob-
jects for formulae, as well as the preservation of

the origin points for floats, as they are known to
LaTeX (table and figures). As a result SciXML re-
tains a focus on the logical structure of the paper,
but preserves as much formatting information as is
required for effectively rendering the papers in an
application.

4 The SciXML Schema
The resulting form of SciXML is defined as a Relax
NG schema. Since this is an XML-based formal-
ism, it is difficult to exhibit any substantive frag-
ment in the space available here. Figure 1 shows
just the overall strucuture of a paper and the first
level of elements in the <REFERENCELIST> ele-
ment. The most comprehensive description that is
appropriate here is a catalogue of the types of con-
struct in SciXML.
Paper Identifiers: We require enough informa-
tion to identify papers both in processing and
when tracing back references. While publisher’s
markup may contain an extensive log of publica-
tion and reviewing, a handful of elements suffice for
our needs: <TITLE>, <AUTHOR>, <AUTHORS>,
<FILENO>, <APPEARED>
Sections: The hierarchical embedding of text seg-
ments is encoded by the <DIV> element, which is
recursive. A DEPTH attribute indicates the depth of
embedding of a division. Each division starts with
a <HEADER> element.
Paragraphs are marked as element <P>. The
paragraph structure has no embedding in SciXML,
but paragraph breaks within <ABSTRACT>,
<CAPTION> and <FOOTNOTE> elements and
within list items (<LI>) are preserved noted with
a <SUBPAR> element.
Abstract, Examples and Equations are text sec-
tions with specific functions and formatting and can
be distinguished in both publishers’ markup and in
the process of recovering information from PDF.
We have added a functionally determined section
<THEOREM>, as we have encountered this type of
construct in some of the more formal papers. Sim-
ilarly, linguistic examples were distinguished early
on, as Computational Linguistics was the first cor-
pus to be treated.
Tables, figures and footnotes are collected
in a list element at the end of the docu-
ment, <TABLELIST>, <FIGURELIST>,
<FOOTNOTELIST>, respectively. The tex-
tual position of floats is marked by an <XREF/>
element. The reference point of a footnote is
marked by a separate series of markers: <SUP>,
also used for similar functions in associating
authors and affiliations.



<define name="PAPER.ELEMENT">
<element name="PAPER">

<ref name="METADATA.ELEMENT" />
<optional>
<ref name="PAGE.ELEMENT" />

</optional>
<ref name="TITLE.ELEMENT" />
<optional>
<ref name="AUTHORLIST.ELEMENT" />

</optional>
<optional>
<ref name="ABSTRACT.ELEMENT" />

</optional>
<element name="BODY">
<zeroOrMore>

<ref name="DIV.ELEMENT" />
</zeroOrMore>

</element>
<optional>
<element name="ACKNOWLEDGMENTS">

<zeroOrMore>
<choice>

<ref name="REF.ELEMENT" />
<ref name="INLINE.ELEMENT" />

</choice>
</zeroOrMore>

</element>
</optional>

<optional>
<ref name="REFERENCELIST.ELEMENT">

</optional>
<optional>
<ref name="AUTHORNOTELIST.ELEMENT">

</optional>
<optional>
<ref name="FOOTNOTELIST.ELEMENT">

</optional>
<optional>
<ref name="FIGURELIST.ELEMENT">

</optional>
<optional>
<ref name="TABLELIST.ELEMENT">

</optional>
</element>

</define>

<define name="REFERENCELIST.ELEMENT">
<element name="REFERENCELIST">

<zeroOrMore>
<ref name="REFERENCE.ELEMENT" />

</zeroOrMore>
</element>

</define>

Figure 1: A fragment of the Relax NG schema for SciXML

Lists: various types of lists are supported with bul-
let points or enumeration, according to the TYPE
attribute of the <LIST> element. Its contents will
be uniformly marked up as <LI> for list items.
Cross referencing takes a number of forms in-
cluding the <SUP> and <XREF> mentioned above.
All research papers make use textual cross refer-
ences to identify sections and figures. For Chem-
istry, reference to specific compounds was adopted,
from the publishers’ markup conventions. The
other crucial form of cross reference in research text
is citations, linking to bibliographic information in
the <REFERENCELIST>.
Bibliography list: The bibliography list at the end
is marked as <REFERENCELIST>. It consists of
<REFERENCE> items, each referring to a formal
citation. Within these reference items, names of
authors are marked as <SURNAME> elements, and
years as <YEAR>.

