
Part II Types: Exercise Sheet 3
Nathanael Alcock, Dylan McDermo�, Ian Orton, Shaun Steenkamp, Dima Szamozvancev, et al.

November 2018

�estions
1. Complete Exercises 1 and 2 from Lecture 9:

• Show that ¬A ∨ B,A; · ` B true is derivable.
• Show that ¬(¬A ∧ ¬B); · ` A ∨ B true is derivable.

2. Give the proof (and refutation) terms corresponding to the derivations in the previous question.

3. Let upc(p) , µu : A. 〈p |A u〉 be a proof (and refutation) term from the calculus presented in Lectures 9
and 10.

(a) Show that p : A; · ` upc(p) : A true.
(b) Show that for all k : ¬A we have 〈upc(p) |A k〉 7→ 〈p |A k〉.
(c) Terms p : A true correspond to proofs ofA. Describe, in English, the proof that corresponds to upc(p)

with respect to the proof corresponding to p.

4. Complete Exercises 1 and 2 from Lecture 10:

• Give the embedding (i.e., the e◦ and k◦ translations) of classical into intuitionistic logic for the Gödel-
Gentzen translation. You just need to give the embeddings for sums, since that is the only case
di�erent from the lectures.

• Using the intuitionistic (λ-) calculus extended with continuations, give a typed term proving Peirce’s
law:

((X → Y) → X) → X

5. Using the amb primitive from Lecture 11 implement a function:

eq-at : α list -> α list -> int * int

such that eq-at xs ys returns (i,j) if nth(xs,i) = nth(ys,j) and fails otherwise. You may assume
the existence of any helper functions without de�nition.

6. What logical operator do Π-types (or dependent products) correspond to? Justify your answer.

7. Using the dependent type theory introduced in Lecture 12 show that if Γ ` A type then the following
typing judgement holds:

Γ ` symA : Πx : A.Πy : A. ((x = y : A) → (y = x : A))

where
symA , λx : A. λy : A. λp : (x = y : A). subst[z : A. (z = x : A)](p, reflx)

and X → Y is shorthand for Πx : X .Y if x does not appear in Y .

8. De�ne terms with the following types:

(a) Γ ` transA : Πx : A.Πy : A.Πz : A. ((x = y : A) → (y = z : A) → (x = z : A))
(b) Γ ` congA,B : Πx : A.Πy : A.Π f : (A→ B). ((x = y : A) → (f x = f y : B))

assuming that Γ ` A type and Γ ` B type.

1

9. Consider types Γ ` A type and Γ,x : A ` B type. If we have terms a1 and a2 and a proof that they are
equal, Γ ` p : (a1 = a2 : A), then the types [a1/x]B and [a2/x]B should also be “equal” in some sense. And
so, given Γ ` b1 : [a1/x]B and Γ ` b2 : [a2/x]B we might want to consider the type of equalities between b1
and b2.

(a) Show that the following rule is not (in general) derivable:

Γ ` A type Γ,x : A ` B type Γ ` a2 : A Γ ` p : (a1 = a2 : A) Γ ` b1 : [a1/x]B Γ ` b2 : [a2/x]B
Γ ` (b1 = b2 : [a1/x]B) type

(b) De�ne the type of heterogeneous equalities like so:

(b1 ≈ b2 : B overp) , (subst[x : A. B](p,b1) = b2 : [a2/x]B)

Show that the following rule is admissible:

Γ ` A type Γ,x : A ` B type Γ ` a2 : A Γ ` p : (a1 = a2 : A) Γ ` b1 : [a1/x]B Γ ` b2 : [a2/x]B
Γ ` (b1 ≈ b2 : B overp) type

(c) De�ne a term hreflb such that the following rule is derivable:

Γ ` A type Γ,x : A ` B type Γ ` a : A Γ ` b : [a/x]B
Γ ` hreflb : (b ≈ b : B over (refla))

Extension
10. Download and install Agda and try out some of the examples from the lectures:

https://agda.readthedocs.io/en/latest/getting-started/index.html

If you need help or have any questions, the mailing list or #agda on the Freenode IRC network are a good
source.

11. (a) Given your answer to�estion 6, what logical operator are we still missing?
(b) Extend the syntax of the dependently typed language introduced in the lectures with this dual of

Π-types (also called Σ-types or dependent sums) and give suitable typing rules for them. (Research
“dependent sums” if you are unsure.)

(c) In �rst-order logic, the axiom of choice can be stated as:

(∀x ∈ A. ∃y ∈ B. P(x ,y)) =⇒ (∃f : A→ B. ∀x ∈ A. P(x , f (x)))
Given Γ ` A type and Γ ` B type, give a type Γ ` AC type corresponding to the axiom of choice.

(d) De�ne a term Γ ` ac : AC.

12. �e notes state that the rule for equality elimination is “not the most general form”. Consider the following
alternative elimination rule:

Γ ` A type Γ ` p : (a1 = a2 : A) Γ,x : A,y : (a1 = x) ` B type Γ ` b : [a1/x , (refla1)/y]B
Γ ` J [x : A,y : (a1 = x). B](p,b) : [a2/x ,p/y]B

such that J [x : A,y : (a1 = x). B](refla1,b) ≡ b.

(a) Show that subst can be derived from J .
(b) For symA de�ned as in�estion 7 de�ne:

SymInv , Πx : A.Πy : A.Πp : (x = y : A). (symA y x (symA x y p) = p : (x = y : A))

Show that Γ ` SymInv type and de�ne a term Γ ` symInv : SymInv. You will need to use J .

2

https://agda.readthedocs.io/en/latest/getting-started/index.html

