
The Flowing and POP Models

(supplementary material for Modelling the ARMv8 Architecture, Operationally:

Concurrency and ISA)

1. The Flowing Model in Detail

1.1 The Storage Subsystem/Thread Interface

The model is expressed in terms of read, write, and barrier requests.
Read and write requests include the kind of the memory access
(e.g. exclusive, release, acquire), the ID of the issuing thread and
the memory access address. Write requests also include a value.
Barrier requests include the kind of the barrier (e.g. sy, ld, st) and
the issuing thread ID.

When we refer to a write or read request without mentioning the
kind of request we mean the request can be of any kind.

The storage subsystem and a thread subsystem can exchange
messages through synchronous transitions:

• a non-exclusive write request can be passed to the storage sub-
system by a thread Commit store instruction transition coupled
with a storage subsystem Accept request transition;

• [exclusive] an exclusive write request can be passed to the
storage subsystem by a thread Commit store-exclusive
transition coupled with a storage subsystem
Accept a successful write-exclusive (from segment or memory)
transition;

• a (memory) barrier request can be passed to the storage subsys-
tem by a thread Commit barrier instruction transition coupled
with a storage subsystem Accept request transition;

• a read request can be passed to the storage subsystem by a
thread Issue read request transition coupled with a storage sub-
system Accept request transition; and

• a read response can be returned from the storage subsystem
to a thread by a storage subsystem Satisfy read from segment
or Satisfy read from memory transition coupled with a thread
Satisfy memory read from storage response transition.

1.2 Storage Subsystem States

The Flowing storage subsystem state includes:

• thread_ids, the set of thread IDs that exist in the system;
• topology, a data structure describing how the segments are

connected to each other;
• thread_to_segment, a map from thread IDs to segments, associ-

ating each thread with its leaf segment;
• buffers, a map from segments to list of requests associating each

segment with the requests queued in that segment;
• reordered, a set of request pairs that have been reordered

w.r.t. each other; and
• memory, a map from memory addresses to the most recent write

request to that address to reach memory.

1.3 Storage Subsystem Transitions

Accept request A request r from thread r.tid can be accepted if:

1. r has not been accepted before (i.e. r is not in buffers); and
2. r.tid is in thread_ids.

Action: add r to the top of buffers(thread_to_segment(r.tid)).

Flow request A request r can flow from segment s1 to s2 if:

1. r is at the bottom of buffers(s1);
2. s1 is a child of s2 in topology;
3. [exclusive] if r is a write to address r.addr, s1 is not blocked (§1.4)

by any write-exclusive to r.addr; and
4. [exclusive] if r.kind is dmb sy or dmb st, s1 is not blocked by any

write-exclusive.

Action:

1. remove r from buffers(s1);
2. add r to the top of buffers(s2); and
3. remove from reordered any pair that contains r.

Reorder requests Two requests r_new, r_old that appear consec-
utively in buffers(s) (r_new nearer the top) can be reordered if:

1. (r_new, r_old) does not appear in reordered (i.e. they have not
been reordered (in segment s) with each other before (prevent-
ing live lock); and

2. r_new and r_old satisfy the reorder condition (§1.4).

Action:

1. switch the positions of r_new and r_old in buffers(s); and
2. record the reordering of r_new and r_old (by adding the pair

(r_new, r_old) to reordered).

Satisfy read from segment Two requests, r_read, r_write, can
generate a read response to thread r_read.tid if:

1. r_read is a read request that has not been satisfied yet;
2. r_write is a write request;
3. r_read, r_write appear consecutively in buffers(s) for some

segment s, with r_read closer to the top (newer);
4. r_read and r_write are to the same address; and

5. [
release/
acquire] if r_read.kind is read-acquire, r_write.kind is not write-

release.

Action:

1. send a read response for request r_read to thread r_read.tid,
containing r_write; and

2. [
release/
acquire] if r_read.kind is read-acquire, switch the positions of

r_read and r_write in buffers(s) and mark r_read as satisfied;
else

3. remove r_read.

