
Part II Types: Exercise Sheet 2
Nathanael Alcock, Dylan McDermo�, Ian Orton, Shaun Steenkamp, Domagoj Stolfa, et al.

October 2018

Some questions due to Andrew Pi�s and Benjamin C. Pierce.

Tips
• When writing proofs, it can sometimes be ambiguous to say that something holds ”by induction” when
you mean ”by the inductive hypothesis”. When that is the case, try to be clear about what you are using.

• Try to write proofs in one direction. Avoid writing some steps of the proof next to other ones without
numbering them.

�estions
1. Complete Exercises 2, 3 and 4 from Lecture 5:

• De�ne a Church encoding for the unit type.
• De�ne a Church encoding for the empty type.
• De�ne a Church encoding for binary trees, corresponding to the ML datatype
type tree = Leaf | Node of tree * X * tree.

2. Assume encodings of product and existential types in System F (and associated terms, e.g. fst e and
packα,B (A, e)). �e signature BOOL and terms yes, no and choose are given by:

BOOL = (β × β) × ∀α . β → α → α → α β ` BOOL type

yes = fst (fstb) β ;b : BOOL ` yes : β
no = snd (fstb) β ;b : BOOL ` no : β

choose = sndb β ;b : BOOL ` choose : ∀α . β → α → α → α

Note: BOOL can be thought of as an abbreviation for (β × β) × ∀α . β → α → α → α , and β can be thought
of as the implementation of the BOOL interface.

(a) De�ne a term and such that
β ;b : BOOL ` and : β → β → β

which returns the conjunction of its two arguments.
(b) De�ne a term extend such that

·; · ` extend : (∃β .BOOL) → (∃β .BOOL × (β → β → β))

which takes an implementation of BOOL, and adds and to it.
(c) What should the signature NAT of natural numbers be?

3. Complete Exercises 1, 2 and 3 from Lecture 6.

• Prove the other direction of the closure property for the Θ ` ∀α .A type case.
• Prove the other direction of the substitution property for the Θ ` ∀α .A type case.
• Prove the fundamental lemma for the forall-introduction case Θ; Γ ` Λα .e : ∀α .A.

1

4. Complete Exercise 2 from Lecture 7.
�e type safety proof for state would fail if we added a C-like free() operation to the reference API.

• Give a plausible-looking typing rule and operational semantics for free.
• Find an example of a program that would break.

5. �is question concerns the monadic language given in Lecture 8.

(a) Given types X and Y , de�ne a term:

·; · ` fmap : (X → Y) → (T X → T Y)

such that for all terms f : X → Y and values v : X and v ′ : Y where f v ∗ v ′ we have

〈σ , let y = fmap f {returnv}; returny〉 ∗ 〈σ , returnv ′〉

(b) For every type X , de�ne terms:

·; · ` ηX : X → T X

·; · ` µX : T (T X) → T X

such that for all values v : T X and v ′ : X where 〈σ , let x = v ; returnx〉 ∗ 〈σ ′, returnv ′〉 we have

〈σ , let y = µX (η(TX)v); returny〉 ∗ 〈σ ′, returnv ′〉

Extension
6. Suppose that Θ, β ` F type, and fmap is a term such that:

Θ; · ` fmap : ∀β1. ∀β2. (β1 → β2) → ([β1/β]F → [β2/β]F)

�e type µF is de�ned to be ∀β . (F → β) → β .

(a) Show that Θ ` µF type and Θ ` [µF/β]F type.
(b) De�ne terms fold and intro such that:

Θ; · ` fold : ∀β . (F → β) → µF → β

Θ; · ` intro : [µF/β]F → µF

(Hint: you will need to use fold in the de�nition of intro.)

