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Abstract

Statistical inference inescapably involves dealing with uncertainty, whether “out there”

in the real world, or in the parameters of a hypothetical model. A powerful framework

built upon the foundation of Bayes’ theorem provides a set of mathematically sound

rules for manipulating a probabilistic representation of belief in the light of new ev-

idence. The Gaussian process (GP) is a widely extensible class of models to which

all the mechanics of Bayesian inference may be applied: uncertainties are propagated

into predictions for “error bars”, and the evidence framework can be employed as a

principled method for learning parameters higher in the model hierarchy.

This thesis explores methods that allow the wider application of GPs by addressing

issues of complexity and robustness. Computationally, the GP becomes unwieldy for

modelling relationships between more than a few hundred points due to the cubic

scaling of inference and quadratic scaling of prediction times. A generic algorithm is

presented, applicable to any sampling distribution, that reduces these costs to O(NM2)
and O(M2) for N data points, using a small “active set” of size M . Supervised dimen-

sionality reduction is investigated as a possible source of further advantage, and the

model is evaluated for the common task of binary classification.

For the convenience of a fully tractable GP inference problem, it is often assumed that

data have been corrupted with independent and identically distributed Gaussian noise.

In domains of heavy-tailed or heteroscedastic corruptions this assumption is inappro-

priate. A new noise model is presented in which fluctuations in sample variance are

achieved by using a second GP to partition softly between two noise regimes. This de-

sign permits an efficient deterministic inference, avoiding the need for slow stochastic

sampling of the posterior. The faithfulness of the result using an approximate posterior

is compared to that returned by Monte Carlo integration. The model is further shown

to come from a certain class of GP mixtures; applications of the design to classification

and more general regression and mixture modelling tasks are discussed, in each of

which the benefit of deterministic inference is retained.
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CHAPTER 1

Introduction

AS HUMAN BEINGS, at every waking moment we are bombarded with raw data by

our senses. From our very earliest days we recognise the familiar faces around

us; from great distances we distinguish a smile from a grimace; and from its

opening chords we identify a favourite symphony. Not only do our brains extract

salient features and process them with an extraordinary level of accuracy, they do so

remarkably quickly and with a profound tolerance of artefacts and other noise. For

millennia, these exceptional faculties have been the exclusive preserve of higher intel-

ligent life, yet now in restricted domains we can reproduce some of this remarkable

processing without recourse to organic grey matter.

Recent developments and parallels in fields as disparate as information theory, statis-

tical physics, computational learning theory, graph theory and computer science have

yielded a wealth of theoretical analyses and a library of algorithms for mechanical

inference. These can be brought to bear on datasets which humans struggle to clas-

sify or visualize, and to augment the power of human deduction with the reliability

of a machine’s calculations: many credit card applications are seen only by an artifi-

cial neural network; handwritten digit recognition is commonplace in banks; sentient

computing is entering the mainstream, with human-computer interaction assisted by

1



2 1.1 The Bayesian paradigm

emotion recognition. Evidently, the range of applications of machine learning is al-

most limitless, but this presents the theoretician with a challenge: how can one avoid

ad hoc, domain-dependent solutions, and achieve a unified approach to learning?

This thesis is about a class of probabilistic models called Gaussian processes. Although

employed in stochastic modelling since the 1940s, and later used in the field of geo-

statistics under the name kriging, their wider relevance was not realised until the mid-

1990s, since when they have enjoyed a surge in popularity amongst researchers and

practitioners alike. The Gaussian process provides one solution to the problem of

domain-dependent algorithms: prior knowledge may readily be incorporated in the

form of the kernel—a measure of correlation that lies at the core of all such models—

but the underlying probabilistic machinery and methodology remain universally con-

sistent. The price of this flexibility is paid in the complexity of the inference; an ad-

ditional cost is the non-robustness of the standard model to large errors. We hope to

extend the class of Gaussian processes without sacrificing the versatility of the origi-

nal design by addressing each of these issues; in more ambitious terms, the work is

an attempt to make the framework more akin to the efficient, resilient and endlessly

adaptable inference system carried by each of us.

We begin with an introduction to Bayesian probability, the foundation of all probabilis-

tic inference in machine learning, before considering the Gaussian process in detail.

Subsequent sections present some common methods for approximate Bayesian infer-

ence, and we conclude the chapter with an overview of the structure of the thesis.

1.1 The Bayesian paradigm

The classical theory of probability assigns to real numbers between 0 and 1 a frequen-

tist interpretation based on the limit of repeated samples. These semantics restrict

the scope of applicability to repeatable events: “there’s a 50% chance it will rain to-

morrow” is a meaningless statement to the frequentist since tomorrow can happen

only once. The Bayesian is more flexible: he interprets such numbers as subjective

degrees of belief that are manipulated consistently to derive new beliefs from evi-

dence; they can be applied sensibly to statements about the weather, or indeed to

any other event or object—or model parameter, as discussed below—about which we

hold beliefs. Formal justification for a Bayesian perspective is given by Cox (1946),

from whose postulates about reasonable belief can be derived a logical interpretation
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of probability mathematically equivalent to the frequentist or measure-theoretic view

(see also Jaynes, 2003, ch. 2). The subjective nature of Bayesian reasoning is the foun-

dation which many frequentists attack as arbitrary. It is also a strength: the Bayesian

paradigm requires its practitioners to make explicit all their assumptions in the form

of prior beliefs, assumptions which are typically less apparent in the statistical tests of

a frequentist. It also permits for the computer scientist a powerful and very general

approach to machine learning: the refinement of beliefs in the presence of data.

1.1.1 Bayes’ theorem

Imagine we have a probabilistic model M that describes a random process of data

generation, with a set of parameters ψ—for example, M is a Gaussian distribution

and ψ its mean and variance. We might ask what information we learn about ψ from

observations D. This question is usually interpreted by the frequentist as “what are

the most likely parameters to have generated the data?”, but Bayes’ theorem answers

the question directly via the simple yet profound rearrangement of an identity from

probability theory (we drop the implicit dependence on M):

p(ψ|D) =
p(D|ψ)p(ψ)

p(D)
. (1.1)

The term p(ψ) is the prior, our beliefs about the model parameters before we have

observed any data. On the left-hand side is the posterior, our beliefs updated consis-

tently with our knowledge of the model. The term p(D|ψ) is the sampling distribution,

a function of ψ called the likelihood; it defines the probability of generating the ob-

served data D using model M with parameters ψ.

Having revised our beliefs, a common task is to make predictions about some unknown

feature f⋆. Such inferences need to account for our incomplete knowledge of the true

generative parameter ψ. The frequentist, unable to accommodate beliefs over model

parameters, is restricted to a single ψ̂, usually chosen to minimize a particular loss

function. Different choices of loss function will yield different optimal ψ̂: the expected

squared error is minimized by the mean of the posterior; the expected absolute error

by the median. The mode of the posterior is known as the maximum a posteriori (MAP)

solution, and is optimal for a loss function that is zero at the true ψ and a positive con-

stant otherwise (Jaynes, 2003). It is also known as penalized maximum likelihood by

frequentists, since it can be viewed as an ad hoc refinement of the maximum likeli-

hood method to discourage highly tuned parameters. The Bayesian has reservations
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about the procedure: with an appropriate change of basis, any solution with non-zero

prior probability can be obtained as the MAP solution. Furthermore, its focus is on the

mode of the posterior, where the probability density can be very large but which is of-

ten highly unrepresentative of the distribution of posterior mass. Rather, the Bayesian

would make use of the full posterior by marginalizing ψ,

p(f⋆|M) =

∫

p(f⋆|ψ)p(ψ|D)dψ,

thereby incorporating into the prediction all the information provided by D.

1.1.2 The evidence

The denominator p(D) in (1.1) normalizes the posterior distribution. It is known as

the evidence; it is also called the marginal likelihood because we marginalize over the

parameters ψ in its evaluation:

p(D|θ) =

∫

p(D|ψ)p(ψ|θ)dψ. (1.2)

We have explicitly introduced θ here to denote optional hyperparameters that control

the distribution of the prior: Bayes’ theorem can now be applied hierarchically by

treating (1.2) as a likelihood, allowing us to refine beliefs about these hyperparameters

after observing data; indeed, the unifying paradigm of Bayesian inference treats the

model itself as just another parameter about which we maintain belief. If we compare

two models under an equal prior belief, the ratio of the posterior odds is equal to the

ratio of the evidences, or Bayes factor (Kass and Raftery, 1995)

p(M1|D)

p(M2|D)
=
p(D|M1)p(M1)

p(D|M2)p(M2)
.

The evidence is thus of fundamental importance in model selection since it can be used

as a proxy for the posterior belief. By interpreting it as a measure of generative ability,

we see that overly rigid models are penalized if they cannot place significant proba-

bility mass at D for any parameterization, whereas very flexible models (by definition

with a normalizing mass over a broad subset of the data space) cannot give significant

weight to all possible data (see fig. 1.1). Model selection by evidence maximization

therefore incorporates a natural Occam’s razor effect, pruning complexity to leave a

model sufficiently intricate to explain the observations, but without unnecessary em-

bellishments.
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Figure 1.1: The evidence and Bayesian model selection. In this stylized example, if we ob-

serve data D1, the model M2 is strongly favoured over the straitened M1, and by about

2:1 over the unnecessarily complex M3, which spreads its generative mass over a wide

area of the data domain. However, were we to observe D2 in the absence of prior informa-

tion, the posterior belief in M1 and M3 would be approximately equal, with M2 rather

implausible. Note that these relative considerations give no indication as to the absolute

truth of a model.

Having chosen a single model, which can be considered a maximum likelihood (ML)

procedure, it is also common to apply the ML principle at the level of hyperparameters

θ (known as “type-II ML”) to determine their most plausible values. This procedure

is much less prone to the overfitting that plagues ML techniques at lower levels ψ

(MacKay, 1999) and avoids the further, often intractable integration demanded by the

inflexible Bayesian. Although strictly type-II ML violates the Bayesian principle—we

are adjusting the prior (as a function of θ) after observing data—its empirical success

and computational advantages have made its use widespread in the community.

1.2 Gaussian processes
The Gaussian process (GP) is a popular and versatile tool for data interpolation. It has

the advantage of a rigorous Bayesian foundation, providing full predictive distributions

as opposed to point estimates and allowing a principled approach to model selection.

Rather than define a non-linear function in terms of a set of weights with an associated

prior (MacKay, 1991, 1992a), the GP framework places a prior directly on the space

of functions, specifying the kinds of values we expect to observe in terms of their
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mutual covariance. Fortunately we do not need to deal with all possible inputs: the

Gaussian distribution enjoys a marginalization property that allows us effectively to

ignore points not specified in the training and test sets and retain a Gaussian form.

In this section, the input domain is denoted X and the latent outputs are f = {fn}N
n=1,

where fn ∈ R. The training inputs are denoted X and test inputs X⋆, with X,X⋆ ⊂ X .

The targets in the regression case are real, for which we write y = {yn}N
n=1, yn ∈ R;

targets in the classification case are binary, yn ∈ {±1}.

1.2.1 The covariance function

GPs may be understood as the generalization of a Gaussian distribution to an infinite

index set X : formally, a GP is a collection of random variables indexed by elements of

X , any finite number of which have a jointly Gaussian distribution. To specify a GP, we

need to define its mean (as a function of some input x) and covariance (as a function

of arbitrary x and z). In most cases we will only be interested in zero-mean GPs, since

constants and linear trends can be subtracted from the data in a preprocessing stage.

The crucial component is then the covariance, which encapsulates all our beliefs about

the function we wish to learn (its amplitude, lengthscales, smoothness, etc.). It is

defined by a covariance or kernel function

k(x, z) ∈ X × X → R,

such that elements of a covariance matrix Knn′ = E[f(xn)f(xn′)] are given by k(xn,xn′).

The kernel describes the correlation between the random variables associated with the

two indices, and more generally defines a notion of “closeness” in X , since we expect

the values of the latent function to be more correlated for closer points than distant

points.

There is a restriction that any valid covariance function must be positive semi-definite.

This guarantees that our distance measure corresponds to a dot product in some high

dimensional feature space: intuitively, that it cannot provide inconsistent measure-

ments; in particular, that the evaluation of the covariance function for all pairs (x, z)

in X yields a covariance matrix K which is positive semi-definite, i.e. for which

vTKv ≥ 0 for all v ∈ R
N .
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The squared exponential

The most commonly used covariance function is the isotropic squared exponential

kSE(x, z|θ) = a exp

{

− r2

2l2

}

, θ = {a, l}, (1.3)

where r = ‖x − z‖, and θ is a set of kernel parameters:1 l defines the characteristic

lengthscale of the process, while a controls the signal variance. We describe it as a

stationary covariance function since its value depends only on the distance r between

its inputs. Samples from a process with this prior are shown in fig. 1.2a with hyperpa-

rameters a = 1 and l = 1. An anisotropic covariance function may be preferable when

the domain is multi-dimensional, especially if we do not believe all the lengthscales of

the generative process are equal: the natural extension of the squared exponential to

D dimensions is

kaSE(x, z|θ) = a exp

{

−
D∑

d=1

(xd − zd)
2

2l2d

}

, θ = {a, l1, l2, . . . , lD}. (1.4)

The Matérn class

The squared exponential kernel gives rise to functions which are infinitely differen-

tiable. Such smoothness is not always desired, and the Matérn class of covariances

provides rougher samples. Their general form is

kMat(x, z|θ) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)

, θ = {ν > 0, l > 0},

where Kν is a modified Bessel function (Abramowitz and Stegun, 1964, sec. 9.6). As

ν → ∞ we recover the squared exponential; common values are ν = 3
2

and ν = 5
2

since half-integer values allow simplification to the definition, and larger values give

processes increasingly indistinguishable from those of the squared exponential kernel.

The special case of ν = 1
2

reduces to the covariance of the Ornstein-Uhlenbeck process

used as a model for Brownian motion (Uhlenbeck and Ornstein, 1930).

1The kernel parameters should be identified with the hyperparameters of section 1.1; “parameters”

in a GP, earlier denoted ψ, are the latent f that are everywhere marginalized.
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Non-stationary covariance functions

Not all kernels must be functions only of the separation of their vector arguments. For

example, the dot product

kdot(x, z) = x · z

is a valid and non-stationary kernel function. While typically inappropriate for re-

gression, similar polynomial kernels have enjoyed success in classification problems

(Burges and Schölkopf, 1997), where the input data are normalized to prevent the

unbounded growth of the kernel output.

An early work which sparked interest in Gaussian processes amongst the machine

learning community is Neal (1996). It shows that neural networks—then a very pop-

ular tool for semi-parametric modelling—in the limit of an infinite number of hidden

units become GP models; Williams (1998) gave the first neural network covariance

function, corresponding to an erf transfer function:

kNN(x, z|Σ) =
2

π
arcsin

(

2x̂TΣẑ
√

(1 + 2x̂TΣx̂)(1 + 2ẑTΣẑ)

)

.

The input x̂ = [1xT ]T is augmented to accommodate a bias, and Σ is a weight prior,

typically diag (σ2
0, σ

2
1 , . . . , σ

2
D). The first parameter controls the variance of the neu-

ral network bias, while the remaining parameters affect the scaling in each of the D

dimensions.

Individual kernels may be combined in various ways including addition, multiplication

and convolution, to produce legitimate composite kernels. Other examples of valid

covariance functions appear in Rasmussen and Williams (2006, sec. 4.2).

1.2.2 Gaussian process regression

GIven a zero-mean GP prior, the joint distribution of the latent function at training and

test points is

p

([

f

f⋆

] ∣
∣
∣
∣
∣
X,X⋆

)

= N
([

f

f⋆

]

; 0 ,

[

Kf f Kf⋆

K⋆f K⋆⋆

])

,

where Kf f (K⋆⋆) is the matrix of kernel evaluations between all pairs of training (test)

data, and Kf⋆ is the N ×M matrix of evaluations {k(x(n),x
(m)
⋆ )}N,M

n=1,m=1; we switch the
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(a) (b)

Figure 1.2: The covariance structure imposed by the GP prior in panel (a) yields samples (grey

lines) with a characteristic lengthscale and magnitude. After observing data (black dots)

in panel (b), the posterior GP is pulled away from zero: its mean (black line) passes near

the observations, and its variance reduces in the vicinity of the data. The shaded area

shows 95% confidence intervals.

indices to K⋆f to indicate the transpose. In standard GP regression, we use a model in

which observations yn are i.i.d. corruptions of latent fn by zero-mean Gaussian noise

of variance σ2: the joint distribution of (y, f⋆) is

p

([

y

f⋆

] ∣
∣
∣
∣
∣
X,X⋆

)

= N
([

y

f⋆

]

; 0 ,

[

Kf f + σ2I Kf⋆

K⋆f K⋆⋆

])

.

Conditioning on the observations at the training inputs we obtain a Gaussian poste-

rior,2 for which the distribution over the latent function values at the test inputs is

p(f⋆|X⋆,X,y) = N
(
f⋆ ; K⋆f (Kf f + σ2I)−1y , K⋆⋆ − K⋆f (Kf f + σ2I)−1Kf⋆

)
.

We recognise this as another GP, with a posterior non-zero mean function

m(x⋆) = k(X,x⋆)
T (Kf f + σ2I)−1y,

and a covariance function

k(x⋆, z⋆) = k(x⋆, z⋆) − k(X,x⋆)
T (K + σ2I)−1k(X, z⋆)

where we write k(X,x⋆) to denote a vector of covariance evaluations.

2Standard manipulations of the Gaussian distribution are given in appendix A.
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The process of learning can be identified with the matrix inversion in mean and covari-

ance predictions, an operation which scales with N3. After inverting (K+σ2I), we can

evaluate the mean at new test inputs in time O(N) and the variance in O(N2). The

transition from prior to posterior process in the presence of observations is illustrated

in fig. 1.2b.