Satisfy read from memory A read request r_read from thread
r_read.tid can generate a read response to thread r_read.tid if
r_read is at the bottom of buffers(s), where s is the root segment
in topology, and r_read has not been satisfied yet. Action:

1. send a read response for request r_read to thread r_read.tid,
containing the write stored in memory for the address
r_read.addr; and

2. remove r_read.

Flow satisfied read to memory A satisfied read acquire request
r_read can be discarded if: r_read is at the bottom of buffers(s),
where s is the root segment in topology. Action: remove r_read.

Flow write to memory The write request r_write can be stored
into memory if: r_write is at the bottom of buffers(s), where s is the
root segment in topology. Action:

1. update memory to map the address r_write.addr to r_write; and
2. remove r_write from buffers(s) and reordered.

Flow barrier to memory A barrier request r_barr can be dis-
carded if: r_barr is at the bottom of buffers(s), where s is the root
segment in topology. Action: remove r_barr.

Accept a successful write-exclusive (from segment) A write-
exclusive request r_write from thread r_write.tid with an accom-
panying write request r_write’ that was read by a po-previous load-
exclusive can be accepted and succeed if:

1. all the conditions of Accept request are satisfied for r_write;
2. r_write and r_write’ are to the same address;
3. exists 0 ≤ i ≤ n such that r_write’ in buffers(si);
4. for all i < j ≤ n, segment sj is not blocked by a write-exclusive

to the address r_write.addr;
5. let rs be the set of requests

⋃
i<j≤n

buffers(sj) unioned with all

the requests in buffers(si) above r_write’;
6. there is no write request in rs to the same address as r_write

from a different thread;
7. there is no dmb sy barrier request in rs; and

8. [dmb ld/
dmb st] there is no dmb st barrier request in rs.

where s0,s1,...,sn is the path of segments in topology from the
root segment s0 to the leaf segment sn associated with thread
r_write.tid. Action: the same as Accept request.

Accept a successful write-exclusive (from memory) A write-
exclusive request r_write from thread r_write.tid with an accom-
panying write request r_write’ that was read by a po-previous read-
exclusive can be accepted and succeed if:

1. all the conditions of Accept request are satisfied for r_write;
2. r_write and r_write’ are to the same address;
3. r_write’ is in memory;
4. for all 0 < j ≤ n, segment sj is not blocked by a write-

exclusive to the same address as r_write;
5. there is no write request in rs to the same address as r_write

from a different thread;
6. there is no dmb sy barrier request in rs; and

7. [dmb ld/
dmb st] there is no dmb st barrier request in rs.

where s0,s1,...,sn is the path of segments in topology from the
root segment s0 to the leaf segment sn associated with thread
r_write.tid, and let rs be the set of requests

⋃
0≤j≤n

buffers(sj).

Action: the same as Accept request.

1.4 Auxiliary Definitions for Storage Subsystem

Immediate predecessor Intuitively, the immediate predecessor of
a write-exclusive is the write the associated load-exclusive read
from, which must be kept coherence-immediately-before the write-
exclusive.

Formally we say a write w′ in segment sw′ (or memory) is the
immediate predecessor of a write-exclusive w in segment sw if sw′

is a predecessor of sw (in topology), w′ and w are to the same
address, and all the writes queued between w and w′ are to different
addresses than that. Notice that a write-exclusive can have at most
one immediate predecessor (in fact we will make sure it has exactly
one immediate predecessor).

As write-exclusive must be the coherence-immediate-successor
of its immediate predecessor, no other write to the same address

can be allowed to flow in between them. We say a write-exclusive
w in segment sw is blocking segment s if sw is a successor of s’s
parent, but is not a successor of s (or s itself), and the immediate
predecessor of w is in a segment that is predecessor of s.