7. Let β be a type variable. For this question, Θ ranges over type contexts that do not contain β . �e judge-
ments Θ ` A type+ and Θ ` A type− are de�ned by:

Θ ` β type+
α ∈ Θ

Θ ` α type+
Θ ` A type− Θ ` B type+

Θ ` A→ B type+
Θ,α ` A type+ α , β

Θ ` ∀α .A type+

α ∈ Θ
Θ ` α type−

Θ ` A type+ Θ ` B type−

Θ ` A→ B type−
Θ,α ` A type− α , β

Θ ` ∀α .A type−

(a) Show how to de�ne a term fmap+Θ,A for each type A such that Θ ` A type+, and a term fmap−Θ,B for
each type B such that Θ ` B type−, that satisfy:

Θ; · ` fmap+Θ,A : ∀β1. ∀β2. (β1 → β2) → ([β1/β]A→ [β2/β]A)

Θ; · ` fmap−Θ,B : ∀β1. ∀β2. (β1 → β2) → ([β2/β]B → [β1/β]B)

(Hint: the terms should be de�ned by induction on the derivations of Θ ` A type+ and Θ ` B type−.)

(b) By considering nΘ ` ∀α . α typeo, show that there is no closed term of type ∀α .α . Deduce that adding
the rule

Θ ` β type−

would make part (a) impossible to answer.

2

(c) Suppose that X and X ′ are semantic types and X ⊆ X ′. Show that if Θ ` A type+ and Θ ` B type−

then for all θ ,

nβ,Θ ` A typeo(X/β,θ) ⊆ nβ,Θ ` A typeo(X ′/β,θ)
nβ,Θ ` B typeo(X/β,θ) ⊇ nβ,Θ ` B typeo(X ′/β ,θ)

(Only do a few cases of the proof.)

8. Suppose we are given a preorder (P ,v) that has a greatest element (>), greatest lower bounds (∧), an
implication operation (=⇒) and a functionΘ assigning a meaning to each base type τ as an elementΘ(τ) ∈
P . We can then assign meanings to each type T and typing context Γ as element ΘnTo,ΘnΓo ∈ P via
recursion on their structure:

Θnτo = Θ(τ)

Θn1o = > Greatest element
Θnτ1 × τ2o = Θnτ1o ∧ Θnτ2o Binary meet
Θnτ1 → τ2o = Θnτ1o =⇒ Θnτ2o Implication

Θn·o = > Greatest element
ΘnΓ,τo = ΘnΓo ∧ Θnτo Binary meet

We say that if ∀Γ,x ,τ .Γ ` x : τ holds, then ΘnΓo v Θnτo holds in any such preorder.
Under these semantics for our types, why is Peirce’s law · ` ((τ → T) → τ) → τ not provable, whereas in
classical logic it is a tautology?
NB: the greatest element, binary meets and implication are de�ned as follows:

> : ∀τ ∈ P .τ v >
τ1 ∧ τ2 : ∀t ∈ P .t v τ1 ∧ τ2 ⇐⇒ t v τ1 ∧ t v τ2

τ1 =⇒ τ2 : ∀t ∈ P .t v τ1 =⇒ τ2 ⇐⇒ t ∧ τ1 v τ2

9. Write a term and that takes two Church booleans and returns their conjunction. (How do you change this
for or?)

10. Write a function equal that takes two Church numerals and returns a Church boolean.

11. (a) Write a function isnil that takes a Church-encoded list and returns a Church boolean.
(b) Write a function head : X → CListX → X which returns the �rst argument if the list is empty, and

the head of the list otherwise.
(c) Write a function tail : CListX → CListX which returns the empty list when applied to an empty

list, and the tail of the list otherwise.

12. (a) De�ne a predecessor function pred : N→ N→ N in PLC on Church numerals. (Mapping 0 to 0 and
n to n - 1). (Hint: use a pair (n,n − 1). Is there any other way?).

(b) Using your predecessor function de�ned above, de�ne a subtraction function on Church numerals.
(c) Approximately how many steps of evaluation (as a function of n) are required to calculate pred cn?

3