5 The Conversion Process
The conversion from the publisher’s XML markup
to SciXML can be carried out using an XSLT
stylesheet. In fact, most of the templates are quite
simple, mainly reorganising and/or renaming con-
tent. The few exceptions are collections of elements
such as footnotes and floats to list elements and
replacing the occurrence in situ with a reference
marker. Elements that explicitly encode the embed-
ding of text divisions are systematically mapped to
a non-hierarchical division with a DEPTH attribute
recording the level of embedding. Figure 2 shows a
template for converting a section (<sec>) element

<xsl:template match="sec">
<DIV DEPTH="{@level}">
<xsl:apply-templates/>
</DIV>
</xsl:template>

Figure 2: An XSLT conversion template

from a publisher’s markup to a <DIV> in SciXML.
The SciXML conventions show an affinity for the
structure of the formatted text which follows di-
rectly from usage with text recovered from PDF.
For our current purposes this is considered harm-
less, as no information is lost. We assume that
an application will render the content of a pa-
per, as required, e.g. in HTML. In fact, we al-
ready have demonstration applications that system-
atically render SciXML in HTML via an addi-
tional stylesheet. The one SciXML convention that
is somewhat problematic is the flattening of para-
graph structure. While divisions can embed divi-
sions, paragraphs may not embed paragraphs, not
even indirectly. To avoid information loss, here
an empty paragraph break marker is added to list
elements, abstracts and footnotes which may, in
the general case, include paragraph divisions. Al-
though earlier versions of SciXML also encoded
sentence boundaries, the sentence level of annota-
tion has been transferred to the domain of linguistic
standoff annotation, where it can be generated by
automatic sentence splitters.
While the XSLT stylesheets that convert the pub-
lisher XML to SciXML are relatively straightfor-



ward, each publisher DTD or schema requires a
separate script. This places a manual overhead on
the inclusion of papers from a new publisher, but
fortunately at a per publisher rather than per journal
level. In practice, we have found that the element
definitions are still sufficiently similar to allow a
fair amount of cut-and-paste programming, so that
the overhead decreases as more existing conversion
templates exist to draw on. A recent extension of
SciXML conversion to the PLoS DTD presented re-
markably few unknown templates.

6 Language Technology in SciBorg
The goals of the SciBorg project, as its full ti-
tle suggests, concern Information Extraction, in
fact a range of IE applications are planned all
starting from a corpus of published chemistry re-
search. However, the common path to those goals
and the real challenge of the project is the appli-
cation of Language Technology, and, in particu-
lar, linguistically motivated analysis techniques. In
practice, this involves the use of so-called ‘deep’
parser, based on detailed formal descriptions of
the language with extensive grammars and lexi-
cons, and shallower alternatives, typically employ-
ing stochastic models and the results of machine
learning. This multi-engine approach has been em-
ployed in Verbmobil (Ruland et al., 1998; Rupp
et al., 2000) and Deep Thought (Callmeier et al.,
2004).
While there have been considerable advances in the
efficiency of deep parsers in recent years, there are
a variety of ways that performance can be enhanced
by making use of shallower results, e.g. as prepro-
cessors or as a means of selecting the most interest-
ing sections of a text for deeper analysis. In fact,
the variety of different paths through the analysis
architecture is a major constraint on the design of
our formalism for linguistic annotations, and the
one which precludes the use of the major existing
frameworks for employing Language Technology
in IE, such as GATE (http://gate.ac.uk).