Reorder condition Two requests r_new and r_old are said to meet
the reorder condition if:

1. [
release/
acquire] if r_new is a read-acquire and r_old is a write-release,

they are to a different address;

2. [
release/
acquire] r_new is not a write-release;

3. [
release/
acquire] if r_old is a read-acquire then r_new and r_old origi-

nated from different threads;

4. [
release/
acquire] if r_new is a read-acquire and r_old is a write-release,

r_new and r_old originated from different threads;

5. [dmb ld/
dmb st] at least one of r_new, r_old is not a memory barrier (of

any kind);

6. [dmb ld/
dmb st] if r_new is dmb ld then r_old is not a read from the

same thread;

7. [dmb ld/
dmb st] if r_old is dmb ld then r_new is not a memory access

from the same thread;

8. [dmb ld/
dmb st] if r_new is dmb st then r_old is not a write from the

same thread;

9. [dmb ld/
dmb st] if r_old is dmb st then r_new is not a write;

10. neither one of r_new, r_old is a dmb sy; and
11. if both r_new and r_old are memory access requests, and none

of them is a satisfied read, they are to different addresses.

1.5 Thread States

The state of a single hardware thread includes:

• thread_id, a unique identifier of the thread;
• register_data, general information about the available registers,

including name, bit width, initial bit index and direction;
• initial_register_state, the initial values for each register;
• initial_fetch_address, the initial fetch address for this thread;
• instruction_tree, a data structure holding the instructions that

have been fetched in program order; and
• read_issuing_order, a list of read requests in the order they

were issued to the storage subsystem.

1.6 Instruction State

Each instruction in the instruction_tree has a state including:

• program_loc, the memory address where the instruction’s op-
code resides;

• instruction_kind, the kind of the instruction (e.g. load-acquire);
• regs_in, the input registers, for dependency calculation;
• regs_out, the output registers, for dependency calculation;
• reg_reads, accumulated register reads;
• reg_writes, accumulated register writes;
• mem_read, one of none, pending a, requested a,

write_read_from w, where a is a memory address and w
is a memory write;

• mem_write, one of none, potential_address a, pending w, com-
mitted w, where a is a memory address and w is a memory write;

• committed, set to true when the instruction can no longer affect
the memory model (the Sail interpreter might still need to
complete the execution of the ISA definition);

• finished, set to true only after committed is set to true and the
Sail interpreter has finished executing the ISA definition; and

• micro_op_state, the meta-state of the instruction, one of plain
interpreter_state (ready to make a Sail interpreter transition
from interpreter_state), pending_mem_read read_cont (ready
to perform a read from memory) or potential_mem_write
write_cont (ready to perform a write to memory) where
read_cont is a Sail interpreter continuation that given the

value read from memory returns the next interpreter state, and
write_cont is a Sail interpreter continuation that given a boolean
value (that indicates if the store was successful) returns the next
interpreter state.

Instructions that have been fetched (i.e. in instruction_tree) and
have a finished value of false are said to be in-flight. Instructions
that have a committed value of true are said to be committed.
Load instructions with the value requested for mem_read are said
to have an outstanding read request, and if they have the value
write_read_from they are said to be satisfied. Store instructions
with mem_write = pending w are said to have a pending write. We
say instruction i has fully determined address if all instructions that
write to input registers of i that affect memory address calculation
in the ISA definition of i are committed. We say i is fully determined
if all instructions that write to input registers of i are committed.

1.7 Thread Transitions

Sail interpreter step An instruction i in meta-state plain inter-
preter_state can perform an interpreter step as follows:

• if interpreter_state indicates a memory-read event: set
i.mem_read to pending interpreter_state.read_addr and up-
date the instruction meta-state to pending_mem_read inter-
preter_state.read_cont;

• if interpreter_state indicates a memory-write-address event: set
mem_write to potential_address interpreter_state.write_addr
and update the instruction meta-state to plain inter-
preter_state.next;

• if interpreter_state indicates a memory-write-value event: set
mem_write to pending w (where w is a write request with the
value interpreter_state.write_value and the address that was
in mem_write before) and update the instruction meta-state to
potential_mem_write interpreter_state.write_cont;