1.2.3 Model selection in Gaussian processes

We find the log marginal likelihood by integrating out the latent f :

log p(y|X, θ) = log

∫

N
(
y ; f , σ2I

)
N (f ; 0 , Kf f) df

= −1

2
yT (Kf f + σ2I)−1y − 1

2
log |Kf f + σ2I| − N

2
log 2π, (1.5)

where θ again denotes hyperparameters, i.e. parameters of the kernel function. There

are three terms: the first involves the observed targets y and penalizes poor fit; the

second is independent of the targets and penalizes complexity; the third is a normaliza-

tion constant. By changing properties of the kernel such as lengthscale and variance,

we can encourage the model to favour a priori certain data sets over others. The

method of type-II ML is to set the hyperparameters to those of the model most likely

to have generated the observations.

It is testament to the power of the Bayesian framework that we are able to make non-

trivial statements about hyperparameters based on just two data points: in fig. 1.3 are

evidence contours for a variety of GP models using the squared exponential kernel,

after two (one-dimensional) observations, denoted by the black dot (t1, t2). For large

l, the model expects t1 and t2 to be identical; when this is not the case it is strongly

penalized. Conversely, for small l, we would expect the observations to be independent

and there is “surprise” if they are not: predictive mass over function space is wasted in

regions where the outputs would appear independent. We conclude that the optimum

must occur at some intermediate value. The signal variance is regulated in a similar

way: very small values for a concentrate probability mass close to the origin and

cannot explain a significant deviation of the observations from zero; very large values

flatten the Gaussian pancake over an ever wider area whose value at the observation

(t1, t2) must eventually tend towards zero. In consequence, the data support the belief

in intermediate values both for lengthscale and for magnitude.
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0.034 → 0.039 → 0.001 →

0.116 → 0.195 → 0.013 →

0.042 → 0.083 → 0.075 →

Figure 1.3: These plots illustrate model selection on a training set of size two. Evidence

contours are shown for the squared exponential kernel (1.3) under a variety of parame-

terizations; we seek to maximize the value of the probability density at the data (marked

by a black dot), as a function of the process lengthscale and signal variance. The central

image shows the optimal model, while the surrounding images show how extremes of

lengthscale (too short on the left, too long on the right) and variance (too small on the

top, too large on the bottom) are penalized.

Any locally optimal setting for hyperparameters may be understood as a feasible de-

scription of the underlying generative process. However, real datasets do not always

exhibit a unique optimum, as illustrated in fig. 1.4. How we favour one model over an-

other will depend on the extent to which we embrace the Bayesian paradigm: strictly,

we should always integrate out the hyperparameters, whose posterior distribution is

p(θ|X,y) =
p(y|X, θ)p(θ|X)

∫
p(y|X, θ)p(θ|X)dθ

, (1.6)

where p(θ|X) is a hyperprior, that is, a prior on the hyperparameters. The marginal

likelihood from (1.5) appears here as the likelihood of the data given θ: although a

normalized Gaussian in y, its distribution over θ is usually very complicated, making

the integral in (1.6) analytically intractable. The committed Bayesian must then resort

to Monte Carlo methods (see section 1.5).

Type-II ML provides a much faster alternative: provided the class of models is appro-

priate, we can expect with sufficient training data that the global optimum in θ of

the marginal likelihood will be significantly more plausible than competing interpre-
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Figure 1.4: Data sets can accommodate several explanations, appearing as local maxima in

the marginal likelihood. In panel (a) we see two peaks in the evidence which correspond

to the alternative explanations of panel (b): the former a higher-frequency function with

lower noise variance, the latter a noisier, near-linear signal.

tations. A local maximum θ̂ can be found by gradient ascent on (1.5) and this single

model used to make predictions. The approximation will be adequate provided we

indeed locate the global optimum and that it is sufficiently well-peaked to be approxi-

mated by a delta function; for more details, see MacKay (1999). Notice that since our

prior on f is always fixed at zero-mean and the kernel usually has very few parameters,

we very rarely witness the overfitting problems that plague traditional ML techniques.

However, there is no certainty that a model favoured by the evidence will be a good

predictor on fresh data. If the kernel is inappropriate for the task (e.g. a linear kernel

fitting periodic observations), no predictor will generalize well: this is a question of

model mismatch. Problems with overfitting can also occur if a highly flexible kernel

is employed with too small a training set. Difficulties of this nature can in general

be detected only by using a held-out set for validation; in practice, the efficiency and

success of evidence maximization make type-II ML a popular choice.

Maximizing the marginal likelihood of a GP model with an anisotropic kernel achieves

automatic relevance determination, a probabilistically well-founded approach to iden-

tifying salient features (Neal, 1996): if our observations indicate that the output of

a function is fixed or varies only very slowly with respect to certain inputs, the most

plausible generative model will have lengthscales on these components which are very

large, and hence the associated inputs may to a first approximation be ignored.
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1.2.4 Gaussian processes as linear models

Gaussian processes can also be recovered from a Bayesian perspective on linear mod-

els, where in general the correspondence applies only for an infinite number of com-

ponents. Let the M basis functions φm(·) of a linear model operate on the data X to

form a design matrix Φ of dimensions N ×M , where Φnm = φm(xn). Consider a linear

combination of these bases weighted by a vector w = {wm}M
m=1, so that

f(xn) =

M∑

m=1

wmφm(xn) =⇒ f = Φw.

If we place on w a Gaussian prior N (w ; 0 , A) then p(f) = N
(
f ; 0 , ΦAΦT

)
, which is

recognised as a GP prior on f with zero mean and covariance function

kA(x, z) = φT (x)Aφ(z). (1.7)

From here it is possible to introduce a noise model p(y|f) and invoke Bayes’ the-

orem to obtain a posterior on f , and thence to make predictions; see for example

O’Hagan and Forster (2004, ch. 9). Indeed, this is computationally a worthwhile ap-

proach when M < N since inference costs in the linear model scale with M3.

Returning to (1.7), it is clear that covariance matrices formed from this function can

never have rank greater than M . By virtue of Mercer’s theorem (König, 1986), we can

theoretically express any kernel function as a potentially infinite sum in terms of its

eigenfunctions and eigenvalues

k(x, z) =
∞∑

m=1

λmψm(x)ψm(z).

When the number of terms is finite, such as in the explicit linear model described

above, the kernel is said to be degenerate. Models derived from such kernels can ex-

hibit counterintuitive behaviour; see for example Rasmussen and Quiñonero-Candela

(2005) and Quiñonero-Candela et al. (2007), and section 2.1.4. If there are an infinite

number of terms, such as for the squared exponential and most other commonly-used

kernels, the derived covariance matrices are always full rank, and the kernel is non-

degenerate. Quiñonero-Candela (2004, sec. 3.2) discusses the relationship between

GPs and linear models in greater detail.
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Figure 1.5: The standard model for GP classification uses a sigmoidal function to transform a

real latent signal (top left) into one constrained to [0, 1] (bottom left). Two such functions

are illustrated: the feint line corresponds to the logit, the black line to the probit. Observe

that the former is more conservative in its assignment of predictive probabilities.

1.2.5 Gaussian process classification

With the introduction of an appropriate noise model, GPs can be readily applied to

classification problems. We typically assume that examples are labelled yn ∈ {±1} in

a probabilistic manner, by passing the latent fn through a sigmoidal function bounded

by [0, 1], to obtain the probability p(yn = +1|fn). Examples of such functions are the

logit and probit transforms, illustrated in fig. 2.2a, and defined respectively

λ(fn) =
1

1 + exp(−fn)
, σ(fn) =

∫ fn

−∞

N (z ; 0 , 1) dz.

In both cases the function is antisymmetric so the probability p(yn = −1) of the oppo-

site label is 1 − σ(fn) = σ(−fn), hence p(yn) = σ(ynfn).3 Both have been used in GP

classification: the logit is employed by Gibbs and MacKay (2000) in a variational ap-

proximation (see section 1.4) where it is bounded above and below by an exponential;

use of the probit is more common for an approximation based on moment match-

ing (see section 1.3) since it renders the marginal distribution
∫
p(yn|fn)p(fn)dfn and

hence moments of fn analytically tractable.

We assume the same zero-mean Gaussian prior over f as before:

p(f |X) = N (f ; 0 , Kf f ) .

3We use the function symbol σ(·) to refer to a sigmoid function from now on, since this thesis will be

concerned almost exclusively with the probit.
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The likelihood factorizes into a product of N terms

p(y|f) =
N∏

n=1

p(yn|fn) =
N∏

n=1

σ(ynfn),

from which Bayes’ rule gives the posterior distribution over f :

p(f |X,y) =
p(f |X)

∏N
n=1 σ(ynfn)

∫
p(f |X)

∏N
n=1 σ(ynfn)df

. (1.8)

Predictions at x⋆ are made by marginalizing over the latent f⋆:

p(f⋆|X,y,x⋆) =

∫

p(f⋆|f ,X,x⋆)p(f |X,y)df ;

p(y⋆ = +1|X,y,x⋆) =

∫

σ(f⋆)p(f⋆|X,y,x⋆)df⋆.

The non-Gaussian likelihood σ(·) introduces complications in the evaluation of the

posterior (1.8): latent function values of the wrong sign are strongly penalized by the

soft threshold of the likelihood, while through the prior we penalize to a lesser extent

latent values of large magnitude. The posterior in consequence is asymmetric: it falls

sharply in regions rejected by the data, and gently in regions discouraged by the prior.

The integral needed to normalize the joint distribution is in fact intractable, and we

turn now to methods of approximation.

1.3 Expectation propagation
Bayesian inference invariably requires the solution of integrals involving the posterior,

through marginalization for expectations and predictive distributions, or in calculat-

ing the evidence. In certain cases, such as the GP with a Gaussian noise model, the

requisite integrals have a mathematically closed form; in most other cases they do

not, or its evaluation is of exponential complexity. We are forced then to use either a

tractable but inexact form for the posterior which does allow integration, or to draw

sufficient independent samples from it by a Monte Carlo algorithm that a stochastic

average constitutes a reasonable approximation to the true solution.

In the GP, we regain the advantage of tractable evidence and predictive distributions

by approximating the full posterior with a single multivariate Gaussian. The classic

technique based on this idea is Laplace’s method, which fits the mean at the peak
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of the posterior and matches the curvature there. The approximation is symmetric

and local which can lead to very inaccurate estimates when the true distribution is

strongly asymmetric, as we have suggested will be the case for binary classification.

Only by considering global properties of the approximated distribution can we expect

significant improvements, and in this thesis we will largely be concerned with the

expectation propagation (EP) algorithm of Minka (2001), which attempts to match

every marginal moment of the full posterior distribution.

Consider an intractable distribution over u that factorizes into a product of terms, for

example a prior distribution t0(u) and a series of likelihoods {tn(yn|u)}N
n=1:

p(u|y) ∝ t0(u)

N∏

n=1

tn(yn|u). (1.9)

EP constructs an approximation to (1.9) as a product of scaled site functions t̃n(u).

For computational efficiency and tractability, these sites are usually chosen from an

exponential family (see appendix A) with natural parameters θ, since in this case the

product

q(u; θ) =

N∏

n=0

t̃n(u; θn)

retains the same functional form as its components; that is, q is also a member of the

same exponential family. The optimal solution would be a set of parameters θ that

minimizes some global measure, for example the Kullback-Leibler divergence

min
θ

KL
(
p(u|y)‖q(u; θ)

)
,

but this optimization is generally intractable. EP is an iterative procedure that uses the

same divergence measure, but refines its approximation on a termwise basis only. At

each iteration, a new site n is selected. The product of the cavity distribution,

q\n(u; θ\n) =
∏

n′ 6=n

t̃n′(u; θn′),

formed by the current approximation with the omission of that site, and the true like-

lihood term tn, yields the tilted distribution

qn(u; θ\n) = tn(yn|u)
∏

n′ 6=n

t̃n′(u; θn′). (1.10)
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Figure 1.6: Each iteration of expectation propagation can be seen as projecting the tilted

distribution back into the function space F such that the moments are preserved.

The simpler optimization

min
θn

KL
(
qn(u; θ\n)‖q(u; θ\n, θn)

)

is then performed, fitting only the parameters θn. Using this divergence can be shown

equivalent to matching the moments of the two marginal distributions—although there

is no guarantee that the global moments will also match. The minimization can also

be understood as finding an optimal projection for the tilted distribution (1.10) that

lies within the chosen exponential family (see fig. 1.6). After each site update, the

moments at the remaining sites are liable to change, and several iterations may be

required before convergence.

1.3.1 EP for natural Gaussian site functions

Considerable simplifications occur if the sites are Gaussians under natural parameter-

ization (see appendix A), each of which refers only to a subset Jn of variables:

t̃n(uJn) = N U(uJn ; bn , Πn) .

Let the prior be Gaussian, such that t0 = t̃0 = N (u ; h0 , A0), and let the approximate

posterior be N (u ; h , A). The approximation is initialized equal to the prior and all
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site parameters set to zero, before steps (1) to (4) below are iterated for every site.

After each full cycle, the posterior is refreshed using (5).

1. The marginal posteriorQ(uJn) = N (uJn ; hJn , AJn) is calculated, from which we

find the cavity distribution Q\n(uJn) = N
(

uJn ; h
\n
Jn
, A

\n
Jn

)

:

A
\n
Jn

= AJn(I − AJnΠn)
−1, h

\n
Jn

= hJn + A
\n
Jn

(ΠnhJn − bn). (1.11)

2. Given an analytic expression for the zeroth moments Zn of the tilted Gaussian

Q\n(uJn)tn(uJn), we obtain derivatives w.r.t h
\n
Jn

:

Zn =

∫

Q\n(uJn)tn(uJn)duJn, αn = ∇
h
\n
Jn

logZn, νn = −∇2

h
\n
Jn

logZn. (1.12)

Observe that if Zn = ZR
n + ZO

n , as in chapter 3, then

αn =
1

Zn

(

∇
h
\n
Jn

ZR
n + ∇

h
\n
Jn

ZO
n

)

, νn = αnα
T
n − 1

Zn

(

∇2

h
\n
Jn

ZR
n + ∇2

h
\n
Jn

ZO
n

)

.

3. The new marginal posterior distribution has moments

h′
Jn

= h
\n
Jn

+ A
\n
Jn
αn, A′

Jn
= (I− A

\n
Jn
νn)A

\n
Jn
.

These can be used in the Woodbury formula to calculate the new site parameters

directly:

Π′
n = νn

(

I − A
\n
Jn
νn

)−1

, b′
n = Π′

n

(

h
\n
Jn

+ ν−1
n αn

)

. (1.13)

4. A rank-Jn update is made to the posterior. Let the change in precision be ∆n =

Π′
n −Πn, and write aJn for the Jn columns of A. Using the Woodbury formula,

A′ = A − aJn

(
AJn + ∆−1

n

)−1
aT

Jn
, h′ = A′

(
A−1

0 h0 + b
)
. (1.14)

5. Repeated low-rank updates cause loss of precision. Occasionally, we must refresh

the posterior from the prior using all the site parameters (Π,b):

A :=
(
A−1

0 + Π
)−1

, h := A
(
A−1

0 h0 + b
)
. (1.15)
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1.3.2 Marginal likelihood approximation

EP provides also an estimate of the log marginal likelihood

log p(y) = log

∫

u

t0(u)

N∏

n=1

tn(yn|u)du

by explicitly matching the zeroth-order moments, or scale, at each site inclusion. If the

posterior approximation is from an exponential family F , Seeger (2005) shows the

estimated marginal likelihood to be

L =

N∑

n=1

logCn + Φ(θ) − Φ(θ(0)), where logCn = logZn − Φ(θ) + Φ(θ\n); (1.16)

Φ(·) denotes the log partition function for F and θ(0) are the natural parameters of the

prior.

For model selection, we also require derivatives of the marginal likelihood with respect

to hyperparameters ξ. Seeger (2005) establishes the following expressions:

∇ξ(0)L = Tr
((
η − η(0)

)
∇ξ(0)θ(0)

)
and ∇ξnL = ∇ξ(n) logZn, (1.17)

where ξ(0) are hyperparameters of the prior such as kernel lengthscales etc., ξ(n) are

hyperparameters of site n only, and η denotes the moment parameters of F . In other

words, by taking advantage of the fixed point conditions of EP, which establish the

consistency of true and approximate moments up to second order of all the marginal

distributions, the dependencies between L and sites not directly affected by changes

in ξ(0) and ξ(n) cancel; see Seeger (2005) for details.

1.4 Variational methods

Variational methods allow a complex inference problem to be exchanged for a simpler

approximation parameterized by an associated set of variational parameters. The ap-

proximation forms a strict bound on the marginal likelihood of the original model, and

the task of learning becomes one of finding an optimal setting for these extra variables

to make the bound as tight as possible. In the context of machine learning, the ideas

were presented first by Hinton and van Camp (1993), although the core concepts had

appeared much earlier in the field of statistical physics (Feynman, 1972).
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The framework for variational methods in models with hidden or latent variables can

be derived from expectation maximization (EM), a classical method for parameter

optimization which we now review.4 Consider a model with parameters θ, and where

each observation has associated latent variable(s) un: if we make i.i.d. observations

y = {yn}N
n=1, the evidence is given by marginalizing over all un in the joint distribution

(where both yn and un may be vectors). By an application of Jensen’s inequality, we

find that for any auxiliary distributions q(u) = {qn(un)}N
n=1, the log marginal likelihood

L(θ)
.
= log

∫

p(y,u|θ)du

=
N∑

n=1

log

∫

qn(un)
p(yn, un|θ)
qn(un)

dun

≥
N∑

n=1

∫

qn(un) log

(
p(yn, un|θ)
qn(un)

)

dun
.
= F(q(u), θ)

= L(θ) −
N∑

n=1

∫

qn(un) log

(
qn(un)

p(un|yn, θ)

)

dun,

where F(q(u), θ) is a lower bound on L(θ) and achieves equality only when qn(un) =

p(un|yn, θ), evident from the final term which is the (non-negative) KL-divergence be-

tween q and p. If we impose restrictions on the form of q (e.g. factorizing over elements

of un when it is vectorial), this divergence will be a positive value for any distribution

qn(un) if the true distribution on un does not also satisfy the restrictions.