7 Multiple Analysis Components
The main deep and shallow parsing components
that we use have been developed over a period of
time and represent both the state of the art and the
result of considerable collaboration.
PET/ERG: PET (Callmeier, 2002) is a highly op-
timise HPSG parser that makes use of the En-
glish Resource Grammar (ERG) (Copestake and
Flickinger, 2000). The ERG provides a detailed
grammar and lexicon for a range of text types. The
coverage of the PET/ERG analysis engine can be
extended by an unknown word mechanism, pro-

vided that a partial identification of the word class
is possible, e.g. by POS (part of speech) tagging.

RASP provides a statistically trained parser that
does not require a full lexicon (Briscoe and Carroll,
2002). The parser forms part of a sequence of anal-
ysers including a sentence splitter, tokeniser and a
POS tagger.
A key factor in combining results from multiple
parsers is that they present compatible results. Both
of the parsers we are using are capable of producing
analyses and partial analyses in the same form of
representation: Robust Minimal Recursion Seman-
tics (Copestake, 2003), henceforth RMRS. This is
a form of underspecified semantics resulting from
the tradition of underspecification in symbolic Ma-
chine Translation. In RMRS, the degree of under-
specification is extended so that all stages of deep
and shallow parsing can be represented in a uni-
form manner. It is therefore feasible to combine the
results of the deep and shallow parsing processes.
Our presentation of the parsers above should have
suggested one other path through the system archi-
tecture, in that the RASP tagger can provide the
information necessary to run the unknown word
mechanism in the PET parser, what this requires is
a mapping from the part of speech tag to an abstract
lexical type in the ERG grammar definition.
The combination of results from deep and shal-
low parsers is only part of the story, as these are
general purpose parsers. We will also need com-
ponents specialised for research text and, in par-
ticular, for Chemistry. The specialised nature of
the text of Chemistry research is immediately ob-
vious, both in specialised terms and in sections
which are no longer linguistic text, as we know
it. A sophisticated set of tools for the analysis of
Chemistry research is being developed within the
SciBorg project, on the basis of those described
in Townsend et al. (2005). These range from NER
(Named Entity Recognition) for Chemical terms,
through the recognition of data sections, to spe-
cialised Chemistry markup with links to external
and automatically generated information sources.
For the general parsing task the recognition of spe-
cialised terms and markup of data sections are the
most immediate contribution. Though this does, to
some extent, exacerbate the problems of ambigu-
ity, as now deep, shallow and Chemistry NER pro-
cesses have different results for the same text seg-
ment.
The overlap between ordinary English and Chemi-
cal terms can be trivially demonstrated, in as much
as the prepositions in and as in sentence initial po-
sition can be easily confused with In and As, the
chemical symbols for indium and arsenic, respec-



tively. Fortunately some English words that moon-
light as chemical symbols are less common in re-
search text, such as I, but this is only an example
of the kinds of additional ambiguity. Formally, the
word lead would have at least 3 analyses, as verb,
noun and element, but the latter two are not orthog-
onal.

8 Standoff Annotation
Standoff annotation is an increasingly common so-
lution for pooling different types of information
about a text. Essentially, this entails a separation
of the original text and the annotations into two
separate files. There are some practical advantages
in this: you are less likely to obscure the original
text under a mesh of annotations and less likely to
proliferate numerous partially annotated versions of
the object text. However, the true motivation for
standoff annotation is whether different annotation
schemes will impose different structures on the text.
To some extent XML forces a standoff annotation
scheme, by enforcing a strict tree structure, so that
even one linguistic annotation of a formatted text
above the word level risks becoming incompatible
with the XML DOM tree. As a simple example,
we exhibit here a fragment of formatted text from
a data section of a Chemistry paper, alongside its
SciXML markup and a simple linguistic markup for
phrase boundaries.