• if interpreter_state indicates a register-read event: look in
instruction_tree for the most recent po-previous instruc-
tion, i’ that has interpreter_state.reg in i’.regs_out. If inter-
preter_state.reg is not in i’.reg_writes the transition is disabled.
Otherwise, add interpreter_state.reg to i.reg_reads and update
the meta-state of i to plain (interpreter_state.reg_count val)
(where val is the value written to the register by i’);

• if interpreter_state indicates a register-write event: add inter-
preter_state.reg to i.reg_writes and update the meta-state of i to
plain interpreter_state.next; and

• if interpreter_state indicates an internal step: update the meta-
state of i to plain interpreter_state.next.

Fetch instruction An instruction i, from address loc, can be
fetched, following its program-order predecessor i’ if:

1. i’ is in instruction_tree;
2. loc is a possible next fetch address for i’ according to the ISA

model;
3. none of the successors of i’ in instruction_tree are from loc; and
4. i is the instruction of the program at loc.

The possible next fetch addresses allow speculation past calculated
jumps and conditional branches; they are defined as:

1. for a non-branch/jump instruction, the successor instruction
address;

2. for a jump to constant address, that address;

3. for a conditional branch, the possible addresses for a jump1

together with the successor; and
4. for a jump to an address which is not yet fully determined (i.e.,

where there is an uncommitted instruction with a dataflow path

1 In AArch64, all the conditional branch instructions have a constant ad-
dress.

to the address), any address. This is (necessarily) approximated
in our implementation, c.f. §4.5.

Action: construct an initialized instruction instance, including static
information available from the ISA model such as instruction_kind,
regs_in, regs_out, and add it to instruction_tree as a successor of i’.

This is an internal action of the thread, not involving the storage
subsystem, as we assume a fixed program rather than modelling
fetches with memory reads; we do not model self-modifying code.

Issue read request An in-flight instruction i in meta-state pend-
ing_mem_read read_cont can issue a read request of address a to
the storage subsystem if:

1. i.mem_read has the value pending a, i.e., any other reads with
dataflow path to the address have been satisfied, though not
necessarily committed, and any arithmetic on such a path com-
pleted;

2. all po-previous dmb sy and isb instructions are committed;

3. [dmb ld/
dmb st] all po-previous dmb ld instructions are committed;

4. [
release/
acquire] if i is load-acquire instruction, all po-previous store-

release instructions are committed; and

5. [
release/
acquire] all in-flight po-previous load-acquire instructions have

outstanding read requests or were already satisfied.

Action:

1. send a read-request to the storage subsystem;
2. change i.mem_read to requested a; and
3. update read_issuing_order to note that the read was issued last.

Satisfy memory read from storage response A read response
with write w, for read request from instruction i in meta-state
pending_mem_read read_cont can always be received. Action:

1. if i.mem_read does not have the value requested the response
is ignored (this can happen when the read is satisfied by write
forwarding while waiting for the response); else

2. if there exists a po-previous load instruction to the same address
that was issued after i (i.e., issued out of order) and was satisfied
by a write that is not w, set i.mem_read to pending; else

3. for every in-flight instruction i’ that is po-after i and has read
from a write to the same address as i that is not w and not po-
successor of i, restart i’ and its data flow dependents;

4. change i.mem_read to write_read_from w; and
5. update the meta-state of i to plain (read_cont w.value).

Satisfy memory read by forwarding an in-flight write A pend-
ing memory write w from an in-flight store instruction i’ can
be forwarded directly to a load instruction i in meta-state pend-
ing_mem_read read_cont if:

1. [
release/
acquire] i is not load-acquire;

2. [exclusive] i is not load-exclusive;
3. i.mem_read has the value pending w.address or requested

w.address; and
4. i’ is po-before i, there is no other store instruction to the same

address in between them, and there is no other load instruction
in between them that has read from a different store instruction
to the same address.

