Part I Types: Exercise Sheet 3

Nathanael Alcock, Dylan McDermott, lan Orton, Shaun Steenkamp, Dima Szamozvanceyv, et al.

November 2018

Questions

1. Complete Exercises 1 and 2 from Lecture 9:

« Show that =A V B, A;- B true is derivable.
« Show that =(=A A =B);- + AV B true is derivable.

2. Give the proof (and refutation) terms corresponding to the derivations in the previous question.

3. Let upc(p) = pu : A. {p |a u) be a proof (and refutation) term from the calculus presented in Lectures 9
and 10.

(a) Show thatp : A;- + upc(p) : A true.
(b) Show that for all k : =A we have (upc(p) |4 k) — (p |a k).

(c) Terms p : A true correspond to proofs of A. Describe, in English, the proof that corresponds to upc(p)
with respect to the proof corresponding to p.

4. Complete Exercises 1 and 2 from Lecture 10:

+ Give the embedding (i.e., the e° and k° translations) of classical into intuitionistic logic for the Godel-
Gentzen translation. You just need to give the embeddings for sums, since that is the only case
different from the lectures.

+ Using the intuitionistic (4-) calculus extended with continuations, give a typed term proving Peirce’s

law:
(X->Y)»X)> X

5. Using the amb primitive from Lecture 11 implement a function:
eq-at : a list -> a list -> int * int

such that eq-at xs ys returns (i, j) if nth(xs,i) = nth(ys, j) and fails otherwise. You may assume
the existence of any helper functions without definition.

6. What logical operator do II-types (or dependent products) correspond to? Justify your answer.

7. Using the dependent type theory introduced in Lecture 12 show that if I' + A type then the following
typing judgement holds:

IFrsym, :IIx:Ally: A (x=y:A) - (y=x:A4))

where
symy = Ax: A Ay : A Ap: (x =y : A).subst[z : A. (z = x : A)](p, refl x)

and X — Y is shorthand for ITx : X.Y if x does not appear in Y.

8. Define terms with the following types:

(@) Trtransg : x: ATy : A llz: A.(x=y:A) > (y=2z:A) > (x =z: A))
(b) Trcong, p:Tlx: ATly: ATIf : (A— B).(x =y : A) = (fx = fy: B))

assuming that ' + A type and I + B type.

9. Consider typesI' + A type and I',x : A + B type. If we have terms a; and a; and a proof that they are
equal, T F p : (a1 = ay : A), then the types [a;/x]B and [az/x]B should also be “equal” in some sense. And
so, givenT + by : [a;/x]|Band T F b, : [a;/x]B we might want to consider the type of equalities between b;

and by.
(a) Show that the following rule is not (in general) derivable:

I'rAtype TI,x:ArBtype Tray:A Trp:(ay=ay:A) Trby:la/x]B T+ by:lax/x]|B
[+ (by = by : [a1/x]B) type

(b) Define the type of heterogeneous equalities like so:
(by = by : Boverp) = (subst[x : A. B](p, by) = by : [a2/x]B)
Show that the following rule is admissible:

F'rAtype TI,x:ArBtype Tray:A Trp:(ay=a2:A) Trbi:la/x]B T+ by:lax/x]|B
T+ (by = by : Boverp) type

(c) Define a term hrefl b such that the following rule is derivable:

I'rAtype TI,x:A+Btype T'ta:A T+b:[a/x]B
T+ hreflb: (b =~ b : Bover (refl a))

Extension

10. Download and install Agda and try out some of the examples from the lectures:
https://agda.readthedocs.io/en/latest/getting-started/index.html

If you need help or have any questions, the mailing list or #agda on the Freenode IRC network are a good

source.

11. (a) Given your answer to Question[6] what logical operator are we still missing?

(b) Extend the syntax of the dependently typed language introduced in the lectures with this dual of
II-types (also called X-types or dependent sums) and give suitable typing rules for them. (Research
“dependent sums” if you are unsure.)

(c) In first-order logic, the axiom of choice can be stated as:
(Vx € A.3y € B.P(x,y)) = (3f : A— B.Vx € A. P(x, f(x)))

GivenT + A type and T + B type, give a type I - AC type corresponding to the axiom of choice.
(d) Define aterm T + ac : AC.

12. The notes state that the rule for equality elimination is “not the most general form”. Consider the following
alternative elimination rule:
IF'rAtype Trp:(ag=az:A) T,x:Ay:(ag=x)FBtype T+b:[ar/x,(refla;)/y]B
Ik Jlx:Ay:(ar=x).Bl(p.b) : [az/x.p/y|B

such that J[x : A,y : (a1 = x). B](refl a;,b) = b.

(a) Show that subst can be derived from J.
(b) For sym, defined as in Question 7] define:

Syminv £1Ix : Ay : A Tlp: (x =y : A).(symyx(symyxyp)=p:(x =y: A))

Show thatI" SymInv type and define a term I" symlInv : SymlInv. You will need to use J.

https://agda.readthedocs.io/en/latest/getting-started/index.html