The EM algorithm is a maximum likelihood procedure for fitting parameters θ by alter-

nately optimizing the bound F as a function of θ for fixed statistics q(u) (the M-step),

and inference of the distribution over u for given θ (the E-step). If the distributions

qn(un) are unconstrained, the E-step makes the bound tight; if each qn is from a re-

stricted family then optimization of its variational parameters λn yields the “variational

EM” algorithm. The procedure is guaranteed to converge, and in the exact case finds

a local optimum of L. However, in common with other maximum likelihood methods,

EM concentrates on the density of the posterior over model parameters, rather than

on its mass—a fully Bayesian treatment would also accommodate a distribution on

parameters, and this is what variational Bayes or “ensemble methods” achieve.

4Variational methods are more widely applicable: see Jordan et al. (1999) or Beal (2003) for a

broader introduction and various applications.
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We extend the methodology of EM by introducing a distribution over θ and imposing a

factorization constraint on the auxiliary distribution q(u, θ) ≈ qu(u)qθ(θ). This yields

a bound on the evidence similar to that seen above;

L .
= log

∫

p(y,u, θ)dudθ

=
N∑

n=1

log

∫

qn(un)qθ(θ)
p(yn, un, θ)

qn(un)qθ(θ)
dudθ

≥
N∑

n=1

∫

qn(un)qθ(θ) log

(
p(yn, un, θ)

qn(un)qθ(θ)

)

dudθ
.
= F(qu(u), qθ(θ)).

Now equivalent E- and M-steps are alternated for the distributions over hidden vari-

ables and parameters, which by functional differentiation are discovered to be

q(t+1)
n (un) ∝ exp

(∫

q
(t)
θ (θ) log p(yn, un|θ)dθ

)

VBE-step;

q
(t+1)
θ (θ) ∝ p(θ) exp

(∫

q(t+1)
u (u) log p(y,u|θ)du

)

VBM-step,

where qu(u) =
∏N

n=1 qn(un), a factorization which occurs as a consequence of the

i.i.d. assumption. We see that whereas the original EM optimized in its M-step a bound

on the evidence by selecting optimal θ, in variational methods the evidence L is a con-

stant since both u and θ are marginalized; the associated M-step only ever improves

the bound F , thus incorporating a natural complexity penalty where standard EM can

“blow up”. This bound may also be used sensibly as a guide for model selection.

Recall that the KL divergence is asymmetric. In variational methods we use KL
(
q‖p) =

∫
q(u) log q(u)

p(u)
du, in which the expectation is with respect to the approximating dis-

tribution. In a sense, this is the “wrong way around”, because the region in which

the approximation must be accurate is governed not by the true distribution but by

the approximation itself. The result is a consistent underestimation of variance: we

are penalized for placing excessive q-mass in regions where p has little, and tend to

focus on a single mode of the posterior. In contrast, the divergence employed by EP, in

which the arguments are reversed, demands that q is somehow representative across

the entire space of p; it penalizes distributions which do not have mass where p places

significant probability. In fact, both forms of the divergence are two points on a con-

tinuous scale of α-divergences (Amari, 1985), which interpolates smoothly between

(and beyond) the two regimes; see also Paquet (2007).
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1.5 Stochastic inference
Instead of approximating a complicated distribution p(x) with something tractable q(x)

and using the approximation to evaluate expectations

〈f(x)〉p(x) =

∫

f(x)p(x)dx ≈
∫

f(x)q(x)dx,

we can attempt to generate independent samples x(t) from p, such that almost surely

by the strong law of large numbers, as T → ∞, averages with respect to the samples

converge to the true result:

∫

f(x)p(x)dx ≈ 1

T

T∑

t=1

f(x(t)). (1.18)

The challenge is then to devise efficient means of generating effectively independent

samples from arbitrary distributions. In this field the literature is very extensive, and

we omit discussion of certain methods (importance sampling and rejection sampling,

for example) that are not directly relevant to the thesis. A more expansive review

appears in MacKay (2003, ch. 29 and ch. 30).

1.5.1 Markov chains

The fundamental aim of Markov chain Monte Carlo (MCMC) is to establish a Markov

chain that, in the limit of infinite time, draws independent samples from the posterior

distribution of interest. Formally, a first-order Markov chain consists of a series of

random variables x(1),x(2), . . . with the conditional independence assumption

t(x(τ+1)|x(1), . . . ,x(τ)) = t(x(τ+1)|x(τ)).

We will consider only homogeneous Markov chains, for which transition probabilities

t(x(τ+1)|x(τ)) are the same for all τ . A distribution s(x) is invariant with respect to a

set of transition probabilities provided

s(x) =
∑

x′

t(x|x′)s(x′);

a sufficient condition for invariance is that the transitions satisfy detailed balance:

s(x)t(x′|x) = s(x′)t(x|x′).
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We will also require ergodicity, i.e. that for any initial distribution t(x(0)), the chain

eventually converges to the invariant or equilibrium distribution. Aperiodicity and ir-

reducibility are sufficient to ensure this property of homogeneous Markov chains: the

first condition means there are no cycles of states (for which there could not be conver-

gence); the second that it must be possible to reach any state from any other, i.e. the

transition graph is connected. For further details, consult Neal (1993) or Andrieu et al.

(2003). Note that, although consecutive states of the chain are correlated, sufficiently

well-separated samples can be considered essentially independent.

1.5.2 The Metropolis-Hastings algorithm

In order to establish the desired invariance, we employ the following selection crite-

rion. From state x(τ) we make a proposal by drawing a sample x⋆ from the proposal

distribution q(x⋆|x(τ)); this may be any potentially asymmetric distribution, but is most

commonly the isotropic Gaussian. The probability of acceptance is given by

a(x⋆|x(τ)) = min

(

1,
P (x⋆)

P (x(τ))

q(x(τ)|x⋆)

q(x⋆|x(τ))

)

, (1.19)

where the normalized posterior p(x) = 1
Zp
P (x), but evaluation of the normalizing

constant Zp is not required. The second factor corrects for bias in the transition prob-

abilities due to an asymmetric q. This criterion appeared first in Hastings (1970),

generalizing the work of Metropolis et al. (1953) which was applicable only to sym-

metric proposals. If the new state is accepted, we update x(τ+1) := x⋆; if the new state

is rejected, the current state is repeated x(τ+1) := x(τ).

It is straightforward to show that this procedure satisfies the demand of detailed bal-

ance, and hence that the posterior p(x) is the invariant distribution of the chain. The

problem with a näıve application of Metropolis-Hastings is the rate at which it explores

the state space. If we consider the isotropic Gaussian proposal, at each step its sug-

gested new state x⋆ is independent of previous choices, giving rise to random walk

behaviour where in general it takes a number of steps proportional to N2 to travel a

distance N from our initial state. We can reduce the constant factor by making larger

jumps (i.e. broadening the proposal distribution), but only at the risk of a greater re-

jection rate: consider an elongated Gaussian from which we seek to draw samples,

whose largest component of variance is σ2
max, and whose smallest is σ2

min. An indepen-

dent sample requires that we traverse its longest dimension, but to keep rejection rates
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low, the proposal density should not be much broader than σ2
min, hence we will need

to draw O ((σ2
max/σ

2
min)

2) intermediate samples.

From the initial state x(0) there will be some time during which the chain is migrat-

ing towards the typical set of states; this period is called the burn-in and should be

discarded from the set of samples used in the approximation (1.18). As mentioned

above, states x(τ) and x(τ+1) are strongly correlated, and to accumulate independent

draws from the posterior, we may have to discard many of these intermediate samples.

To help identify these periods, it is useful to examine the auto-correlation of the chain

for different displacements.

Gibbs sampling

A special case of Metropolis-Hastings is Gibbs sampling, in which we update the state

componentwise, drawing samples from the relevant conditional distributions. After

initializing x(0) = {x(0)
1 , x

(0)
2 , . . . , x

(0)
D },

sample x
(t+1)
1 from p(x1|x(t)

2 , . . . , x
(t)
D )

sample x
(t+1)
2 from p(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
D )

...

sample x
(t+1)
D from p(xD|x(t+1)

1 , . . . , x
(t+1)
D−1 ).

Two benefits are that we no longer need devise a suitable proposal distribution, and

that states are always accepted (it can be confirmed that the acceptance ratio (1.19)

will always evaluate to 1). However, we do not eliminate random walk behaviour, and

it becomes difficult to achieve coordinated updates in the state since by construction

it is allowed to evolve only by component-wise transitions. An idea called overrelax-

ation (Adler, 1981; Neal, 1995) makes some compensation by biasing the updates

conditional on the current x(t) to encourage a greater change in state.

1.5.3 Hamiltonian Monte Carlo

We can reduce the random walk behaviour of standard Monte Carlo methods by in-

corporating gradient information from the probability density to drive proposals pref-

erentially towards areas of higher probability. This can be achieved by inventing a

fictional dynamical system in which “position” variables correspond to the states x of
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interest, and auxiliary “momenta” p describe the rate of change of state variables. A

random initial “flick” of the state imparts momentum which evolves as defined by the

Hamiltonian dynamics, and after a finite number of discrete simulated timesteps, the

new state is accepted according to the Metropolis rule. Because of the persistence of

momentum from the initial flick, the state evolves in a more ordered manner than the

random walk of standard methods.

In more detail, we write the probability from which we wish to sample as

p(x) =
1

Zp
exp (−E(x)) ,

where E(x) is interpreted as the “potential energy” of a state x. The acceleration

defined as the rate of change of momentum is due to the curvature of the probability

surface and given by the negative gradient of the potential energy:

dpd

dτ
=
∂E(x)

∂xd
.

The momenta, defined as pd = dxd

dτ
, contribute “kinetic energy”

K(p) =
1

2
‖p‖2,

yielding the Hamiltonian or total energy

H(x,p) = E(x) +K(p).

Since the Hamiltonian is separable, by generating samples from the joint probability

whose energy is H, we can obtain samples from p(x) simply by discarding the momen-

tum variables.

Initially, a fresh sample is drawn for p from its Gaussian prior exp(−K(p))/ZK , essen-

tially a Gibbs sample which is always accepted. Next we propose a change in x by

evaluating a sequence of discrete time approximations to the evolution of the dynam-

ical system:

dx

dτ
= p;

dp

dτ
= −∂E(x)

∂τ
.
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Algorithm 1 Hamiltonian Monte Carlo

1: g = ∇E(x(0))
2: E = E(x(0))
3: for t = 1 to T do

4: p = N (p ; 0 , I) {randomize momentum}
5: H = 1

2
‖p‖2 + E

6: x⋆ = x; g⋆ = g

7: for τ = 1 to τmax do {simulate Hamiltonian dynamics to time τmax}
8: p = p− ǫg⋆/2
9: x⋆ = x⋆ + ǫp

10: g⋆ = ∇E(x⋆)
11: p = p− ǫg⋆/2
12: end for
13: E⋆ = E(x⋆)
14: H⋆ = 1

2
‖p‖2 + E⋆ {evaluate Hamiltonian of new state}

15: accept with probability min(1, exp (−(H⋆ −H)))
16: if accept then

17: g = g⋆; x = x⋆; E = E⋆

18: end if
19: end for

In a perfect simulation, i.e. by using sufficiently small step size ǫ, the Hamiltonian H

remains constant and we would always accept the update. However, the discretization

introduces errors which accumulate in the intermediate x and p, and we use the ac-

ceptance criterion (1.19) to reject states which have a lower probability. In order to

minimize these errors, it is common to employ “leapfrog” steps in which updates to

p and x are interleaved. After τmax/ǫ steps we will have evolved the system to time

τmax. The relevant code appears on lines 8–13 in algorithm 1, which summarizes the

entire process. Further details on Hamiltonian (elsewhere “hybrid”) Monte Carlo can

be found in Neal (1993), Andrieu et al. (2003), and MacKay (2003).

1.6 Structure of the thesis

This introductory chapter has presented some important results from the core theory

of probabilistic machine learning. More advanced material directly relevant to the

research has been collated in the subsequent chapters.

• Chapter 2: Sparse Gaussian process classification. This chapter explores in

detail how the so-called FITC model for Gaussian processes, which constructs a
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low-rank-plus-diagonal approximation to the covariance, can be extended from

the case of Gaussian noise (a model which appeared in Snelson and Ghahramani

(2006a) as the “pseudo-input Gaussian process”) to arbitrary noise models, using

expectation propagation to drive the inference. We focus on binary classification

although our algorithm is widely applicable. Some of this material appeared in

Naish-Guzman and Holden (2008a).

• Chapter 3: Robust Gaussian process regression. In this chapter, we describe a

new model for robust regression which uses a secondary gating process indirectly

to model the noise on the data. It is described how inference by expectation prop-

agation is analytic, providing considerable speed advantage when compared with

the Monte Carlo methods required by more complex GP mixtures. This model,

the “twinned Gaussian process”, appeared first in Naish-Guzman and Holden

(2008b).

• Chapter 4: Extending the twinned Gaussian process. We further develop

ideas from chapter 3, presenting a family of related GP mixture models in which

all inference can be conducted by EP. Our examples include noise models for

classification, regression and more general mixture modelling.

• Chapter 5: Conclusions, in which appear our concluding remarks.

• Appendices A–C. We have elected to present the longer derivations and proofs in

appendices, allowing the elaboration of our ideas to flow more freely. Appendix

A summarizes some mathematical preliminaries involving exponential families,

Gaussian distributions and matrix algebra; appendix B collates the material from

chapter 2; and appendix C does likewise for chapter 3.

• Appendix D. This appendix describes a method of constructing kernels from a

basis class of threshold functions. By placing a novel prior on the class of linear

halfspaces, we are able to integrate over their evaluation at arbitrary inputs to

give a new non-stationary kernel function. Much of the material first appeared in

Naish-Guzman et al. (2005); we have placed it in the appendix due to its more

distant relationship to the main themes of the thesis.



CHAPTER 2

Sparse Gaussian process classification

PRINCIPAL AMONG THE challenges facing a practical application of Gaussian pro-

cesses is the computational overhead of learning; we have seen how this proce-

dure scales with N3 for N inputs, and how prediction takes O(N2). In recent

years, there has been great interest in attempting to summarise the full GP using only

a fraction of points M ≪ N known as the inducing inputs or active set, yielding a

sparse predictor whose training and test times scale typically like O(NM2) and O(M2)

respectively. Key to the ability of such methods is how this small set is chosen, and

what probabilistic relationship is imposed between it, the remainder of the training

data, and fresh test inputs. Beyond the realm of Gaussian noise, there is the additional

consideration of how to handle an intractable posterior.

We identify in section 2.1 some recent approaches to sparsification, devoting most of

our attention to the tractable case since more general likelihoods lend little insight

and can obscure the fundamental concepts. We then examine in greater detail the

model of Snelson and Ghahramani (2006a), which in section 2.2 is generalized to non-

Gaussian likelihood distributions. The new model is applied to binary classification in

section 2.3, followed in section 2.4 by a discussion. In section 2.5 we conclude with an

evaluation of an extension intended for high-dimensional inputs, which reduces the

number of hyperparameters to optimize by projecting data into a subspace.

28
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2.1 Existing methods

The problem of speeding up training and prediction for GP models has been attacked

from several directions, leading to a profusion of closely-related ideas presented by

researchers with diverse backgrounds. Despite their assorted histories, it was illus-

trated by Quiñonero-Candela and Rasmussen (2005) that some of these ideas are very

closely related. We adopt the unifying framework of their paper later in this chapter,

but initially present the considerations required in the simplest method of all: it serves

as a useful benchmark, and introduces concerns which apply also to many of the more

complicated models.

2.1.1 Subset of data

If we ignore all but M < N training inputs, we restrict time complexity to O(M3)

since inference is based on only M observations. When the noise model is Gaussian,

predictions are made

p(f⋆|Kf̄ f̄ ,yM) = N
(
f⋆ ; K⋆f̄(Kf̄ f̄ + σ2I)−1yM , K⋆⋆ − K⋆f̄ (Kf̄ f̄ + σ2I)−1Kf̄⋆

)
,

requiring the inversion of an M ×M matrix only. In this notation, Kf̄ f̄ is the evalua-

tion of the covariance function at only the chosen subset, in later contexts identified

as the “active set”; Kf̄⋆ is the covariance matrix of correlations between the test data

and elements of this subset; yM are the observations restricted to the active set. This

simplification allows a considerable speed-up, and if the data exhibit redundancy it

need not compromise performance, but in general we run the risk of losing important

information from the training set. Although simplistic, the subset of data (SD) method

shares common considerations with its more advanced cousins below; a crucial ques-

tion is: how should the active set be chosen?

For any measure of goodness of fit, finding the optimal solution is a combinatorial

problem: there are
(

N
M

)
subsets of size M . To avoid the exponential complexity that

results, we could draw the active set entirely at random but this is unlikely to be effec-

tive in general. We may alternatively run a clustering algorithm and use directly the

centres obtained for the inducing inputs. A more principled approach is to build the set

greedily, including into it at each iteration that point which (in some sense) best im-
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proves the approximation.1 Several metrics for “improvement” have been suggested,

some of which are extremely quick to evaluate and allow an optimal choice with re-

spect to all the remaining data; others are rather expensive, and allow evaluation of

only a fixed-size subset to retain a linear scaling with N .