Action:

1. for every in-flight instruction i” that is po-after i and has read
from a write to the same address as i that is not w and not po-
successor of i, restart i” and its data flow dependents;

2. change i.mem_read to write_read_from w; and
3. update the meta-state of i to plain (read_cont w.value).

Commit store instruction A store (not exclusive) instruction i in
meta-state potential_mem_write write_cont and with pending write
w can be committed if:

1. i is fully determined;

2. all po-previous conditional branches are committed;
3. all po-previous dmb sy and isb instructions are committed;

4. [dmb ld/
dmb st] all po-previous dmb ld instructions are committed;

5. [
release/
acquire] all po-previous load-acquire instructions are committed;

6. [
release/
acquire] all po-previous store-release instructions to the same

address are committed;

7. [
release/
acquire] if i is a store-release, all po-previous memory access

instructions are committed;
8. [exclusive] all po-previous store-exclusive to the same address are

committed;

9. [dmb ld/
dmb st] all po-previous dmb st are committed;

10. all po-previous memory access instructions have a fully deter-
mined address; and

11. all po-previous instructions that read from the same address
have either an outstanding read request or are satisfied, and
cannot be restarted (see §1.8).

Action:

1. restart any in-flight loads (and their dataflow dependants) that:

(a) are po-after i and have read from the same address, but from
a different write and where the read could not have been by
forwarding an in-flight write that is po-after i; or

(b) are po-after i, are to the same address, and have issued a
read request that has not been satisfied yet.

2. if there is no committed po-following store to the same address,
send a write request to the storage subsystem;

3. record the store as committed (i.e. set i.mem_write to committed
w and committed to true); and

4. update the meta-state of i to plain (write_cont true).

Commit failed store-exclusive instruction A store-exclusive in-
struction i in meta-state potential_mem_write write_cont can al-
ways be committed as “failed”. Action:

1. restart any in-flight loads (and their dataflow dependants) that
were satisfied by a write forward from i;

2. record the store as committed (i.e. set i.mem_write to none and
set committed to true); and

3. update the meta-state of i to plain (write_cont false).

Commit store-exclusive A store-exclusive instruction i in meta-
state potential_mem_write write_cont with pending write w and
an associated load-exclusive instruction i’ with i’.mem_read =
write_read_from w’, can be committed if:

1. i’ is committed and po-before i;
2. there is no other store-exclusive or load-exclusive instructions

po-between i’ and i; and
3. all the conditions of Commit store instruction are met.

If i’ is to the same address as i the following action is applied,
otherwise the action of Commit store instruction is applied and the
destination register is set to 0. Action:

1. send a write-exclusive request (with w as the requested write
and w’ as the required coherence predecessor) to the storage
subsystem and receive the corresponding fail/success response,
setting the destination register accordingly (0 for success and 1
for fail);

2. if the write succeeded, perform the action of
Commit store instruction; else

3. apply the action of Commit failed store-exclusive instruction.

Commit barrier instruction A barrier instruction i in meta-state
plain interpreter_state can be committed if:

1. interpreter_state indicates a barrier event is pending;
2. all po-previous conditional branches are committed;

3. [dmb ld/
dmb st] if i is dmb ld, all po-previous load instructions are

committed;

4. [dmb ld/
dmb st] if i is dmb st, all po-previous store instructions are

committed;
5. all po-previous barriers (of any kind) are committed;
6. if i is isb , all po-previous memory access instructions have a

fully determined address; and
7. if i is dmb sy, all po-previous memory access instructions are

committed.

Action:

1. record the barrier as committed (i.e. set committed to true);
2. send a barrier request to the storage subsystem; and
3. update the meta-state of i to plain interpreter_state.next.