Formatted text calculated for C11 H18 O3

SciXML markup <it> calculated for </it>
C<sb>11</sb>H<sb>18</sb>O<sb>3</sb>

Phrasal markup <v>calculated</v>
<pp>for <ne>C11H1803</ne></pp>

Here, the assignment of a simple phrase structure
conflicts with the formatting directives for font face
selection. The XML elements marked in bold face
cannot be combined in the same XML dominance
tree.
With each additional type or level of annotation the
risk of such clashes increases, so a clean separa-
tion between the text and its annotations is help-
ful, but where do you separate the markup and how
do you maintain the link between the annotations
and the text they address. As we have a common
XML markup schema, including logical structure
and some formatting information we have a clear
choice as to our text basis. The link between text
and annotations is usually maintained by indexing.
Here, there are some options available.

8.1 Indexing
The indexing of annotations means that each ele-
ment of the standoff file encodes references to the

Raw Text: ”<p>Come <i>here</i>!</p>”

Unicode character points:

.< .p .> .C .o .m .e . ∆ . < . i . > . h . e . r . e .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

< . / . i . > . ! . < . / . p . > .
16 17 18 19 20 21 22 23 24

Figure 3: character pointers (points shown as ‘.’)

position in the text file where the text it relates to
occurs, typically this encodes a span of the text.
Some form of indexing is a prerequisite for stand-
off annotation. The simplest indexing is by byte
offset, encoding the position of a text segment in
terms of the number of bytes in the file preceding
its start and finish positions. This is universal, in
that it can cope with all types of file content, but
is not stable under variations in character encod-
ing. For an XML source text, indexing by char-
acter offset is more useful, particularly if character
entities have been resolved. Extraneous binary for-
mats such as graphics will be encoded externally as
<NDATA> elements. In fact, the variant of charac-
ter offset we adopt involves numbering the Unicode
character points, as shown in Figure 3.
A simple annotation of linguistic tokens would then
produce three elements:

<w from=’3’ to=’7’>Come</w>
<w from=’11’ to=’15’>here</w>
<w from=’19’ to=’20’>!</w>

XML also offers an additional structure for navigat-
ing around the file contents.We can take the XML
DOM trees as a primary way of locating points in
the text and character positions as secondary, so that
a character position is relative to a branch in the
XML tree. This XPoint notation is demonstrated
in Figure 4. The XML tree positions will not be
affected by changes within an XML element, e.g.
additional attributes, but will not be stable against
changes in the DOM structure itself.
We currently make use both character offset in-
dexing and XPoint indexing in different modules.
This requires conversion via a table which relates
XPoints to character positions for each file. The
initial choice of indexing mode for each subprocess
was influenced by the availability of different styles
of XML parser1, but also informed by the ease of
converting character information from non-XML
linguistic tools. In the long term our aim would be
to eliminate the use character offset indexing.

1Computing character offsets is easier with an event-
based parser that has access to the input parsed for each
event. XPoints can be tracked more easily in a DOM
parser.



ROOT(/)

. p(/1) .

. TEXT(/1/1) .

.C.o.m.e.x∆.

i(/1/2)

. TEXT(/1/2/1) .

.h.e.r.e.

. TEXT(/1/3) .

.!.

xpoint at x is: “/1/1.4”

Figure 4: xpoint-based pointers (points shown as ‘.’)

9 Types of Annotation
We have motivated standoff annotation on the ba-
sis of the incompatibility between the tree structure
of an XML document and the annotation of arbi-
trary segments of that document. The collection
of annotations can be encoded in an XML format
with its own DTD, because they form, together,
the representation of a grap structure, as a set of
edges. The nodes of this graph are, ultimately, the
character positions in the original XML document,
whichever way you index them. This is similar to a
chart or well-formed substring table in a parser, ex-
cept that muliple tokenisations can lead to varying
word boundaries. We therefore have more poten-
tial nodes in the annotation graph than a (single)
parser’s chart. In contrast, a word lattice, as used in
speech recognition, may have still more potential
nodes. In a word lattice, the succession of nodes
is not only determined by a physical convergence,
but also by factors like statistical language models.
These additional constraints mean that a word lat-
tice may have distinct nodes that represent the same
time frame. While this condition will not occur in
our annotation graphs, we have adopted a standard
for the DTD of our graphs which is general enough
to support the treatment of word lattice inputs in
speech processing. The reason for this is to link
up with existing standards in the Language Tech-
nology community, and, in particular, in the HPSG
processing comunity.
The origin of our annotation standard lies with the
(ISO working draft) MAF standard (Clement and
de la Clergerie, 2005) for morphological annota-
tions. A variant of this had been developed within
the DELPH-IN community as an emergent standard
for input to parsers. This is known as SMAF (Wal-
dron et al., 2006). Our annotation graphs collect
all the annotations for a whole document in one
file. This means that we require require a further
generalisation on the SMAF standard. We have

