

Me, Myself and High Performance Network Functions for Programmable Dataplanes

Salvator Galea

Introduction

Salvator Galea : 1st year student for CPGS (PhD)

Andrew W. Moore : Supervisor, Reader

Gianni Antichi

: 2Nd Advisor,

Senior Research Associate

Introduction

Salvator Galea : 1st year student for CPGS (PhD)

Andrew W. Moore : Supervisor, Reader

Gianni Antichi

: 2Nd Advisor,

Senior Research Associate

Introduction

- **Salvator Galea** : 1st year student for CPGS (PhD)
- Andrew W. Moore : Supervisor, Reader
- Gianni Antichi
- : 2Nd Advisor,
- Senior Research Associate
- **Roberto Bifulco** : Industrial Advisor, Senior Researcher

- NetFPGA project
- Emu
- OSNT
- Future work

A line-rate, flexible, open-networking platform for teaching and research

A line-rate, flexible, open-networking platform for teaching and research

So who, how, why?

- Researchers, Teachers, Students
- To build modular designs
- To prototype new network systems and measure network performance

Community

NetFPGA SUME Community (since Feb 2015) Over 600 users, using over 300 cards at 200 universities in 47 countries

Emu: Rapid Prototyping of Networking Services

Published in USENIX ATC'17

Nik Sultana, Salvator Galea, David Greaves, Marcin Wojcik, Jonny Shipton, Richard Clegg, Luo Mai, Pietro Bressana, Robert Soule, Richard Mortier, Paolo Costa, Peter Pietzuch, Jon Crowcroft, Andrew W Moore, Noa Zilberman

Imperial College London

Using FPGAs for acceleration

Using FPGA is great because of...

- Programmability
- Performance
- Predictability
- Power efficiency

Catapult FPGA Accelerator

But why FPGAs have never became mainstream?

Programming FPGAs

- It is because of the cost doing FPGA engineering.

– The programming and reprogramming is done in complex, low-level hardware description languages like Verilog and VHDL.

- Lack of FPGA developers compared to number of software developers.

Led to the development of *High Level Synthesis* tools

- Use High-level programming languages
- For Scientific Applications

- HLS open-source compiler
- Transforms C#

• Any .NET bytecode to Verilog

David Greaves, and Satnam Singh. "Distributing C# methods and threads over Ethernet-connected FPGAs using Kiwi." Formal Methods and Models for Codesign (MEMOCODE), 2011.

Accelerating network services

- Write the network application in C#
- Compile to Verilog using Kiwi Compiler
- Run on the FPGA
- End of story :)

Accelerating network services

- Write the network application in C#
- Compile to Verilog using Kiwi Compiler
- Run on the FPGA
- End of story :)

Kiwi is just a compiler, not a linker, neither provides networking libraries

EMU The Network Library for Kiwi

Emu: Accelerating Network Services

Goal: Rapid prototyping of network services

Emu provides a framework with:

- A library of functions
- Compiling to multiple targets
- A runtime environment
- Automatic implementation on FPGA
- Advanced debug capabilities

Emu Framework

- Emu complements a high-level synthesis compiler with a library to support network-related high level programming.
- **Emu** maps programming and networking abstractions to bus protocols, memory interfaces, and basic frame-handling functionality used on the NetFPGA-SUME
- **Emu** framework provides a reference design path through which the user can compile the C# code and run it directly on the NetFPGA-SUME without further development intervention.

Emu: Hardware Integration

- Multiple FPGA targets using templates
- Support integration with hardware IP cores
- Support of multicore Emu cores
- Library of networking functions

Emu: Efficiency Comparison – Layer-2 Switch

Emu: Use Cases

- Networking devices
 - Layer-2 Switch
- Network Services
 - -NAT
 - DNS Server
 - ICMP echo reply
- Performance sensitive applications
 - Memcached Server

Emu: Use cases evaluation – Throughput

TCP Ping	2.105	1.012
DNS	1.176	0.226
NAT	2.439	1.037
Memcached	1.932	0.876

Emu: Use cases evaluation – Latency

1.26

24.29

Memcached

1.21

28.65

Emu: What about Debugging

Every program comes with bugs

Emu: Extended Debug Capabilities

- > Use *Directed Packets* to inspect the state of a device in the field
- Support *extension points* in the code
 - Observe the program from that point
 - Influence program state
- \rangle Example supported commands:
 - Print, trace, count, (un)break,(un)watch, backtrace
- > Implemented using *an embedded controller* and *a program director*

Emu: Debug core overhead

Artefact	Utilisation (%)	Performance (%)	
	Logic	Latency	Queries- per-sec
DNS	100.00	100.00	100.00
+R	103.40	100.00	100.00
$+\mathbf{W}$	115.05	99.45	100.00
+I	109.79	99.45	100.00
Memcached	100.00	100.00	100.00
+ R	99.17	100.00	100.00
$+\mathbf{W}$	99.80	100.49	100.00
+ I	100.63	100.00	100.00

Emu: Conclusion

So what you get with the Emu framework?

- Rapid prototyping of networking services
- Code in .NET, compile to multiple targets
- Accelerates the development and debug process
- High throughput and low latency
- Open source

OSNT: Open Source Network Tester

Open source hardware and software platform for network monitoring and testing

https://osnt.org

Low cost, flexible to update, scale-out, no CPU usage, nanosecond resolution measurements

- 4x10Gbps traffic generator.
- Capture card with high resolution timestamp (6.4nsec).
- GPS-ready synchronized measurement kit.

Future work

Hybrid solution for network applications – Parts of the application run on HW – Parts of the application run in host

Customized per network application generator and monitor tool

- more accurate latency predictor
- interactive traffic generator

Questions?