Finish instruction An in-flight instruction i in meta-state plain
interpreter_state can be finished if:

1. interpreter_state indicates the execution of the ISA definition
has finished;

2. if i is a load instruction:

(a) all po-previous dmb sy and isb instructions are committed;

(b) [dmb ld/
dmb st] all po-previous dmb ld instructions are committed;

(c) [
release/
acquire] all po-previous load-acquire instructions are com-

mitted;
(d) let i’ be the store instruction to the same address as i that

appears last in program order before i:
i. if i’ was forwarded to iand is not a store-exclusive, i’ is

fully determined, otherwise i’ is committed;
ii. all memory access instructions, po-between i’ and i,

have a fully determined address; and
iii. all load instructions to the same address as i , that are

po-between i’ and i, are committed.

(e) [
release/
acquire] if i is a load-acquire, all po-previous store-release

instructions are committed;

3. i is fully determined; and
4. all po-previous conditional branches are committed.

Action:

1. if i is a branch instruction, abort any untaken path of execution,
i.e., any in-flight instruction that are not reachable by the branch
taken in instruction_tree; and

2. record the instruction as finished, i.e., set finished (and commit-
ted) to true.

1.8 Auxiliary Definitions for Thread Subsystem

Restart condition To determine if instruction i might be restarted
we use the following recursive condition: i is an in-flight instruction
and at least one of the following holds,

1. there exists an in-flight store instruction s such that applying the
action of the Commit store instruction transition to s will result
in the restart of i;

2. there exists an in-flight load instruction l such that applying the
action of the Satisfy memory read from storage response tran-
sition to l will result in the restart of i (even if l is already satis-
fied);

3. i has an outstanding read request that has not been satisfied
yet, and there exists a load instruction po-before i that has an
outstanding read request to the same address (maybe already
satisfied) after i; or

4. there exists an in-flight instruction i’ that might be restarted and
an output register of i’ feeds an input register of i, or i’ is a
load-acquire and i is a load and i’ is po-before i.

2. The POP Model

2.1 The Storage Subsystem/Thread Interface

The storage subsystem and a thread subsystem can exchange mes-
sages through synchronous transitions:

• a non-exclusive write request can be passed to the storage sub-
system by a thread Commit store instruction transition coupled
with a storage subsystem Accept request transition;

• [exclusive] an exclusive write request can be passed to the
storage subsystem by a thread Commit store-exclusive
transition coupled with a storage subsystem
Accept a successful write-exclusive transition;

• a (memory) barrier request can be passed to the storage subsys-
tem by a thread Commit barrier instruction transition coupled
with a storage subsystem Accept request transition;

• a read request can be passed to the storage subsystem by a
thread Issue read request transition coupled with a storage sub-
system Accept request transition; and

• a read response can be passed from the stor-
age subsystem to a thread by a storage subsystem
Send read-response to thread transition coupled with a
thread Satisfy memory read from storage response transition.

In addition to the above, when a load instruction is restarted in
the thread subsystem, all its read-requests are removed from the
storage subsystem.

2.2 Storage Subsystem State

The POP storage subsystem state includes:

• thread_ids, the set of thread IDs that exist in the system;
• requests_seen, the set of requests (memory read/write requests

and barrier requests) that have been seen by the subsystem;
• order_constraints, the set of pairs of requests from re-

quests_seen. The pair (r_old,r_new) indicates that r_old is be-
fore r_new (r_old and r_new might be to different addresses
and might even be of different kinds); and

• requests_propagated_to, a map from thread IDs to subsets of
requests_seen, associating with each thread the set of requests
that has propagated (potentially visible) to it.

2.3 Storage Subsystem Transitions

Accept request A request r_new, that is not store-exclusive, from
thread r_new.tid can be accepted if:

1. r_new has not been accepted before (i.e., r_new is not in re-
quests_seen); and

2. r_new.tid is in thread_ids.

Action:

1. add r_new to requests_seen;
2. add r_new to requests_propagated_to(r_new.tid); and
3. update order_constraints to note that r_new is after every re-

quest r_old that has propagated to thread r_new.tid, and r_new
and r_old do not meet the Flowing reorder condition (see
Reorder condition).