termed this SAF (Waldron and Copestake, 2006).
We also encode analysis results, as well as input
sentences, tokens and tagging, in the same annota-
tion file. Although these various annotations have
the same general form and the content of an anno-
tation is essentially based on RMRS, the details for
each type of annotation vary slightly.

9.1 Sentences
The results of a sentence splitter are represented by
an annotation edge with the type sentence, unique
identifier, initial and final index positions, initial
and final lattice nodes and the text content of the
sentence, as a value attribute string.

<annot type=’sentence’ id=’s133’
from=’42988’ to=’43065’
source=’v4987’ target=’v5154’
value=’calculated for C11H18O3’/>

9.2 Tokens
A tokeniser determines tokens at the word level,
including punctuation and common abbreviations.
These are represented by annotations of the type
token, with a span in terms of offset positions and
lattice nodes, as well as a dependency and the token
string as a value.

<annot type=’token’ id=’t5153’
from=’43035’ to=’43065’
source=’v5152’ target=’v5153’
deps=’s133’ value=’C11H18O3’/>

We record a dependency between the tokenisation
and sentence splitting because of the sequence of
processing in the SciBorg architecture.

9.3 POS Tags
Part of speech tags are annotated as being depen-
dent on a tokenisation, this is a fixed relation be-
tween the two processing steps and it allows us
some economy in representing the annotation.

<annot type=’pos’ id=’p5153’ deps=’t5153’
source=’v5152’ target=’v5153’ value=’NP1’/>



<annot type=’rmrs’ id=’r2’ from=’42988’ to=’43065’ source=’v5150’ target=’v5153’>
<rmrs cfrom=’42988’ cto=’43043’>
<label vid=’1’/>
<ep cfrom=’42988’ cto=’43030’>

<realpred lemma=’calculate’ pos=’v’ sense=’1’/><label vid=’10’/><var sort=’e’ vid=’2’/></ep>
<ep cfrom=’43031’ cto=’43034’>

<realpred lemma=’for’ pos=’p’/><label vid=’10001’/><var sort=’e’ vid=’13’/></ep>
<ep cfrom=’43035’ cto=’43065’>

<gpred>proper_q_rel</gpred><label vid=’14’/><var sort=’x’ vid=’12’/></ep>
<ep cfrom=’-1’ cto=’-1’>

<gpred>named_rel</gpred><label vid=’17’/><var sort=’x’ vid=’12’/></ep>
<rarg><rargname>ARG2</rargname><label vid=’10’/><var sort=’x’ vid=’3’/></rarg>
<rarg><rargname>ARG1</rargname><label vid=’10001’/><var sort=’e’ vid=’2’/></rarg>
<rarg><rargname>ARG2</rargname><label vid=’10001’/><var sort=’x’ vid=’12’/></rarg>
<rarg><rargname>RSTR</rargname><label vid=’14’/><var sort=’h’ vid=’15’/></rarg>
<rarg><rargname>BODY</rargname><label vid=’14’/><var sort=’h’ vid=’16’/></rarg>
<rarg><rargname>CARG</rargname><label vid=’17’/><constant>*TOP*</constant></rarg>
<ing><ing-a><var sort=’h’ vid=’10’/></ing-a><ing-b><var sort=’h’ vid=’10001’/></ing-b></ing>
<hcons hreln=’qeq’><hi><var sort=’h’ vid=’15’/></hi><lo><label vid=’17’/></lo></hcons>
</rmrs>
</annot>

Figure 5: An RMRS annotation

Using the RASP tagger, the tagset is based on
CLAWS. The POS tagger also provides the option
of an RMRS output.