Conceptually, we may imagine the most informative point should be that which causes

greatest decrease in uncertainty of the current approximation, as the broad prior col-

lapses upon the sharper peak of the posterior. The informative vector machine (IVM),

introduced by Lawrence et al. (2003), is an SD method that implements this idea

with a very efficient O(1) measure based on either the differential entropy H [p(fn)] −
H [p(fn|yn)] or the information gain KL (p(fn|yn)‖p(fn)) of including a point into the ac-

tive set. From the marginal distribution after an inclusion, p(fn|yn) ∝ p(yn|fn)p(fn), we

find that in the case of Gaussian noise σ2 on observations and a current marginal dis-

tribution p(fn) = N (fn ; µn , σ
2
n), the variance of the posterior is (σ−2 + σ−2

n )
−1

. Using

the fact that the entropy of a Gaussian with variance σ2 is 1
2
log (2πeσ2), the differential

entropy is 1
2
log (1 + σ2

n/σ
2), a monotonically increasing function of σ2

n. The inclusion

rule is simple: pick the point with greatest marginal variance.

The process of inclusion can be handled efficiently if we adopt an appropriate rep-

resentation for the approximate posterior. Expectation propagation (EP) provides a

useful foundation for the IVM, since by clamping most of the site parameters to zero

the associated basis functions are automatically pruned from the model. Careful con-

sideration of the matrix algebra allows us never to represent explicitly the full covari-

ance, and only parameters of sites actively involved in the approximation are stored.

Efficiency is achieved by observing that an inclusion grows the matrix Kf̄ f̄ by a single

row and column, possible in O(MN) by working with the partitioned matrices; details

appear in Seeger (2003, sec. 4.4.1 and app. C.3.1). The further advantage of using

an EP scheme is that we implicitly prescribe a method for site inclusions, namely mo-

ment matching, which can be applied to any factorizing likelihood (possibly requiring

one-dimensional quadrature). As such, the IVM constitutes a fairly general class of

models, and in particular can be extended easily to binary classification. However, as

with all SD methods, after sufficient data have been accumulated into its active set,

predictions are made using the inducing inputs alone. In this respect, SD is a compres-

1There are parallels here with the idea of active learning (MacKay, 1992b), in which the learner
can pose questions about the distribution at particular inputs, and the challenge is to ask those whose

answers will be most informative.
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sion scheme: other points are influential only in the weak sense of having guided the

manner in which the model was grown.

There remains the crucial issue of fitting hyperparameters θ in SD methods. If we

choose the inducing inputs randomly then the SD approximation to the evidence

p(y|X) ≈ N
(
y ; 0 , Kf̄ f̄ + σ2I

)

can be optimized, with the proviso that with insufficient points included the approxi-

mation will be rather poor. If we use a greedy algorithm to grow the set incrementally,

more care is needed because of interference between the choice of inclusion and the

optimal θ: variations in the hyperparameters will affect which point should next be

included; conversely, the growing active set may change at each iteration the optimal

setting for θ. Seeger et al. (2006) describe how the two sets of updates can be in-

terleaved in the IVM, but acknowledge difficulties in convergence. A subtle problem

arises in particular for the EP approximation to the marginal likelihood used in the

IVM, since after inclusion the sites are not further refined, so the preconditions for the

derivation of section 1.3.2 do not apply.

2.1.2 Reduced rank methods

To improve on SD we need somehow to account for the data outside the active set. A

recurring expression in the literature is the so-called Nyström approximation

Kf f ≈ Qf f
.
= Kf f̄K

−1
f̄ f̄

Kf̄ f , (2.1)

which is an approximation of maximum rank M to the full covariance, given in terms

of Kf̄ f̄ (the covariance of elements in the active set) and Kf f̄ (correlations between

the active set and the remaining data). In general, we will write Qab
.
= Kaf̄K

−1
f̄ f̄

Kf̄b.

This expression can be used to advantage directly as an approximation to Kf f because

inversions can be speeded up with the matrix inversion lemma (A.2):

(Kf f + σ2I)−1 ≈ (Qf f + σ2I)−1 = σ−2I − σ−2Kf f̄(σ
2Kf̄ f̄ + Kf̄ fKf f̄)

−1Kf̄ f .

The form (2.1) has been derived via an eigendecomposition of K in which only M

eigenvectors are retained (Williams and Seeger, 2001; Rasmussen and Williams, 2006,

sec. 8.1). Smola and Schölkopf (2000) consider instead an optimization problem in
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which the kernel at each of the training points is approximated by a linear combina-

tion of the kernels k(x(m), ·) associated with the active set. In this setting, (2.1) arises

from a particular error criterion that minimizes the deviation between the true kernel

functions and the induced approximations; the active set is grown greedily in an effort

to minimize the criterion.

Several authors (Lawrence et al., 2003; Seeger et al., 2003; Seeger, 2003) have re-

garded the task of finding a sparse model as making an approximation to the like-

lihood. Cast as an optimization involving the divergence KL(q(f |y)‖p(f |y)) (where

q(f |y) ∝ p(f)q̃(y|f̄), and the likelihood approximation q̃ is restricted to a function of

f̄), Seeger derives a model he calls projected latent variables (PLV). The “projection”

occurs through the incorporation by q̃ of elements outside the active set: rather than

ignore them as in SD, their latent f are modelled at the predictive mean that the SD

method would provide (in the Gaussian case with the addition of noise σ2), to provide

an improved approximation to the marginal likelihood. Observe two properties of this

measure: first, the divergence is the “wrong way around”, in the sense discussed in

section 1.3. Second, it is with respect to the posterior distribution, i.e. we have in-

cluded the noise model in the heart of the approximation, which by this interpretation

obscures a fully generic interface.2

For projected process models there arises the issue of how to select the active set.

Smola and Bartlett (2001) suggest a greedy approach which takes as criterion the

quadratic term from the log marginal likelihood yT (Qf f + σ2I)
−1

y. As well as being

prohibitively expensive to evaluate, allowing only a small number of random probes to

avoid quadratic scaling with N , Quiñonero-Candela (2004, sec. 3.3.5) shows how the

criterion lacks the evidential regularization required to avoid overfitting. Seeger et al.

(2003) suggest an alternative greedy strategy, very similar to that employed for the

IVM, which uses a cheap approximation to the information gain (the full version being

too expensive to compute). Csató and Opper (2002) consider instead an online set-

ting in which training data are presented individually. There, the decision of whether

to include a fresh input is made by measuring its “novelty” (defined as the predictive

variance according to the sparse model) and comparing it to a simple threshold. If the

active set grows beyond some limit M , it is also described how less informative points

can be removed to stay within memory bounds (Csató and Opper, 2002, sec. 3.3).

2However, we shall see an interpretation which divorces the likelihood from the sparsifying approx-

imation in section 2.1.3.
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2.1.3 Sparse methods as prior approximations

We turn now to the framework of Quiñonero-Candela and Rasmussen (2005), which

allows us more easily to appreciate the restrictions imposed by PLV and compare it

to similar models. This framework consists of simplified GP models, all understood

in terms of different approximations to the prior. On reflection, this seems more nat-

ural than Seeger’s interpretation of sparse models as posterior approximations, since

the factorizing likelihood does not introduce any computational burden and in isola-

tion could be represented exactly. Training a GP is difficult because of the densely

connected prior covariance: only by making (implicitly or explicitly) a factorizing as-

sumption can the cost of its manipulation be reduced. The new perspective provides

the further benefit that any likelihood can be “plugged in” to such approximations

without changing the theoretical basis, leading to more modular algorithms.

Suppose our GP includes a set X̄ ⊂ X of inducing inputs, possibly but not necessarily

a subset of the training data, and observe that by the consistency of GPs, the joint prior

over latent values corresponding to training and test data (f , f⋆) can be recovered by

marginalizing over f̄ , the function values at X̄:

p(f , f⋆) =

∫

p(f , f⋆|f̄)N
(
f̄ ; 0 , Kf̄ f̄

)
df̄ .

Quiñonero-Candela and Rasmussen (2005) reveal the nature of many sparse approxi-

mations to be a decomposition of the conditional prior p(f , f⋆|f̄) into separate training

and test conditionals, yielding an approximation to the joint prior over (f , f⋆)

q(f , f⋆) =

∫

p(f |f̄)p(f⋆|f̄)N
(
f̄ ; 0 , Kf̄ f̄

)
df̄ . (2.2)

This restriction severs the direct connection between training and test cases, forcing

all communication through the bottleneck of the inducing inputs. A variety of schemes

can then be recovered by making further approximations to each of the two conditional

distributions; for example, PLV uses a deterministic approximation to the training con-

ditional (so-called DTC)

qDTC(f |f̄) = N
(
f ; Kf f̄K

−1
f̄ f̄

f̄ , 0
)
,

but retains the exact test conditional q(f⋆|f̄) = p(f⋆|f̄). Consider the generative model:

we sample f̄ from the true prior, but fix f at the mean of the predictive process, adding
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replacements

(a) DTC (b) FITC

Figure 2.1: Fantasy data drawn from two sparse generative models, parameterized by the

inducing inputs denoted by black dots. The mean of f appears as a black line.

i.i.d. signal noise to obtain observations y. Viewed in this way, it is clear that the

method inherently underestimates variance away from the inducing inputs: where the

generative variance should grow to that of the prior, it is instead fixed to the variance

on observations (see fig. 2.1a). In a low-noise regime this is especially problematic for

estimates of the marginal likelihood, since the prior cannot explain significant devia-

tions from zero in regions away from the active set. The predictive distribution can also

be regarded as faulty: when the inducing inputs are a subset of the data (as was the

case until the work of Snelson and Ghahramani (2006a), see below), the mean predic-

tion fails to interpolate correctly, noticeable primarily in environments with minimal

noise (see Snelson, 2007, sec. 2.3.8).

An even simpler model, the subset of regressors, was introduced by Silverman (1985),

and reappeared in Wahba et al. (1999) and Smola and Bartlett (2001). It shares the

training conditional of PLV, but uses additionally a deterministic approximation for the

test conditional

qDIC(f⋆|f̄) = N
(
f⋆ ; K⋆f̄K

−1
f̄ f̄

f̄ , 0
)
.

The model becomes equivalent to exact inference in a GP with the degenerate ker-

nel k(x, z) = Q(x, z)
.
= k(x, X̄)K−1

f̄ f̄
k(X̄, z). There are some fundamental problems

associated with degeneracy, identified several times in the literature (for example, in

Quiñonero-Candela and Rasmussen, 2003), and which we discuss in section 2.1.4.
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Snelson and Ghahramani (2006a) propose a more elaborate model in which the short-

comings of PLV are addressed, and which they call the “sparse pseudo-input GP”

(SPGP). It consists of two distinct innovations: first, the approximation to the co-

variance of the conditional distribution p(f |f̄) is enriched; second, they allow the ac-

tive set to be located freely in the input space rather than restricted to a subset of

the training data. The generative process is similar to DTC, but the f appear now

as independent samples drawn from the true predictive process p(fn|xn, f̄), which

amounts to a full independence assumption on the training conditional; as such,

Quiñonero-Candela and Rasmussen (2005) use the acronym FITC.3

qFITC(f |f̄) = N
(
f ; Kf f̄K

−1
f̄ f̄

f̄ , diag (Kf f −Qf f )
)
;

the correlations of the full GP have been lost, but the marginal variances are exact:

see fig. 2.1b. In terms of divergence, Snelson (2007) observes that the FITC solution

is obtained by minimizing KL(p(f , f̄)‖q(f , f̄)) subject to the constraint that the q(f |f̄)
factorize (in which case q(fn|f̄) = p(fn|f̄)). Observe that this divergence measure

seems more appropriate than that employed in PLV, and that the likelihood has not yet

entered the model.

In his thesis, Snelson establishes that the work of Csató and Opper (2002) was in fact

first to introduce the FITC approximation, something obscured for many years by its

very different presentation and motivation as an online method. The model is initial-

ized at the prior and uses a moment matching scheme for non-Gaussian likelihoods

(which is exact in the tractable case). By processing the data sequentially, it also en-

forces the factorizing assumption central to FITC. However, unlike the SPGP and its

generalization here, the FITC evidence approximation is not used to set hyperparam-

eters, nor of course more generally to optimize the placement of points in the active

set, which in Csató and Opper (2002) are training inputs deemed sufficiently “novel”

to be accumulated into X̄.

By using an approximation that more faithfully represents the true covariance Kf f we

can develop even more accurate models. One approach that assures us of a positive

3In the original paper, Snelson and Ghahramani place the pseudo-inputs randomly and learn their

locations by non-linear optimization of the marginal likelihood. Here, the term FITC is used to refer to
the derived covariance structure only, and SPGP to imply the additional use of gradient information to

locate the active set. As emphasized in Quiñonero-Candela and Rasmussen (2005), the FITC approxi-
mation is applicable regardless of how the inducing inputs are obtained, and other schemes for their

initialization could equally well be married with the algorithm.
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definite result is to use block elements along the diagonal. In this case, we recover

PITC or the “partially independent training conditional” assumption, which appears

in a different guise at the core of the Bayesian committee machine (BCM) introduced

by Tresp (2000). A second innovation of the BCM was its transductive nature: the

active set is simply fixed at the test inputs. However, analogously to the separation of

pseudo-input optimization and FITC approximation, the new perspective on sparse GP

models makes it clear that the concepts of blocking and transduction can be treated

separately—indeed, it is much less clear that the transductive element is even helpful;

for example it delays until testing much of the “learning” that a GP requires, causing

complexity of prediction to scale with N . Snelson and Ghahramani (2007) extend

the blocking structure to the test inputs also, effectively partitioning the input into a

collection of loosely coupled GPs; by analogy, the acronym PIC is used.

2.1.4 Relevance vector machines

The relevance vector machine (RVM) of Tipping (2001) is a general attempt to encour-

age sparsity in linear models. By attaching an individual weight to each component

and placing on them a diagonal Gaussian prior, in the maximum likelihood limit of

optimizing all these extra parameters it is often found that many are driven to zero,

pruning the corresponding functions from the model.4 There is something curious

about this process, which in certain circles sparks lively debate as to whether it even

qualifies as “Bayesian”: the model is likely not one we believe in, and all the additional

weights should strictly be marginalized and not optimized (which of course would nul-

lify the computational advantage).

However, there are issues beyond the conceptual: the method can be understood as

a special form of degenerate GP (see Rasmussen and Williams, 2006, sec. 6.6), and

therefore inherits some undesirable features. Although it tends to fit the mean pro-

cess accurately and with remarkable sparsity, its variance predictions are nonsensical,

shrinking to zero away from the data for radial basis functions (where all of the ker-

nels predict near-zero signal), and in general making predictions of limited flexibil-

ity. This curious property is explored in Quiñonero-Candela (2004, sec. 2.5.1) and

Rasmussen and Quiñonero-Candela (2005), where augmentation is used to “heal” its

4The original paper was inefficient in its optimization, starting with a full model and removing

components; subsequent work by Tipping and Faul (2003) presented a superior algorithm, similar to
sequential minimal optimization used to train support vector machines, which starts with an empty

model and adds components one by one.
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variance estimates: during testing, an extra basis function is placed at the test point to

restore predictive uncertainty in regions distant from the training set. This provides a

useful illustration of the failure of the RVM, but test costs scale O(NM) making it an

impractical sparse method. An ingenious alternative appears in Quiñonero-Candela et al.

(2007), where the introduction of an additional white noise process, and subsequent

renormalization across the bases to constant prior variance, has the effect of decorre-

lating samples away from the basis functions, and restoring the predictive uncertainty—

all without affecting the computational demands of inference. However, the illustra-

tions in their technical report reveal certain glitches in the variance predictions due to

the unusual construction, and it would be interesting to see how these behave beyond

the unidimensional case.

When we move to the classification domain, it is difficult to assess the importance

of accurately predicting the variance of the latent function, since the mean already

contains implicit uncertainty about the class assignment. With the RVM for example,

the decay to zero in the latent signal corresponds to what probably constitutes a fairly

safe assumption, namely that away from the data, either class could occur with equal

probability. In general too, the variance on the latent mean amounts to a secondary

source of uncertainty which for predictions is essentially assimilated directly into the

probabilistic estimate, such that large values of σ2
⋆ pull the predictions p(y⋆|x⋆) towards

0.5. However, we are reluctant to advocate the RVM for classification, since even near

the data these estimates behave counterintuitively, typically growing to their maximum

value precisely at the basis functions. It is in these regions, where data are expected to

occur, that we should hope for greatest accuracy and, where applicable, near-certainty.

2.1.5 Support vector machines

Finally, we mention the well-established workhorse of the kernel methods community,

the support vector machine (SVM) (Vapnik, 1995). Although born of frequentist ar-

guments from statistical learning theory, the SVM bears a strong resemblance to GP

classification via its use of a kernel function as a measure of similarity.5 Driven by

non-Bayesian, essentially geometric considerations, the SVM is the hyperplane that

provides greatest separation between points of opposite class. In the separable case, it

5Indeed, Sollich (2002) derives an unusual Bayesian interpretation, despite the fact that the “hinge”

loss used in SVMs does not correspond to any negative log likelihood.
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arises from the solution of the quadratic programming (QP) problem

minimize
1

2
‖w‖2

subject to yn(wTxn + w0) ≥ 1 for n ∈ {1, 2, . . . , N}.