Propagate request to another thread The storage subsystem can
propagate request r (by thread tid) to another thread tid’ if:

1. r has been seen before (i.e., r is in requests_seen);
2. r has not yet been propagated to thread tid’;
3. every request that is before r in order_constraints has already

been propagated to thread tid’;
4. [exclusive] if r is a write, all the write exclusive requests that

have propagated to tid’ but not to tid, for which the immediate
predecessor write to the same address is order_constraints-
before r, are to a different address; and

5. [exclusive] if r is a dmb sy or dmb st, there are no write exclu-
sive requests that have propagated to tid’ but not to tid for
which the immediate predecessor write to the same address is
order_constraints-before r.

Action:

1. add r to requests_propagated_to(tid’); and
2. update order_constraints to note that r is before every request

r_new that has propagated to thread tid’ but not to thread tid,
where r_new and r do not meet the Flowing reorder condition
(see Reorder condition) and are not already ordered.

Send read-response to thread The storage subsystem can send a
read-response for read request r_read that has not been satisfied yet
to thread r_read.tid containing the write request r_write if:

1. r_write and r_read are to the same address;
2. r_write and r_read have been propagated to (exactly) the same

threads;
3. r_write is order_constraints-before r_read;
4. any request that is order_constraints-between r_write and

r_read has be fully-propagated (§2.4) and is to a different ad-
dress; and

5. [
release/
acquire] if r_read is a read-acquire and r_write is a write-release

then r_write must be fully-propagated.

Action:

1. send thread r_read.tid a read-response for r_read containing
r_write;

2. [
release/
acquire] if r_read.kind is read-acquire and there are no other re-

quests between r_read and r_write in order_constraints, switch
the positions of r_read and r_write in order_constraints and
mark r_read as satisfied; else

3. remove r_read.

Accept a successful write-exclusive A write-exclusive request
r_write from thread r_write.tid with an accompanying write request
r_write’ that was read by a po-previous load-exclusive can be
accepted and succeed if:

1. r_write meets the condition of Accept request;
2. r_write’ is in requests_seen;
3. the write r_write is to the same address as r_write’;
4. r_write’ is not the immediate predecessor of a different write-

exclusive;
5. every immediate predecessor write that is order_constraints-

after r_write’ and has propagated to thread r_write.tid is to a
different address then r_write; and

6. for every request r that has been propagated to thread r_write.tid
and is order_constraints-after r_write’:

(a) if r.tid is different then r_write.tid then r is not a write to the
same address as r_write; and

(b) if r is a dmb sy or dmb st then r is fully-propagated.

Action: the same as Accept request.

2.4 Auxiliary Definitions for Storage Subsystem

Fully propagated Request r is said to be fully-propagated if it
has been propagated to all threads and so has every request that is
order_constraints-before it.

Removing read request When a read request is removed from the
storage subsystem, due to restart of the instruction in the thread
subsystem or satisfaction, first order_constraints is restricted to
exclude the request; it is then further restricted by applying the
reorder condition to each pair of ordered requests and removing
pairs that can be reordered; finally the transitive closure of the result
is calculated.

Store-exclusive immediate predecessor The following is an
important invariant that guarantees the correct behaviour of
load/store-exclusive. Every write-exclusive has exactly one imme-
diate predecessor write to the same address in order_constraints;
moreover, that immediate predecessor has exactly one immediate
successor write to the same address in order_constraints (namely
the write-exclusive).

	The Flowing Model in Detail
	The Storage Subsystem/Thread Interface
	Storage Subsystem States
	Storage Subsystem Transitions
	Auxiliary Definitions for Storage Subsystem
	Thread States
	Instruction State
	Thread Transitions
	Auxiliary Definitions for Thread Subsystem

	The POP Model
	The Storage Subsystem/Thread Interface
	Storage Subsystem State
	Storage Subsystem Transitions
	Auxiliary Definitions for Storage Subsystem