9.4 Chemical Terms
We use the NER functionality in OSCAR-3 (Cor-
bett and Murray-Rust, 2006) to provide an annota-
tion for Chemical terms.
<annot type="oscar" id="o554"
from="/1/5/6/27/51/2/83.1"
to="/1/5/6/27/51/2/88/1.1" >

<slot name="type">compound</slot>
<slot name="surface">C11H18O3</slot>
<slot name="provenance">formulaRegex</slot>

</annot>

This example differs from the annotations shown
above in two obvious respects: the indexing is given
in XPoint rather than character offsets and the XML
element has content rather than a value attribute.
This representation provides information about the
way that the named entity recognition was arrived
at. For use in further stages of analysis, this content
should be made compatible with an RMRS repre-
sentation.

9.5 RMRS Annotations
For the sake of completeness we include an exam-
ple of an RMRS annotation in Figure 5. This rep-
resents the result for a partial analysis. The con-
tent of this element is represented in the XML form
of RMRS annotation. However, the mechanisms
which make RMRS highly suitable for representing
arbitrary levels of semantic underspecification in a
systematic and extensible way, e.g. allowing mono-
tonic extension to a more fully specified RMRS, up
to the representation of a full logical formula, make
this representation relatively complex. Copestake
(2003) provides a detailed account of the RMRS
formalism.

10 SAF as a Common Interface
A SAF file pools linguistic annotations from all lev-
els of language processing and from distinct parsing
strategies. In this role it provides a flexible interface
in a heterarchical processing architecture that is not
committed to a single pipelined path through a fixed
succession of processes. While this is reminiscent
of a blackboard architecture or more localised pool
architectures, it is only a static representation of
the linguistic annotations. It does not provide any
specific mechanisms for accessing the information
in the annotations, nor does it require any particu-
lar communications architecture in the processing
modules. In fact, there may have been more effi-
cient ways of representing a graph or lattice of lin-
guistic annotations, if it were not for the fact that
the linguistic components we employ were defined
in a range of different programming languages, so
that an external XML interface structure has prior-
ity over any shared data structure. Given this fact,
SAF is a highly appropriate choice for the common
interface that is a key feature of any multi-engine
analysis architecture.

11 Conclusions
We have presented two interface structures used in
the architecture of the SciBorg project. Each of
these occupies a crucial position in the architecture.
SciXML provides a uniform XML encoding for re-
search papers from various publishers, so that all
subsequent language processing only has to inter-
face with SciXML constructs. SAF provides a com-
mon representation format for the results of vari-
ous Language Technology components. We have
emphasised the flexibility of these interfaces. For
SciXML, this consists in conversion from publish-
ers’ markup following a range of DTDs, as well as



other formats, including HTML, LaTeX and even
PDF. For SAF, the primary mark of flexibility is in
allowing partial results from multiple parsers to be
combined at a number of different levels.

12 Acknowledgements
We are very grateful to the Royal Society of
Chemistry, Nature Publishing Group and the In-
ternational Union of Crystallography for supply-
ing papers. This work was funded by EPSRC
(EP/C010035/1) with additional support from Boe-
ing.

References
Briscoe, Ted, and John Carroll. 2002. Robust ac-

curate statistical annotation of general text. In
Proceedings of the 3rd International Conference
on Language Resources and Evaluation (LREC-
2002).

Callmeier, U., A. Eisele, U. Schäfer, and M. Siegel.
2004. The DeepThought Core Architecture
Framework. In Proceedings of LREC-2004,
1205–1208. Lisbon, Portugal.