The form of the solution turns out to be w =
∑N

n=1 λnynxn, where the λ are non-

negative Lagrange multipliers. Although sparsity is not by design an objective of the

SVM, this solution is found in general to yield a decision function involving compara-

tively few kernel evaluations because λn is positive only for data points xn closest to

the separating plane. Since the QP and predictions at fresh inputs involve only inner

products, the “kernel trick” allows us to perform non-linear classification of data by

lifting them into potentially infinite-dimensional feature spaces in which the vector w

need never be calculated explicitly.

The inseparable case is solved by the soft margin SVM (Cortes and Vapnik, 1995),

minimize
1

2
‖w‖2 + C

N∑

n=1

ξn for fixed C > 0

subject to yn(wTxn + w0) ≥ 1 − ξn and ξn ≥ 0 for n ∈ {1, 2, . . . , N},

which employs “slack variables” ξ in a computationally expedient addition that main-

tains an efficient training algorithm but allows a small number of misclassifications

of the training set. However, sparsity and regularization are intimately linked by the

single parameter C; in consequence, we find noisy data rarely admit very sparse solu-

tions. Furthermore, the value this parameter should take must be estimated by cross-

validation, since the model is not probabilistic, and has no concept of “evidence”. (The

standard SVM provides only a class label at test inputs, although Platt (1999) attempts

to use the real-valued distance of training points from the hyperplane as a measure of

probabilistic certainty by postfitting a sigmoid function across the boundary. Such ad

hoc measures must leave the Bayesian feeling a little queasy.)

The prospect of parameterizing a decision boundary entirely in terms of data points

that lie closest to it should also give us pause for thought. For example, if we sought

to compress a catalogue of images of the digits 0 through 9, we would expect to make

more efficient use of a library of prototypical images than one of illegible boundary

cases. One expects the majority of data, drawn from the unknown p(x), to fall away
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(a) The full GP.
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x1 x2 xM

f1 f2 fM

(b) The FITC approximation.

Figure 2.2: Sparse GP approximations. Shaded variables are observed; bold lines indicate

fully-connected variables. In the sparse setting, bold arrows indicate that each fn is con-

nected to every f̄m.

from this region of relative uncertainty, and we may imagine that the decision should

be based more upon samples which are somehow “representative”, located near the

centre of class clusters, not on the particular boundary examples that happen to occur

in the training set. Basis functions are typically local, and by placing them along the

class boundary we are liable to preclude very sparse solutions since they exert con-

siderable force in shaping the decision surface; only by using many can we avoid its

undesirable warping. A smoother surface will tend to arise only from a parameteriza-

tion involving fewer and likely more distant points. We return to this aspect of sparse

solutions to classification problems in section 2.4.

2.2 The generalized FITC approximation

Following Snelson and Ghahramani (2006a), we place a GP prior over a set of M in-

ducing inputs X̄ = {x̄1, x̄2, . . . , x̄M}, from which is drawn a sample f̄ = {f̄1, f̄2, . . . , f̄M}.

At each of the N real data points xn, the latent function value fn is drawn indepen-

dently from the posterior GP obtained by conditioning on f̄ , and the observations are

generated i.i.d. from the likelihood p(yn|fn). The graphical model is illustrated in

Fig. 2.2b.

We saw above that this model can be understood as a particular approximation to the

prior, and this perspective reveals an efficient algorithm for inference. Let

q(f |f̄ ,X) = N
(
f ; Kf f̄K

−1
f̄ f̄

f̄ , diag (Kf f − Qf f )
)
, (2.3)

q(f⋆|f̄ ,X⋆) = N
(
f⋆ ; K⋆f̄K

−1
f̄ f̄

f̄ , diag (K⋆⋆ − Q⋆⋆)
)
. (2.4)
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Predictions require the posterior distribution over inducing inputs f̄ ; this is most effi-

ciently obtained via Bayes’ rule after inferring the distribution over f . (We note that

one could also infer the posterior over f̄ directly, rather than marginalizing over the

inducing inputs as here. Running EP in this setting, each site maintains a belief about

the full M ×M covariance, and we obtain a slower O(NM3) algorithm. Furthermore,

calculations to evaluate the derivatives of the log marginal likelihood with respect to

inducing inputs x̄m are significantly complicated by their presence in both prior and

likelihood.)

Using (2.3) and marginalizing over the exact prior on f̄ we obtain the prior on f im-

posed by the model,

q(f |X, X̄) =

∫

N
(
f ; Kf f̄K

−1
f̄ f̄

f̄ , diag (Kf f − Qf f )
)
N
(
f̄ ; 0 , Kf̄ f̄

)
df̄

= N (f ; 0 , Qf f + diag (Kf f −Qf f )) , (2.5)

whose covariance consists of the sum of a low-rank term Qf f and a diagonal matrix.

Given a Gaussian (approximation to the) posterior p(f |X,y), the posterior over the

pseudo-inputs

p(f̄ |X,y, X̄) =

∫

p(f̄ |X̄, f)p(f |X,y)df

can also be written in a Gaussian form.

Snelson and Ghahramani (2006a) describe the tractable case, when the noise model

is Gaussian. In this chapter, we explore an approach for handling non-Gaussian like-

lihoods, considering as an example probit noise for binary classification. This is not

only a common problem, but our results in section 2.3 bear out the intuition that sparse

methods should be well-suited: many data sets enjoy the property that large regions

of the input space are predominantly of only one class, hence the latent signal may be

assumed broadly constant in these regions. This is in contrast to the latent process in

regression tasks, which must follow the higher-frequency, continuous behaviour of the

observations. We see from the diagonal covariance in (2.3), and from the example in

fig. 2.2b, that in no other way but an increased density of pseudo-inputs can correla-

tions be introduced into f . Classification problems are therefore uniquely interesting,

being in this sense most amenable to sparse representations.
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2.2.1 Inference

In the discussion below we omit the moment calculations for particular noise models;

they can be transplanted essentially unchanged from the corresponding dense GP. The

calculations required to implement the probit model, used extensively in our experi-

ments, appear in appendix B. Instead, we describe only how the mean and covariance

structure of the approximate posterior is preserved for a general likelihood. The co-

variance in the prior (2.5) is the sum of a diagonal component D and a rank-M term

PMPT , where P0 = Kf f̄ and M0 = K−1
f̄ f̄

(these zero subscripts refer to the initial val-

ues of the matrices D, P and M, although they are updated by EP during the course

of the iterations). Since the observations yn are generated i.i.d., we can expect this

decomposition to persist in the posterior.

EP requires efficient operations for marginalization to obtain p(fn); for updating the

posterior distribution after refining a site; and when applicable, for refreshing the pos-

terior to avoid loss of numerical precision. Decomposing M = RTR into its Cholesky

factor,6 we represent the posterior covariance A and mean h by

A = D + PRTRPT and h = ζ + Pγ,

where D is diagonal, ζ is N × 1 and γ is M × 1; these latter parameters are initialized

ζ = 0 and γ = 0. Writing pT
n = P(n,·) and dn = Dnn, we obtain

Ann = dn + ‖Rpn‖ in O(M2); hn = νn + pT
nγ in O(M). (2.6)

Now consider a change in the precision at site n by πn. Define the vector e of length N

such that en = 1 and all other elements are zero. The new covariance Anew is obtained

by inverting the sum of the old precision matrix and the change in precision. If we let

E = D−1 + πnee
T , so that

E−1 = D − πnd
2
n

1 + πndn

eeT and (DED)−1 = D−1 − πn

1 + πndn

eeT ,

6Care must be taken that the factors share the correct orientation. When the environment (e.g. Mat-

lab) offers only upper Cholesky factors RTR, the initialization of R0 = chol
(
K−1

f̄ f̄

)
can be achieved

without computing the explicit inverse via the following matrix rotations:

R0 := rot180

(

chol
(
rot180 (K

f̄ f̄
)
)T \ I

)

.
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then from the matrix inversion lemma (A.2), and incorporating the update to site n,

A−1 = D−1 −D−1PRT (RPTD−1PRT + I)−1RPTD−1

=⇒ Anew = E−1 − E−1D−1PRT×
(

RPT (DED)−1PRT − I −RPTD−1PRT
)−1

RPTD−1E−1

= Dnew + PnewRT
newRnewPT

new,

where we expand the inversion in parentheses to obtain a rank-1 downdate to the

Cholesky factor R;7 in summary

Dnew = D − πnd
2
n

1 + πndn

eeT O(1) update, (2.7a)

Pnew = P − πndn

1 + πndn

epT
n O(M) update, (2.7b)

Rnew = chol↓

(

RT

(

I − Rpn
πn

1 + πnAnn

pT
nRT

)

R

)

O(M2) update. (2.7c)

If the second site parameter, corresponding to precision times mean, is changed by bn,

then

A−1
newhnew = A−1h + bne

=⇒ hnew = Anew

(
A−1

new − πnee
T
)
h + Anewbne

= ζnew + Pnewγnew,

where

ζnew = ζ +
(bn + πnνn)dn

1 + πndn
e O(1) update; (2.8a)

γnew = γ +
bn − πnhn

1 + πndn
RT

newRnewpn O(M2) update. (2.8b)

It is necessary to refresh the covariance and mean every complete EP cycle to avoid

loss of precision due to repeated low rank updates. This is achieved by incorporating

7 If the factor πn

1+πnAnn

is negative, we make a rank-1 update, guaranteed to preserve the positive
definite property. Note that on rare occasions, loss of precision can cause a downdate to result in a non-

positive definite covariance matrix. If this occurs, we should abort the update and refresh the posterior
from scratch. In any case, to improve conditioning, it is recommended to add a small multiple of the

identity to the prior M0.
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Algorithm 2 EP approximation to the FITC posterior

1: input: X,y, X̄, θ
2: initialize covariance: D := diag (Kf f −Qf f ) ;P := Kf f̄ ;R := chol(K−1

f̄ f̄
)

3: initialize mean: ζ := 0;γ := 0

4: while L not converged do
5: for all n do
6: obtain marginal distribution using (2.6)

7: obtain cavity distribution using (1.11)

8: calculate Zn, αn, νn using (1.12)

9: determine new site parameters by (1.13)

10: update posterior representation using (2.7) and (2.8)

11: end for

12: refresh posterior using (2.9) and (2.10)

13: calculate the approximate log marginal likelihood L using (1.16)

14: end while

15: return: D;P;R; ζ;γ;L

all the site parameters directly into the prior.

Dnew = (I + D0Π)−1
D0 (O(N));

(2.9a)

Pnew = (I + D0Π)−1
P0 (O(NM));

(2.9b)

Rnew = rot180
(

chol
(
rot180

(
I + R0P

T
0 Π (I + D0Π)−1

P0R
T
0

))T
)∖

R0

(
O(NM2)

)
,

(2.9c)

where Rnew is obtained being careful to ensure the orientations of the factorizations

are not mixed. Finally, the mean is refreshed using

ζnew = Dnewb in O(N); (2.10a)

γnew = RT
newRnewPT

newb in O(NM), (2.10b)

where we have assumed h0 = 0.

Reviewing algorithm 2, we see that EP costs are dominated by the O(M2) Cholesky

downdate at each site inclusion. After visiting each of the N sites, we are advised to

perform a full refresh, which is O(NM2), togther leading to asymptotic complexity of

O(NM2).
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2.2.2 Model selection

Section 1.3 states how derivatives of the marginal likelihood can be estimated by EP.

Unfortunately, we cannot use these terms directly in our classifier because the matrix

products require O(N2) space, and implemented näıvely require O(N3) time. How-

ever, by taking advantage of the diagonal-plus-low-rank structure of the posterior co-

variance, these requirements can be reduced to O(NM) and O(NM2) respectively.

Further complications arise if we seek also to optimize the active set as in SPGP, since

derivatives of matrices with respect to these vectors yield tensor results. Details of

all these calculations are presented in appendix B, including a description of how the

difficulty in this latter case can be overcome efficiently.

2.2.3 Predictions

As with most GP models, before predictions can be made the FITC approximation

requires an initial series of precomputations once model selection is complete. In

our model these calculations cost O(NM2), but having stored the matrix results, all

future predictions can be made in O(M2), or O(M) if we are not interested in the

variance. Hence we describe the predictive cost as O(M2), treating as asymptotically

unimportant in the limit of a large number of test points the cost associated with the

precomputations; alternatively, they can be considered intrinsic to training.

First we marginalize out f̄ from (2.4). Initially, Bayes’ theorem is used to find the

posterior distribution over f̄ from the inferred posterior over f :

p(f̄ |f) ∝ p(f |f̄)p(f̄) = N (f̄ |R−1
0 c,R−1

0 CR−T
0 ),

where c = CR0P
T
0 D−1

0 f and C−1 = I + R0P
T
0 D−1

0 P0R
T
0 .

Let our posterior approximation be q(f |y) = N (f ; h , A). Hence

p(f̄ |y) ≈
∫

p(f̄ |f)q(f |y)df = N (f̄ |R−1
0 µ,R

−1
0 ΣR−T

0 ),

where µ = CR0P
T
0 D−1

0 h and Σ = C + CR0P
T
0 D−1

0 AD−1
0 P0R

T
0 C.

Obtaining these terms is O(NM2) if we take advantage of the structure of A as diago-

nal D plus low-rank PRTRPT .

Let the Cholesky factorization

C−1 = VVT ,
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and define

U = V\R0Kf̄ fD
−1
0 ,

obtained in O(NM2), so that

µ = VT\Uh; Σ = VT\
(
I + UDUT

︸ ︷︷ ︸

O(NM2)

+UPRTRPTUT
︸ ︷︷ ︸

O(NM2)

)
/V.

The prediction of f⋆ at test point x⋆ is

p(f⋆|x⋆,y) =

∫

p(f⋆|f̄)p(f̄ |y)df̄ = N (f⋆ |µ⋆, σ
2
⋆),

where, after precomputations,

µ⋆ = k⋆f̄R
T
0µ is O(M),

σ2
⋆ = k⋆⋆ + k⋆f̄R

T
0 (Σ − I)R0kf̄⋆ is O(M2).

We will often be interested in the distribution of y⋆, which is dependent on the noise

model. In the classification domain,

p(y⋆|x⋆,y) =

∫

p(y⋆|f⋆)p(f⋆|x⋆,y)df⋆ = σ

(

y⋆(µ⋆ + b)
√

1 + σ2
⋆

)

.

2.2.4 Implementation

In practice, it must be established how to initialize the pseudo-inputs X̄. A variety of

methods suggest themselves; we could place them on a random subset of the training

data; we could perform a preliminary K-means clustering, perhaps once for each class,

and initialize the X̄ at the cluster centres; we can also grow the set greedily, using one

of the metrics from section 2.1; we might even use the X̄ in a “transductive” manner,

placing them at the test points as in the Bayesian committee machine.

In our implementation we placed the inputs randomly on real data, and used gradient

information to optimize their placement. The optimization of model parameters was

performed with a conjugate gradients minimizer, but we rescaled the log marginal like-

lihood and its derivatives in order that the standard settings could be used effectively,

dividing by N .
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2.3 Experiments

We conducted tests on a variety of data, including two small sets from Ripley (1996)8

and the benchmark suite of Rätsch.9 The dimensionality of these classification prob-

lems ranges from two to sixty, and the size of the training sets is of the order of 400

to 1000. Results are presented in table 2.1. We include both the error rate and the

predictive certainty, which for crabs and the Rätsch sets are averaged over ten folds of

the data; for the synth problem, Ripley has already divided the data into training and

test partitions.

Comparisons are made with the full GP classifier trained by EP,10 and the SVM,11 a

discriminative model in practice found to yield relatively sparse solutions; we con-

sider also the IVM, a popular framework for building sparse linear models.12 In all

cases, we employed the isotropic squared exponential kernel (1.3), avoiding here

the anisotropic version primarily to allow comparison with the SVM: lacking a prob-

abilistic foundation, its kernel parameters and regularization constant must be set by

cross-validation. For the GP models, we fit hyperparameters by gradient ascent on the

estimated marginal likelihood (limiting the process to twenty conjugate gradient iter-

ations); we retained for testing that of three to five randomly initialized models which

the evidence most favoured. In the case of the IVM, hyperparameter optimization must

be interleaved with active set selection as described in Seeger et al. (2002, sec. 3.3).

Identical tests were run for a range of active set sizes on the IVM and SPGP classifier,

and we have attempted to present the large body of results in its most comprehensi-

ble form: in this section, we list only the sparsest competitive solution obtained. This

means that using a value for M smaller than shown tends to cause a marked dete-

rioriation in performance, but it should not be inferred that there is no advantage in

increasing the value. After all, as M approaches N we expect error rates to match

those of the full model (at least for the IVM, which restricts itself to a subset of the

training data). However, we believe that in exploring the behaviour of a sparse model,

the essential question should be: what is the greatest sparsity we can achieve without

compromising performance—since if sparsity were not an issue, we would probably

use the full GP.

8Available from http://www.stats.ox.ac.uk/pub/PRNN/.
9Available from http://ida.first.fhg.de/projects/bench/benchmarks.htm.

10Carl Rasmussen’s gpml package was used: http://www.gaussianprocess.org/gpml/code/.
11We used Anton Schwaighofer’s code: http://ida.first.fraunhofer.de/~anton/software.html.
12Neil Lawrence’s implementation was used: http://www.cs.man.ac.uk/~neill/gpsoftware.html.
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Table 2.1: Test errors and predictive accuracy (smaller is better) for the GP classifier (GPC),

the SVM, the IVM, and the sparse pseudo-input GP classifier (SPGPC).

Data set GPC SVM IVM SPGPC

name train:test dim err nlp err #sv err nlp M err nlp M

synth 250:1000 2 0.097 0.227 0.098 98 0.096 0.235 150 0.087 0.234 4

crabs 80:120 5 0.039 0.096 0.168 67 0.066 0.134 60 0.043 0.105 10

banana 400:4900 2 0.105 0.237 0.106 151 0.105 0.242 200 0.107 0.261 20

breast-cancer 200:77 9 0.288 0.558 0.277 122 0.307 0.691 120 0.281 0.557 2

diabetes 468:300 8 0.231 0.475 0.226 271 0.230 0.486 400 0.230 0.485 2

flare-solar 666:400 9 0.346 0.570 0.331 556 0.340 0.628 550 0.338 0.569 3

german 700:300 20 0.230 0.482 0.247 461 0.290 0.658 450 0.236 0.491 4

heart 170:100 13 0.178 0.423 0.166 92 0.203 0.455 120 0.172 0.414 2

image 1300:1010 18 0.027 0.078 0.040 462 0.028 0.082 400 0.031 0.087 200

ringnorm 400:7000 20 0.016 0.071 0.016 157 0.016 0.101 100 0.014 0.089 2

splice 1000:2175 60 0.115 0.281 0.102 698 0.225 0.403 700 0.126 0.306 200

thyroid 140:75 5 0.043 0.093 0.056 61 0.041 0.120 40 0.037 0.128 6

titanic 150:2051 3 0.221 0.514 0.223 118 0.242 0.578 100 0.231 0.520 2

twonorm 400:7000 20 0.031 0.085 0.027 220 0.031 0.085 300 0.026 0.086 2

waveform 400:4600 21 0.100 0.229 0.107 148 0.100 0.232 250 0.099 0.228 10

Small values ofM for the FITC approximation were found to give remarkably low error

rates, and incremented singly would often give an improved approximating distribu-

tion. In contrast, the IVM predictions were no better than random guesses for even

moderate M—it usually failed if the active set was smaller than a threshold around

N/3, where the subset of data method was simply discarding too much information—

and greater step sizes were required for noticeable improvements in performance.

With a few exceptions then, for our model we explored a range of small M , while for

the IVM we employed larger values which were more widely spread.

A more challenging classification problem is presented by the task of discriminating 4s

from non-4s in the USPS database: the data are 256-dimensional, with 7291 training

and 2007 test points. Provided with 200 pseudo-inputs (i.e. 51,200 parameters for

optimization), error rates for our model are 1.94%, with an average NLP on the test

set of 0.051 nats. These figures improve with 400 pseudo-inputs, to 1.79% and 0.048

nats. When provided with only 200 points, the IVM figures are 9.97% and 0.421

nats,13 but given an active set of 400 its error rates are 1.54% and its NLP 0.085 nats.

13This can be regarded as a failure to generalize: it corresponds to labelling all test inputs as “not 4”.
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2.4 Discussion

The most arresting observation from many of these experiments is just how few pseudo-

inputs the FITC approximation allows us to use, and how sparsely many of these old

benchmark problems can be represented. Error rates are comparable and (perhaps

surprisingly) occasionally superior to the full GP model, but require just a handful of

kernel evaluations. In almost all cases, they improve on the IVM using only a fraction

of the points required in the IVM active set: generally fewer than 10% of the inducing

inputs required by the latter, and occasionally as few as 1% (see diabetes, twonorm).

Furthermore, the predictive certainty is broadly preserved, giving us confidence that

the FITC approximation does not only produce a sensible decision boundary, but is

well able to model the underlying distribution.

Beyond yielding very fast classifiers, the minimum effective value M also reveals a

great deal about the intrinsic complexity of our data, in a manner that is less apparent

from, for example, the requisite size of active set in the IVM, or the number of support

vectors used by the SVM. We return to this point below.

Superficially, the FITC approximation appears to be very similar to a semi-parametric

family of models known as radial basis function (RBF) networks (Bishop, 1995). In-

deed, by writing the mean prediction of FITC as a linear combination of kernel eval-

uations αTKf̄⋆ (see section 2.2.3), we recover exactly the form of prediction made

by RBF nets. However, in its relationship to an underlying probabilistic model, FITC

goes much further: first, we obtain estimates of variance in the latent signal at test

points; second, there is the well-motivated evidence framework to guide optimization

of kernel parameters and the placement of basis centres, the latter of which must be

set to minimize some loss function in the RBF network, with the assumption that using

sufficiently few basis functions will not allow overfitting.

This touches on an interesting issue: so far, we have fit all model parameters by max-

imizing the evidence, and we might ask if the same approach can also help us in

choosing M itself. Although Quiñonero-Candela (2004) observes that the criterion is

more reliable than an unregularized version due to Smola and Bartlett (2001), we find

that the marginal likelihood has a tendency to fall monotonically with M . This is most

easily understood by witnessing that we are only restoring the explicative power of

the original GP, and always integrating the latent f̄ ; in other words, we do not intro-

duce significant surplus flexibility that the framework penalizes. In this respect, FITC
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is rather different from the RVM—which makes a curious hybrid of Bayesian principles

and evidence optimization explicitly to eliminate basis functions—even though qual-

itatively, the active sets of each model appear to choose “representative” areas of the

input domain, typically distant from decision boundaries.

We have already seen a similar structure to FITC in the projected process approxi-

mation, whose covariance consists solely of the low-rank term PMPT . In comparing

their SPGP model with PLV, Snelson and Ghahramani (2006a) suggest that it is by the

diagonal component in the FITC covariance, which corrects for the underestimated

variance away from pseudo-inputs and restores the diagonal of the approximation to

its true value, that the optimization of X̄ by gradient ascent on the marginal likelihood

can succeed: without the noise reduction afforded locally by relocating pseudo-inputs,

PLV does not provide a sufficiently large gradient for them to move, and the optimiza-

tion gets stuck. We believe the same mechanism operates in general for non-Gaussian

noise. This difficulty would not be significant if alternative heuristics for building the

active set greedily were effective. We hypothesize however that in the classification

domain, the most informative vectors in the greedy sense of the IVM tend to be those

which lie close to the decision boundary.

We illustrate with a simple example that, provided the optimization is feasible, very

sparse solutions may more easily be found if the inducing inputs can be positioned

independently of the data. This allows the size of the active set to grow with the com-

plexity of the problem, rather than the number of training points. We drew samples

from a two-dimensional “xor” problem, consisting of four unit-variance Gaussian clus-

ters at (±1.5,±1.5) with a small overlap, giving an optimal error rate of around 13%

and in loose terms a complexity which requires an active set of size four. By increasing

the size of the training set N in increments from 40 to 400, we obtained the learning

curves of fig. 2.3 for the IVM and FITC models: plotted against N is the size of active

set required for the error rate to fall below 15%. Whereas the FITC model requires a

constant four points to explain the data, the demands of the IVM appear to increase

almost linearly with N .

Evidently, the FITC model is able to capture salient details more readily than the IVM,

but we may object that it is also a richer likelihood. We therefore show learning curves

for the FITC approximation run using the IVM active set and, generously, optimal ker-

nel parameters. With a relatively simple and low-dimensional problem, the benefit of

the adaptable active set that FITC offers is clearly much less significant than that of the



50 2.4 Discussion

replacements

Size of training set N

S
iz

e
o
f

a
ct

iv
e

se
t
M

FITC
IVM
IVM/FITC

40 200 360
0
4
8

50

100

150

-2 0 2

-2

0

2

Figure 2.3: On the left-hand side, we plot learning curves for the toy problem described in the

text. The second plot illustrates contours of posterior probability obtained for FITC in ten

conjugate gradient iterations from a random initialization of pseudo-inputs. These appear

as black dots towards the centre of the generative clusters.

improved approximation itself; with a handful more basis functions (as chosen by the

IVM), FITC succeeds in learning the decision boundary. However, in two dimensions,

the task is perhaps too simple; therefore, we also consider how the growth of M is re-

lated to the dimensionality D with a similar set of tests for more complex exclusive-or

style problems, generating data from 2D isometric Gaussian distributions with small

overlap. In the first case, we used 80 training inputs in two dimensions, similar to

before; in the second case we increased the dimensionality to 3, and the number of

training inputs proportionately to 160; in the final case, we used 320 points in four

dimensions, always distributing the data evenly between the quadrants: the complex-

ity of the problem grows exponentially in D. The results appear in table 2.2, averaged

over five data sets. In the FITC case we present the best model of three, in evidential

terms, obtained after thirty CG iterations. It is clear that as D grows, the greediness

of the IVM becomes rapidly sub-optimal, even when the richer noise model of FITC

is used after the active set has been chosen. In contrast, the continuous optimization

of SPGP classification lets M scale more in accordance with the complexity. It is in-

teresting to note how the full GP appears to overfit; by constraining the covariance

through the FITC approximation, we achieve a slight improvement in generalization.

This effect may not be the fluke of an artificial setup, occurring in some benchmark

tests above (synth, thyroid) where FITC was also superior to the full GP.
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Table 2.2: Contrasting FITC and IVM.

Dimension GP IVM IVM/FITC SPGPC

M err M err M err

2 0.069

4 0.406 4 0.321 4 0.054

6 0.322 6 0.173 6 0.055

8 0.287 8 0.134 8 0.056

16 0.135 16 0.067

32 0.061 24 0.062

3 0.090

8 0.565 8 0.418 8 0.122

12 0.534 12 0.276 12 0.083

16 0.449 16 0.173 16 0.082

32 0.286 32 0.092

96 0.088 64 0.087

4 0.139

16 0.484 16 0.406 16 0.233

24 0.482 24 0.345 24 0.133

32 0.543 32 0.244 32 0.121

192 0.196 64 0.150

256 0.138 96 0.130

Although we believe it is ultimately a more accurate approach, the principal problem

with using gradient ascent to locate the pseudo-inputs is the increased training times.

A sensible compromise can be reached when the full optimization is unfeasible by

greedily obtaining the active set, but switching to the FITC approximation for optimiza-

tion of kernel parameters, or only optimizing a small selection of the pseudo-inputs.

In the next section we consider an alternative idea for reducing the computational

burden.

2.5 Dimensionality reduction

For problems on a very large scale, such as the USPS task attempted above, the non-

linear optimization is extremely demanding, involving tens of thousands of param-

eters. If the data are D-dimensional, there are MD parameters to learn for the M

inducing inputs, in addition to hyperparameters of the kernel. We suggested earlier

how we might employ more intelligent initialization strategies; a second option is to

optimize only a manageable subset of the pseudo-inputs.
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Another approach altogether is explicitly to reduce the dimensionality of the data, by

projecting them into a d-dimensional subspace. In this case, all kernel evaluations

involving the inducing inputs require their projections also, hence we can treat the X̄

as existing only on the low dimensional manifold. There are an extra Dd parameters

to learn for the projection matrix, but only Md for the pseudo-inputs. Also, there is

probably a requirement for fewer kernel hyperparameters, since automatic relevance

determination effects theoretically can be achieved directly through adjustments to

elements of of the projection matrix. This approach was applied to the tractable FITC

model in Snelson and Ghahramani (2006b), having already appeared in the context

of the full GP in Vivarelli and Williams (1999).

To make an optimal projection (in the type-II ML sense), there remains the question

of efficient calculation of the gradient of the marginal likelihood with respect to these

elements Pij, where i ranges over the dimensions 1 . . .D, and j over dimensions 1 . . . d.

Observe that Kf̄ f̄ is independent of the projection, since by construction the pseudo-

inputs already exist on the manifold. If we consider only stationary covariance func-

tions, for which K(x,x) is constant, then ∇Pij
diag (Kf f ) is also constant, and to apply

the SPGP model we are left with the task of calculating

∂Kf̄ f

∂Pij

=
∂K(X̄,Z)

∂Z

∣
∣
∣
∣
Z=XP

∂XP

∂Pij

, (2.11)

where we have arranged data X in a matrix of size N ×D, so that their projection is

the matrix XP. The first partial derivative is a tensor, most easily visualised as a matrix

of N × d entries (corresponding to the Nd elements of XP), each of which is itself an

M × N matrix of partial derivatives. The second term is a matrix d×N , but of which

only the jth row is non-zero, equal to XT
(·,i), i.e. the ith coordinate of the unprojected

data. Hence, since it appears in product with this matrix, we are interested only in the

jth column of the tensor (see fig. 2.4).

Consider this jth column in greater detail: it consists of N matrices, the partial deriva-

tives of Kf̄ f w.r.t. a change in the jth coordinate of each projected datum. The con-

sistency of GPs ensures that for the nth such matrix, only the nth column can be

non-zero (moving the nth datum cannot affect covariance evaluations involving other

data). For maximum efficiency then, this entire tensor column of matrices can safely

be compressed into a single matrix ∇j. The solution to (2.11) becomes the Hadamard

or element-wise product of ∇j with M repeated rows of XT
(·,i).
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Figure 2.4: Representation of the tensor product (2.11) involved in calculating derivatives of

the log marginal likelihood with respect to elements of the projection matrix Pij . The

right-hand matrix selects only column j on the left-hand side, of which only the individu-

ally highlighted columns are non-zero.

2.5.1 The isotropic squared exponential

For the isotropic squared exponential kernel (1.3) (omitting the lengthscale parameter

l), and by writing x̃T = xTP, the necessary derivative is readily found to be

∂K(x̄, x̃)

∂x̃j
= K(x̄, x̃) (x̄j − x̃j) ,

such that

∇j = Kf̄ f • lindist
(

X̄(·,j), X̃(·,j)

)

,

where • denotes a further Hadamard product, and lindist(u,v) for vectors u and v is a

matrix of all pairwise distances um − vn. We reiterate that an anisotropic kernel is not

required since variations of lengthscale are possible through adjustment of P.

Calculating the gradients ∂L
∂Pij

efficiently remains slightly arduous if we are to avoid

any N2 complexity. However, since the projection does not affect the inducing inputs,

many terms in the derivative equations evaluate to zero; further details are provided

in appendix B.
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2.5.2 Experiments

We conducted experiments on the image, splice and USPS sets, some of the higher-

dimensional data we used in the main experiments section. Unfortunately, we must

report the failure of our algorithm, since in all cases but image (results in table 2.3)

were the results extremely poor. Indeed, even for the image set, error rates are far

from competitive with those obtained by the methods in table 2.2.

Table 2.3: Results for learning low-dimensional projections. In the original experiments, there

were 200 ∗ 18 + 2 = 3602 hyperparameters for the image set.

Data set Dimension M No. hyperparameters err nlp

image

2 30 67 0.0782 0.242

4 30 103 0.0688 0.160

6 30 139 0.0995 0.203

8 30 175 0.1520 0.304

2.5.3 Discussion

The results appear to indicate that, at least for binary classification, learning a pro-

jection of the data may not simplify the problem. There are several difficulties with

the method, and we mention first an issue arising at the level of implementation. It

turns out that derivative calculations are rather slow for elements of P: in the origi-

nal model, when the position of a pseudo-input is optimized, the gradients for all D

components may be calculated in parallel. No such vectorization applies for the pro-

jection matrix because there is no independence property between its elements. As

a result, tuning the matrix is disproportionately slow with respect to the number of

model parameters since they are iterated over in turn.

Second, even given the necessary time for training, disruptive local optima in the evi-

dence are often revealed as we tune the projection. To illustrate the problem, we refer

to the following experiment. Data were drawn from a two-dimensional exclusive-or

problem to which an extra eight dimensions were introduced consisting of pure noise,

i.i.d. N (0, 1). We compare the performance of a method which projects back into 2-d

(requiring 30 hyperparameters) with that of a full FITC model and anisotropic kernel

(52 hyperparameters), in both cases providing only the four pseudo-inputs theoreti-

cally required to solve the problem.
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(a) Original data (b) 6 iterations (c) 14 iterations (d) 16 iterations (e) 30 iterations

Figure 2.5: These data are nearly separable in two dimensions, but the optimizer has found a

sub-optimal, essentially unidimensional projection. We chart its progress in terms of the

number of CG iterations. The solid black dots mark the pseudo-inputs; observe that in the

final panel, one has become divorced from the data (although, for the chosen projection,

only three are required).

The optimal solution clearly is to disregard the extra dimensions, in the case of the

projection by giving them zero weight, and for the ARD kernel, by associating with

them very large lengthscales. In the latter case, this happens quite reliably; typically,

after thirty conjugate gradient iterations the mean log lengthscale on the corrupting

components is around 3, that on the two useful components around zero, and the

pseudo-inputs are usually learned effectively, yielding a near-optimal classifier. In

thirty iterations the projection model also converges, and very often to a solution in

which the four largest elements of the projection matrix are those affecting the signal.

There are three problems however; first, the remaining elements of the projection

are driven to zero only slowly (their r.m.s. value after the thirty iterations is around

0.2); second, in the joint optimization, pseudo-inputs can become divorced from real

data, essentially pruning a basis function; third, and perhaps most fundamental, is

the inferiority of the projection itself, which usually concentrates on only the first

component of variance, that which extends diagonally through the origin, causing

an unnecessary class overlap: the optimizer pursues a local valley along which the

data are increasingly compressed on one axis. This helps to explain the separation of

real data from pseudo-inputs during the optimization, since once the data have been

projected down to just one dimension, only three pseudo-inputs are strictly necessary

to achieve the optimal error, and the gradients on the fourth are evidently insufficient

to move it further. Fig. 2.5 illustrates the progress of the algorithm by plotting training

data and pseudo-inputs in the low-dimensional space during the course of a typical

optimization.
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It is true that with a more fortunate initialization, the optimizer can recover a better

projection, but equally, with a less fortunate initialization, it makes almost no progress

at all: over ten data sets, its minimum error rate was 7.5%, with an average of 37%;

for the ARD kernel, these figures are 2% and 6.8%. Furthermore, training for the latter

was slightly quicker, by virtue of the inefficient gradient calculations in the projection

model. Each of the difficulties we identify here can only grow more severe with the

number of dimensions, and we are forced to conclude that the very largest problems

may simply not be amenable to a global optimization strategy like SPGP, but must

resort at least in part to the greedy growth of an active set.