Callmeier, Ulrich. 2002. Pre-processing and encod-
ing techniques in PET. In Stephan Oepen, Daniel
Flickinger, Jun’ichi Tsujii, and Hans Usz kor-
eit, eds., Collaborative Language Engineering:
a case study in efficient gra mmar-based process-
ing. Stanford: CSLI Publications.

Clement, L., and E.V. de la Clergerie. 2005. MAF: a
morphosyntactic annotation framework. In Pro-
ceedings of the 2nd Language and Technology
Conference. Poznan, Poland.

Copestake, Ann. 2003. Report on the design of
RMRS. DeepThought project deliverable.

Copestake, Ann, Peter Corbett, Peter Murray-Rust,
C. J. Rupp, Advaith Siddharthan, Simone Teufel,
and Ben Waldron. 2006. An Architecture for
Language Technology for Processing Scientific
Texts. In Proceedings of the 4th UK E-Science
All Hands Meeting. Nottingham, UK.

Copestake, Ann, and Dan Flickinger. 2000. An
open-source grammar development environment
and broad-cover age English grammar using
HPSG. In Proceedings of the Second conference
on Language Resources and Evaluation (LREC-
2000), 591–600.

Corbett, Peter, and Peter Murray-Rust. 2006. High-
throughput identification of chemistry in life sci-
ence texts. In Proceedings of the 2nd Inter-
national Symposium on Computational Life Sci-
ence (CompLife ’06). Cambridge, UK.

Hollingsworth, Bill, Ian Lewin, and Dan Tidhar.
2005. Retrieving Hierarchical Text. 2005. Struc-
ture from Typeset Scientific Articles - a Prereq-
uisite for E-Science Text Mining. In In Proceed-
ings of the 4th UK E-Science All Hands Meeting,
267–273. Nottingham, UK.

Ruland, Tobias, C. J. Rupp, Jörg Spilker, Hans
Weber, and Karsten L. Worm. 1998. Making
the Most of Multiplicity: A Multi-Parser Multi-
Strategy Architecture for the Robust Processing
of Spoken Language. In Proc. of the 1998 Inter-
national Conference on Spoken Language Pro-
cessing (ICSLP 98), 1163–1166. Sydney, Aus-
tralia.

Rupp, C. J., Jörg Spilker, Martin Klarner, and
Karsten Worm. 2000. Combining Analyses from
Various Parsers. In Wolfgang Wahlster, ed.,
Verbmobil: Foundations of Speech-to-Speech
Translation, 311–320. Berlin: Springer-Verlag.

Teufel, S., and N. Elhadad. 2002. Collection and
linguistic processing of a large-scale corpus of
medical articles. In Proceedings of the 3rd In-
ternational Conference on Language Resources
and Evaluation (LREC-2002).

Teufel, Simone. 1999. Argumentative Zoning: In-
formation Extraction from Scientific Text. Ph.D.
thesis, School of Cognitive Science, University
of Edinburgh, Edinburgh, UK.

Teufel, Simone, and Marc Moens. 1997. Sentence
extraction as a classification task. In Inderjeet
Mani and Mark T. Maybury, eds., Proceedings of
the ACL/EACL-97 Workshop on Intelligent Scal-
able Text Summarization, 58–65.

Townsend, Joe, Ann Copestake, Peter Murray-
Rust, Simone Teufel, and Chris Waudby. 2005.
Language Technology for Processing Chemistry
Publications. In Proceedings of the fourth UK
e-Science All Hands Meeting (AHM-2005). Not-
tingham, UK.

Waldron, Benjamin, and Ann Copestake. 2006. A
Standoff Annotation Interface between DELPH-
IN Components. In The fifth workshop on NLP
and XML: Multi-dimensional Markup in Natural
Language Processing (NLPXML-2006).

Waldron, Benjamin, Ann Copestake, Ulrich
Schäfer, and Bernd Kiefer. 2006. Preprocessing
and Tokenisation Standards in DELPH-IN Tools.
In Proceedings of the 5th International Confer-
ence on Language Re sources and Evaluation
(LREC-2006). Genoa, Italy.