CHAPTER 3

Robust Gaussian process regression

NATURALLY OCCURRING REGRESSION data are often modelled as noisy observa-

tions of an underlying function. The conventional assumption is that all noise

is i.i.d. zero-mean Gaussian, such that a typical set of samples appears as a

cloud around the latent function. Gaussian processes are well-suited to these condi-

tions, for which all computations remain tractable (see fig. 3.1a).

In the context of GPs, the Gaussian noise model enjoys computational advantages.

There is also the theoretical justification of the central limit theorem, which states

that the sum of sufficiently many i.i.d. random variables of finite variance will be

distributed normally. However, only rarely can perturbations affecting data in the real

world be argued to have originated in the addition of many i.i.d. sources. The random

component in the signal may be caused by human or measurement error, or it may be

the manifestation of systematic variation invisible to a simplified model. This means

that an “outlier” may or may not be a genuinely erroneous measurement, and can

only be viewed as such with reference to the modelling assumptions embodied in the

sampling distribution. If outlying observations are common they could be indicative of

model mismatch. In any case, if ever there is the possibility of encountering relative to

our model small quantities of highly implausible data, we require robustness, i.e. one

whose predictions are not grossly affected by large errors.

57
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(a) Gaussian noise (b) Gaussian noise

(c) Mixture noise (d) Mixture noise

Figure 3.1: Black dots show noisy samples from the sinc function. In panels (a) and (b),

the behaviour of a GP with a Gaussian noise assumption is illustrated; the shaded region

shows 95% confidence intervals. The presence of an outlier is highly influential here, but

the heavy-tailed likelihood (3.1) in panel (c) is more resilient. Even this model fails for

the cluster of outliers in panel (d), where grey lines show the means of ten repeated runs

of the EP inference algorithm, and the black line and shaded region indicate their mean

and variance—grossly at odds with those of the latent generative model.

For simple univariate data, it is sometimes possible to screen manually for outliers,

but in the multivariate case the latent distribution is usually sufficiently obscure that

this will be impossible; regardless, it is wasteful to use humans as preprocessors for

an inference procedure that is otherwise automated. It can also be wasteful or even

harmful to discard outliers entirely when we may need only to moderate their influence

or flag their presence: their removal inevitably affects the statistics of the data set, for

example leading to underestimation of the variance.

Demands for robustness render the standard GP inappropriate: the light tails of the

Gaussian distribution cannot explain large non-Gaussian deviations, which either skew
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the mean interpolant away from the majority of the data, or force us to infer an unrea-

sonably large (global) noise variance; these effects are illustrated in fig. 3.1b. Robust

methods use an i.i.d. heavy-tailed likelihood to allow the interpolant effectively to

favour smoothness and ignore such erroneous data: fig. 3.1c shows how this can be

achieved using the mixture of Gaussians noise model described in section 3.1.2.

In this chapter, we address the more fundamental GP assumption of i.i.d. noise. Our re-

search is motivated by observing how predictions suffer for heavy-tailed models when

outliers appear in bursts: fig. 3.1d replicates fig. 3.1c, but introduces an additional

three outliers. All hyperparameters were taken from the optimal solution to (c), but

even without the challenge of their optimization, there is now considerable uncer-

tainty in the posterior since the competing interpretations of the cluster as signal or

noise have similar posterior mass. Viewed another way, the tails of the effective log like-

lihood of four clustered observations have approximately one-quarter the weight of a

single outlier, so the magnitude of the posterior peak associated with the regularized

solution is comparably reduced.

It is not clear how to treat the several peaks in the posterior, some of which are “cor-

rect”, others of which correspond to spurious interpretations of the data. We illustrate

the various optima discovered by EP, näıvely plotting the mean of ten repeated runs

(with a randomized order for site refinement) to emphasise the multimodality of the

posterior as well as the instability of the algorithm. Of course, this averaging cannot

be justified as a sound inference procedure: in general, the different modes of the

posterior are comparable only via a Bayesian posterior weight.

One simple remedy to the problem of poor convergence is to make the tails of the

likelihood heavier. However, although we may be able to establish a globally optimal

likelihood distribution by gradient ascent on the evidence, this choice will have ram-

ifications across the entire data space. It is possible that no single noise model will

be satisfactory everywhere since the tails may be too heavy in some regions (causing

underfitting when real data are explained as outliers), and too light in others (when

outliers cause an undesirable kink in the predictive mean). The ideal solution would

be a noise model whose predictive variance could itself vary in the input domain: in

this chapter, we introduce just such a model. By applying a GP gating function to

partition the domain softly into “real” and “outlier”, the noise distribution varies in an

input-dependent manner such that in regions of confidence, the tails can be made very
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light (encouraging the interpolant to hug the data points tightly), while more dubi-

ous observations can be treated appropriately by broadening the distribution in their

vicinity.

In the next section we describe briefly the frequentist perspective on robustness, and

detail some common methods for robust GP regression, followed in section 3.2 by a

description of our new model, the twinned GP. Section 3.3 presents some experimental

results, while a Monte Carlo algorithm for sampling from the posterior appears in sec-

tion 3.4. We conclude in section 3.5 with an evaluation and discussion of the twinned

GP in the context of related approaches in the literature.

3.1 Classical methods

In this thesis, we are interested in a Bayesian concept of robustness of inference. How-

ever, for completeness, we begin with a short review of the robust estimation of criteria

from data.

3.1.1 Robust estimators

The frequentist literature considers robustness with respect to the estimation of various

statistics of a sample. As a motivating example, consider the sample mean
∑N

n=1 yn

which has a “breakdown point” of 0%—that is, it can be made arbitrarily large by

pushing a single observation towards ±∞. In contrast, the median is resilient to such

corruptions; indeed, with a breakdown point of 50%, fully half of the data may be

corrupted before the median can be made arbitrarily large.

The mean and median are examples of M-estimators (Huber, 1981)—of which only

the latter is robust—one of a variety of classes of estimator that arise as the solution

to a particular optimization problem. It generalizes the maximum likelihood solution

θ̂ = arg max
θ

N∏

n=1

f(yn|θ) = arg min
θ

(

−
N∑

n=1

log (f(yn|θ))
)

to a wider class of functions ρ:

θ̂ = arg min
θ

(
N∑

n=1

ρ(yn|θ)
)

,
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where the function ρ is chosen for certain desirable properties, typically to moderate

or eliminate the influence of outlying observations. The optimization is usually solved

by an iterative algorithm (IRLS or iteratively reweighted least squares), but for many

interesting choices of ρ there may be multiple solutions, and initialization is important.

Concrete examples are given by the mean, for which ρ(yn|µ) = (yn − µ)2, and the

median, which corresponds to ρ(yn|m) = |yn − m|. Other robust estimates of the

mean involve truncating the “loss” outside a given range ±c (called “trimming”), or

restricting its growth to a linear function of yn−µ (“Winsorizing”); for more examples,

see Huber (1981) and Rousseeuw and Leroy (1986).

A general algorithm for estimation of the parameters of a mathematical model is

RANSAC (for random sample consensus), given by Fischler and Bolles (1981). It as-

sumes most of the data are “inliers”, from which the parameters may be determined

reliably. By repeated resampling of subsets of the data, the method determines which

partitions are most reliable by observing how well the remaining data are explained by

a model fit on the sampled set. In the spirit of frequentism, only the parameters of the

best supported model are retained; those from the more dubious are simply discarded.

3.1.2 Robust GP regression

Robust GP regression is achieved by using a leptokurtic likelihood distribution, i.e. one

whose tails have more mass than a Gaussian (Box and Tiao, 1973, sec. 3.1.1). The

mechanism is most easily understood with reference to a new observation (in EP terms,

we would speak of a site inclusion) which fails to conform to our expectations;1 see

fig. 3.2. The updated posterior is proportional to the product of this “prior” and the

likelihood term: it is pulled strongly towards the observation if the tails of the likeli-

hood are light; only by making them relatively heavier can the influence of the prior

survive into the posterior.

The proportion of mass in the tails relative to the peak determines how readily the

posterior can drift from the data without incurring a strong evidence penalty: if the

tails are very light, signals that are distant from corrupted observations have vanish-

ingly small posterior probabilities, hence data with outliers demand a short lengthscale

1That is, of our beliefs immediately before the observation, proportional to the product of a Gaussian

prior and a series of heavy-tailed likelihood distributions for the data observed so far—a product usually
approximated by a Gaussian distribution, and which in Bayesian terms represents a prior or contextual

belief.
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Figure 3.2: The left-hand plot in each figure shows an enlargement of fig. 3.1a. The effect on

the marginal posterior at the dotted line of introducing the outlier in fig. 3.1b is illustrated,

in (a) for a Gaussian likelihood, and in (b) for a mixture of two Gaussians. In the latter

case, the posterior is essentially indistinguishable from the prior, as desired.

or large global noise variance to allow the signal to explain those errant observations

satisfactorily. Heavy tails afford significant probability to signals which ignore outliers

and respect local structure, and may favour a posterior belief in smoother, low-noise

predictions.

Three popular heavy-tailed distributions are compared in fig. 3.3:

the mixture of Gaussians p(y|f ; e, σ2
R, σ

2
O) = (1 − e)N

(
y ; f , σ2

R

)
+ eN

(
y ; f , σ2

O

)
;

(3.1)

Student’s t distribution p(y|f ; ν) =
Γ
(

ν+1
2

)

√
πνΓ

(
ν
2

)

(

1 +
(y − f)2

ν

)(− ν+1
2 )

;

(3.2)

the Laplace distribution p(y|f ;λ) =
1

2λ
exp

(

−|y − f |
λ

)

. (3.3)

Their parameters (e, the prevalence of outliers, and σ2
R, σ

2
O, the variance of each mix-

ture component; ν, the number of degrees of freedom; and λ, the so-called “rate” pa-

rameter) can all be viewed as varying the kurtosis. The mixture of Gaussians has been

suggested by Box and Tiao (1968); it was also advocated by Jaynes (2003, ch. 21) as a

“two-model model”: it explicitly separates the kinds of corruption expected for trusted

and outlying observations. One benefit of this distinction is the straightforward infer-
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Figure 3.3: The p.d.f. for three heavy-tailed distributions and the (light-tailed) Gaussian.

ence of only the normal observation process. All three distributions can be written in

the form of a scaled mixture of Gaussians,

p(y|f, θ) =

∫

N
(
y ; f , σ2

)
q(σ2|θ)dσ2, (3.4)

as introduced by Andrews and Mallows (1974). In particular, if q is inverse Gamma,

we recover Student’s t distribution (3.2); if q is exponential, we recover the Laplace

distribution (3.3); the finite mixture (3.1) is clearly a degenerate case.

Inference requires the calculation of

p(f |X,y) =
p(f |X)p(y|f)

∫
p(f |X)p(y|f)df

=
p(f |X)

∏N
n=1 p(yn|fn)

∫
p(f |X)

∏N
n=1 p(yn|fn)df

.

The i.i.d. assumption means that the posterior is proportional to the product of a Gaus-

sian prior and N heavy-tailed likelihood terms, but to normalize we need to marginal-

ize over the latent f . Unfortunately, in the case of (3.1) the calculation contains an ex-

ponential number of terms, and for (3.2) the integral does not even have a closed form.

Use of the double exponential (3.3) yields in the log domain the sum of a quadratic

form and N axis-aligned C0-continuous linear terms. The posterior as a function of f

then consists of O(2N) disjoint regions, each of which is a rescaled Gaussian distribu-

tion formed from the product of the Gaussian and one tail from each Laplace. Again,

this exponential complexity demands an approximation. Kuss (2006) describes how

to perform approximate inference in all three cases, for the mixture of Gaussians by

EP and Markov chain Monte Carlo (MCMC) methods, for the Laplace distribution by
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EP, and for Student’s t distribution both by a variational approach and by an MCMC

method that exploits the representation (3.4) and involves the explicit sampling of in-

dividual variances. EP presents a much faster alternative to stochastic methods, and

for the mixture model and Laplace likelihoods, where the marginal moments are ana-

lytic, the update equations have a simple closed form, making the algorithm especially

attractive.

Of these three distributions only the Laplace is log concave, a constraint that effectively

limits the amount of mass a distribution can push from its “shoulders” into its tails.

Indeed, the Laplace is the heaviest-tailed of all log concave distributions, and is the

only heavy-tailed likelihood in common use to guarantee a unimodal posterior. This

is of interest because multimodality raises certain practical difficulties with EP: Kuss

(2006) finds more reliable convergence with the Laplace than the mixture. However,

as discussed by Narula and Wellington (1982), its tails are still sufficiently light that a

single observation can have an arbitrarily large effect on the posterior.

3.2 Twinned Gaussian processes

Consider the mixture noise (3.1). Each of the 2N interpretations of the data is a parti-

tion into “real” and “outlier” classes, corresponding to a possible local optimum in the

posterior distribution. How we resolve this multimodality depends on our method of

approximate inference. Monte Carlo algorithms attempt directly to average over the

full posterior, and uncertainty in the interpretation is reflected in the different samples.

Deterministic methods (EP, VB) in contrast use a unimodal (Gaussian) approximation

whose width can simulate this uncertainty only indirectly. They can be sensitive to

initialization, and EP in particular is sensitive to the order in which the observations

are considered. In this case, the rival interpretations are problematic since they dis-

rupt convergence of the algorithm. Furthermore, different solutions generally have

associated with them inconsistent derivatives of the evidence with respect to hyperpa-

rameters, presenting serious challenges for model selection. Ideally, we would like to

mitigate the effects of these competing perspectives by somehow adjusting the rela-

tive magnitudes of the peaks in the posterior distribution: in a sufficiently rich model,

knowledge of clustering behaviour or other correlations in the noise component could

be incorporated into the inference process. Unfortunately, with the i.i.d. assumption

of prevalent robust methods, it is very difficult to employ such knowledge since there

is no possibility of local variation in noise.
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Figure 3.4: In panel (a) we show a graphical model for the Gaussian process. The data

ordinates are x, observations y, and the GP is over the latent f . The bold black lines

indicate a fully-connected set. Panel (b) shows a graphical model for the twinned Gaussian

process, in which an auxiliary set of hidden variables u describes the behaviour of noise

on the data.

We now describe a model motivated by the shortcomings of existing deterministic

solutions for robust GP regression. We have called it the twinned Gaussian process

(TGP) by virtue of its graphical representation (fig. 3.4b). In fact, viewed in this way,

the connectivity of the model is not novel,2 but our noise model and implementation

are new, allowing a posterior that avoids cumbersome Monte Carlo methods.

We augment the standard process over f with another over a set of variables u, whose

values probabilistically partition the domain into real and outlier components. The

methodology is closely related to GP classification, in which a latent process is passed

through a sigmoidal function to obtain a Bernoulli-distributed class label. Similarly

here, the latent un is passed through the cumulative Gaussian σ(·) to give the probabil-

ity that an observation is “real”. In the generative model, we toss a suitably-weighted

coin and draw the observation yn from the relevant component. The priors on f and u

are not constrained to be equal, reflecting the possibility that we hold quite different

beliefs about correlations within the signal and the noise. In addition, we permit a

non-zero mean process on u:

p(u|X) = N (u ; mu , Kuu) , and p(f |X) = N (f ; 0 , Kf f) .

2Goldberg et al. (1998) use a similar design, explicitly modelling the variances across the data, lead-

ing to an intractable posterior that must be sampled by Monte Carlo methods.
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Figure 3.5: Data drawn from the marginal likelihood of the TGP.

Except where explicitly stated otherwise, we will assume mu = [mu mu · · · mu ]T , a

constant vector encoding a uniform prior belief in the corruptibility of data.

3.2.1 The likelihood

The precise form of the likelihood p(yn|un, fn) may be tailored to meet the require-

ments of the application domain. We give by way of example the natural generaliza-

tion of the standard mixture model (3.1); more elaborate alternatives are explored in

chapter 4. In this likelihood, two forms of Gaussian corruption are mixed, one strongly

peaked at the observation, the other broader to provide the heavy tails. As mentioned

above, instead of mixing these components in fixed proportions, we pass un through a

sigmoid to obtain the probability of each component having generated the data. This

makes intuitive sense, but equally important, it retains the advantage of tractability

with respect to EP updates.

By assumption, yn is a Gaussian corruption of fn: with probability 1 − σ(un) it is an

outlier, distorted by a large variance σ2
O, while with probability σ(un) the uncertainty

is due to the small jitter on real data σ2
R:

yn =







N (yn ; fn , σ
2
O) with probability en = 1 − σ(un),

N (yn ; fn , σ
2
R) with probability 1 − en = σ(un).

(3.5)

For illustrative purposes, fantasy data generated from the model appear in fig. 3.5.

Observe that in terms of generative ability the model is simplistic: there is no fine-

grained control of variance, only a binary “real”/“outlier” switch. However, in the
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Figure 3.6: In panels (a) and (b), the dotted line is the prior distribution over latent f ; the

likelihood (dashed) is shown as a function of f given the observation denoted by a black

dot; the resultant posterior over f is solid. The likelihood mixture is weighted to favour

the real component in (a); in (b), the outlier component receives greater weight. Each

panel shows a slice through the contours at u = ±1 of (c), which illustrates the posterior

over u and f after observing the single datum denoted by the thick black line on the f -axis.

inference process, we are given a data set and a posteriori cannot be sure about the

latent assignment. Our hope is that this uncertainty will appear in marginal variances

ranging continuously from σ2
R to σ2

O (and up to the variance of the prior).

The TGP likelihood may be understood as lying between two extremes: the mixture

(3.1) is recovered by forcing absolute correlation in u and adjusting the mean of the

u-process to mu = σ−1(1 − e). Conversely, if all correlations in u are removed then at

each input the assignment of responsibility between the two components is performed

independently, i.e. un is drawn from the prior: the model reduces to a classic mixture,

more commonly tackled with expectation maximization or variational methods. Be-

tween these poles the TGP uses the flexibility of a GP on u in effect to adapt e in an

input-dependent manner (see fig. 3.6): the likelihood ranges from a sharp peak ap-

propriate for regions of confidence, to a broader distribution more suitable for regions

of suspect data.

3.2.2 Inference

The TGP requires we maintain the joint posterior over both f and u, and although

their priors are independent, we expect correlations to arise after conditioning on

observations. To understand this, consider a single datum (xn, yn). In principle, it

admits two explanations corresponding to its classification as either “real” or “outlier”:

in general terms, either un > 0 and fn ≈ yn, or un < 0 and fn respects the local

structure of the signal (fig. 3.6c).
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Since the likelihood involves a mixture of Gaussians, the true posterior distribution

is exponentially complex and for all but the smallest problems approximate methods

are required. In the literature, approximate inference for GP classification has involved

stochastic sampling (Neal, 1997), variational methods (Gibbs and MacKay, 2000), and

expectation propagation (Kuss and Rasmussen, 2005), as well as earlier approaches

related to EP and drawn from a background of statistical physics (Opper and Winther,

2000). Rather outdated is Laplace’s approximation, which fits a Gaussian to match

the curvature at a local maximum in the posterior. This extreme value tends to be

unrepresentative of the bulk of the posterior mass by virtue of the soft partitioning

made by the sigmoidal likelihoods. Kuss and Rasmussen demonstrate the inferiority

of Laplace’s method to EP, corroborating theoretical arguments in favour of the latter’s

global perspective; indeed, extensive comparative tests presented in their paper allow

a succinct summary: for binary GP classification, EP is the method of choice in terms of

both speed and accuracy. Of paramount importance to our algorithm is speed of infer-

ence, and with this endorsement we have chosen an EP-based inference procedure. We

also assess the faithfulness of the approximation to the true posterior in section 3.4,

by drawing samples from the latter using MCMC.

3.2.3 Implementation

We outlined a generic algorithm for EP in section 1.3. In the TGP we desire a posterior

approximation over both f and u, and to this end must maintain the entire distribution

N ([uT fT ]T ;h,A) during the course of the EP iterations. The space requirements of the

covariance matrix are O(4N2), and that of the mean vector O(2N). The site approx-

imations, unnormalized and rescaled Gaussian distributions with natural parameters

bn and Πn, are local to the nth observation, and thus each bn is a vector length 2, and

each Πn a 2 × 2 symmetric matrix. These can be encoded together with the N scale

parameters zn in O(6N) space.

The algorithm is initialized at the prior, i.e. the approximate posterior

N
([

u

f

]

; h , A

)

= N
([

u

f

]

;

[

mu

0

]

,

[

Kuu 0

0 Kf f

])

,

and for the sites, all parameters are set to zero. The refinement of site n involves

forming the tilted marginal at n and integrating out (un, fn) to obtain analytically Zn.

Let the cavity distribution be N
(
[un fn]T ; µ\n , Σ\n

)
. We find that each component of
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the noise model makes an independent contribution to Zn, which we evaluate here for

the standard model (3.5). Let λ ∈ {±1} select either real (λ = 1) or outlier (λ = −1),

such that Zn =
∑

λ∈{±1} Z
(λ)
n , where

Z(λ)
n =

∫∫

σ(un)N
(
yn ; fn , σ

2
λ

)
N
([

un

fn

]

; µ\n , Σ\n

)

dudf

= N
(

yn ; µ
\n
f , σ2

λ + Σ
\n
ff

)

σ






λ ·

µ
\n
u +

Σ
\n
uf

σ2
λ+Σ

\n
ff

(yn − µ
\n
f )

√

1 + Σ
\n
uu − (Σ

\n
uf )2

σ2
λ+Σ

\n
ff






, (3.6)

and the σ2
λ are the two sampling variances. By setting the site parameters appropriately

we seek to match the posterior moments of the tilted distribution, which are revealed

through derivatives of (3.6). These become rather involved, and to avoid the clutter

of notation, they are presented, together with a derivation of the result above, in

appendix C. Through (1.13), these derivatives provide the requisite values for bn and

Πn, after which the full posterior distribution can be updated with a rank-2 operation,

in O ((2N)2). Visiting all N sites then costs O(4N3), after which it is advisable to

refresh the posterior from scratch (at cubic cost) by incorporating into the prior all

current site functions (1.15), avoiding the loss of precision that creeps in after repeated

low-rank updates. Additionally at this stage we can calculate the EP estimate for

the marginal likelihood using (1.16), which provides a convenient indication of when

convergence has occurred.3 The entire process is summarised in algorithm 3. The cost

of these EP iterations is cubic in the size of the covariance matrix, hence for the TGP

time complexity is O(8N3).

Model selection

We have seen how EP, in addition to the approximate moments of the posterior distri-

bution, provides an estimate (1.17) of the derivatives of the evidence with respect to

kernel hyperparameters. Since there are separate priors on the two processes, there

are additional covariance parameters of u to optimize. It is also necessary to learn the

base rate of corruption regulated by mu, and the variances of the two noise models.

For the latter, it is recommended to use logarithmic values log σ2
O and log σ2

R to allow

3Although the TGP provides no guarantee, it is usually found to settle down within a small number
of iterations (five or so), and this number is typically independent of N , contributing only a constant

factor to the algorithmic cost.
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Algorithm 3 Estimating the posterior distribution of [u; f ] for the TGP

1: input: mu, Kuu, Kf f , y

2: state: θ =
(
h;A

)
the approximate posterior,

{
bn;Πn

}N

n=1
the site parameters

3: θ :=

([
mu

0

]

;

[
Kuu 0

0 Kf f

])

{initialize estimate to the prior}
4: while L not converged do

5: for all n ∈ {1, 2, . . . , N} do
6: obtain cavity parameters θ\n by (1.11)

7: calculate moments and derivatives by (1.12) and (C.1)–(C.4) as appropriate

8: obtain site parameters bn, Πn by (1.13)

9: rank-2 update posterior θ by (1.14)

10: end for

11: refresh θ by (1.15)

12: calculate the approximate log marginal likelihood L by (1.16)

13: end while
14: return: θ (estimate of posterior), L (approximate log marginal likelihood)

for unconstrained optimization. Derivatives of the log marginal likelihood for the ex-

tra parameters are listed for completion in appendix C (for the kernels themselves,

these are calculated in the same way as for standard GP regression models). These

gradients can then be passed to an “off the shelf” optimizer to maximize the evidence,

e.g. L-BFGS, a popular quasi-Newton method (Nocedal, 1980), or conjugate gradi-

ents (originally proposed in Hestenes and Stiefel (1952); Shewchuk (1994) provides

a very lucid account, and Carl Rasmussen’s Matlab implementation is available in his

gpml package4).

Convergence

We find on occasion that the EP iterations fail to converge adequately. There are three

measures we have employed to aid the process. First, the order of site refinement

is randomized initally but then held constant throughout optimization (i.e. model se-

lection); in this way, the posterior is less free to explore secondary peaks. A second

modification retains the site parameters across calls to the EP subroutine (using Mat-

lab’s persistent tag), such that after the optimizer has made any modifications to the

hyperparameters, EP resumes from a solution hopefully near where it left off. Not only

does this encourage the same peak to be rediscovered, for which the gradient infor-

mation returned to the optimizer will be consistent, but it speeds up the convergence

of EP by initializing at a distribution close to the old posterior approximation. The

4Available from http://www.gaussianprocess.org/gpml/.
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final alteration is where necessary to make damped updates: rather than change the

site parameters to values for which the new posterior marginal matches the moments

of the tilted distribution, we set them to a convex combination of new and old. This

limitation can slow convergence, but helps prevent a sudden collapse of the posterior

onto one peak, a problem we address in section 3.5.

3.2.4 Predictions

When we make predictions with the TGP, we must be precise about the nature of our

query. Often, the data attributed to the “outlier” component consist only of nuisance

noise to be eliminated, in which case we seek the distribution of the uncorrupted

signal, whose variance is due solely to residual uncertainty from the prior. It is found

by marginalizing over u in the posterior:

p(f⋆|x⋆,X,y) = N
(
f⋆ ; k⋆fK

−1
f f y , k⋆⋆ − k⋆fK

−1
f f kf⋆

)
.

This is the marginal prediction of a full GP in itself, since we have not considered the

mixture noise at all. However, for a general heteroscedastic signal, we will be inter-

ested in the distribution of observations at a test point, which requires consideration of

the noise model and of the process on u:

p(y⋆|x⋆,X,y) =

∫∫

p(y⋆|f⋆, u⋆)p(f⋆|x⋆,X,y)p(u⋆|x⋆,X,y)du⋆df⋆. (3.7)

The final two terms of the integral are Gaussian, while the first is the TGP noise model,

so that after marginalization we no longer recover a GP but the sum of two Gaussians

(cf. (3.6)). By the same procedure used during inference, the moments of the distri-

bution at x⋆ can be evaluated analytically.

Empirically, we have found that the posterior variance on u may remain sufficiently

large that error bars on the predictive distribution (3.7) are inappropriately wide.5

In other words, the training data can allow reasonable estimates of the mixing pro-

portions of the two components reflected in the mean of u, but uncertainty in this

estimate propagates as further uncertainty in y⋆. An expeditious solution is to fix u⋆ at

5This can occur particularly when the prior variance is driven to a large value in the model selection

phase, a phenomenon we discuss in section 3.5.
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Figure 3.7: Three GP models with heavy tails. We illustrate two forms of corruption; in the

first, around x = −10, data are scattered about the underlying mean. In the second,

near x = 0, they appear in a tightly correlated cluster. The TGP is resilient to both,

using the u-process (dotted) to fit the mean (black) accurately. The mixture noise model

tends to underfit, and is unable to cope with correlation in the outliers. Finally, a Laplace

assumption appears in this case to be entirely inappropriate.

its posterior mean and integrate only over f⋆:

p(y⋆|x⋆,X,y) ≈
∫

p(y⋆|f⋆,E[u⋆])p(f⋆|x⋆,X,y)df⋆.

This simplification again yields a mixture of two Gaussians at the test point. The

method will prove particularly valuable in chapter 4, where the noise model is ex-

tended to multiple u-processes and moments of the exact marginal can no longer be

calculated in closed form.

3.3 Experiments

There are two general noise characteristics for which the TGP may be well suited. The

first occurs when the outlying observations appear in clusters; we have already seen

how correlations in noisy targets can affect the standard mixture model, disrupting

convergence, and hampering model selection because conflicting gradient information

at the various local optima pull the hyperparameters in contrary directions. Fig. 3.7

shows a data set derived from the sinc function, and the inference of latent f by three

heavy-tailed models.6 We introduce two modes of corruption to the data, the first

correlated only in the input domain but otherwise widely and symmetrically spread

around the latent function, and the second additionally correlating the noisy targets.

6Since EP occasionally fails to converge for mixture noise (3.1), we provide here and in tests below

the results for a Laplace model—again trained by EP, for which convergence is very reliable.
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The mixture model seems to be a safe assumption for the scattered noise, since without

consistency between the observations there is no substantial posterior peak associating

any of these data closely with the latent function. Note however that some underfitting

has occurred: the inferred distribution is rather smoother than the true sinc function.

Where there are correlations in the corruption, the fixed weight apportioned by the

model to the outlier component is clearly inappropriate, pulling the posterior mean

away from the underlying function and leading to broader error bars in the vicinity

of the outliers. To obtain this solution, we ran EP for a range of initializations and

randomized the order of site refinement, displaying only the result most favoured

by the evidence. In the case of the Laplace model, the learned lengthscale is rather

too short and consequently it overfits in the two noisy regions. Meanwhile, the TGP

exhibits resilience to both forms of corruption; furthermore, the solution is stable, such

that hyperparameters can be learned reliably for a range of initializations. Depending

on the application, the secondary u process may also contain useful information such

as relative measures of confidence in the various observations.

Friedman data

The sinc data illustrate well the concepts and mechanism of the TGP, differentiating

it from other heavy-tailed models. However, the noise distribution was chosen adver-

sarially, so we consider also data on which classical robust methods do perform well:

these are a variation on a set of Friedman (1991), which appeared subsequently in

Kuss (2006). The samples are drawn from a function of ten-dimensional vectors x

which depends only on the first five components:

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.

We generated ten sets of 90 training examples and 10000 test examples by sampling x

uniformly in [0, 1]10, and adding to the training data noise distributed N (0, 1). In our

first experiment, we replicated the procedure of Kuss: ten training points were added

at random with outputs sampled from N (15, 9) (a value likely to lie in the same range

as f). The results appear as Friedman (1) in fig. 3.8. Observe that the r.m.s. error for

all the robust methods is similar, but the TGP can model the variance more accurately

than other GPs, by shrinking the predictive variance in regions without outliers.

In Friedman (2), the training set was augmented with two Gaussian clusters each of

five noisy observations. The cluster centres were drawn uniformly in [0, 1]10, with vari-
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Figure 3.8: Box-whisker plots for results on the Friedman set for the standard GP (i.i.d. Gaus-

sian noise), Laplace, mixture and TGP models.

ance fixed at 10−3. Output values were then drawn from N (0, 1) for all ten points,

to give highly clustered and correlated outliers distant from the underlying function.

Now the TGP excels where the other methods are little improvement on the non-robust

GP; it also yields very confident predictions (cf. Friedman (1)), because once the out-

liers have been accounted for there are fewer corrupted regions. In both experiments,

the training data were renormalized to zero mean and unit variance, and throughout,

we used the anisotropic squared exponential for the f process for automatic relevance

determination, and an isotropic version for u. The approximate marginal likelihood

was maximized on three to five randomly initialized models; we chose for testing the

most favoured.

3.3.1 Heteroscedastic noise

In the foregoing examples, inference has been of the latent f . In the second domain

of application, we consider data whose “noise” component is more regular and input-

dependent, for which we seek directly to model the observations y. A toy example

is provided, akin to that appearing in Goldberg et al. (1998), where data are drawn

from the cos function, and corrupted with noise whose standard deviation varies si-

nusoidally at lower frequency across the domain. Fig. 3.9a illustrates the predictive

solution of the TGP, in which squared exponential kernels were used for both pro-

cesses, and all hyperparameters were optimized by gradient ascent on the evidence.
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Figure 3.9: TGP inference for data with smoothly varying heteroscedastic noise. The grey re-

gion and lines mark a 95% confidence interval, the former of the posterior on y inferred by

the TGP, the latter for the underlying process. In the lower plots appear the corresponding

standard deviations (left axis; solid black for the TGP, dashed for the true function), and

the mean of the u-process (right axis; grey).

The model is successful in that it has learned to differentiate between the large vari-

ance noise around x = 0, and the very low variance nearer x = ±15. However, there

are two shortcomings of the solution, and we find that these are characteristic of the

model. First, because in reality the process noise is not considered directly (rather, it is

simulated via the Gaussian mixture), it suffers saturation in the variance predictions:

when all the weight has been apportioned by u to one or other component, the predic-

tive variance can be pushed no further; these regions appear as flat plateaus or valleys

in the lower plot of panel (a). Fortunately in this case, the TGP has learned values for

σ2
R and σ2

O which allow it to mimic the true noise process comparatively well.

However, a second problem appears here: the true error on observations varies quite

gently, whereas the predicted standard deviation makes a relatively sharp transition

from the outer regions, where the model is confident data have been generated by

the “real” component, to the inner, where it is all but certain the data are “outliers”.

This is perhaps surprising, since in qualitative terms, the process on u appears to vary

with the desired frequency (that of the true error process). In fact, the issue is caused

by the nonlinear transformation of u made by the probit, and by the influence on the

mixture variance exerted by the variance of the outlier distribution. This latter effect

explains why the ML-II solution demands such a large magnitude for the u-process

(which has a range ±5): in fig. 3.9b is illustrated the effect of rescaling its posterior

mean. Although we can better approximate the gradual change in noise variance, we

suffer a paranoiac effect in regions where before the model enjoyed great confidence.
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The problem is, since the “outlier” component has a relatively large variance (in the

example, two orders of magnitude larger than that of the “real”), it needs only a small

fraction of the total weight to have a disproportionately influential effect on the vari-

ance of the mixture: by increasing the range over which a transition between the two

components occurs, we have prevented the model from expressing absolute certainty

about either. In general, when we make predictions of y⋆ rather than f⋆, the larger

variance component tends to dominate the prediction for all but large positive values

of u. If we wish to avoid this pollution in regions of confidence, we require a large

amplitude for the kernel, but in consequence, regions of intermediate variance may be

modelled inaccurately when u sweeps precipitately through the zone of sensitivity.

A partial solution to these difficulties may be provided by adding extra outlier pro-

cesses to cater for a range of possible deviations; this approach is explored in chapter 4.

A more exotic alternative is to “warp” the process on u, as described by Snelson et al.

(2004). By learning a nonlinear transformation of observations with non-Gaussian

noise, data in the latent space are rescaled in a supervised manner to be well-modelled

by a GP. The warping function is constrained to be monotonic, allowing inference in

the observation domain via an inverse operation.7 Applied to the TGP, the warping

function could be learned simultaneously with the optimization of model parameters,

or as a post-processing step once the distribution of u has been established. We defer

development of these ideas to future work.

Motorcycle data

As a final example, we consider the behaviour of the TGP on the one-dimensional mo-

torcycle set (Silverman, 1985), which is strongly heteroscedastic. The original data are

spread widely, and for the reasons discussed above we found it helpful to renormalize

their output to unit variance. We see in fig. 3.10a that all GP methods model the mean

of the process equally well, but the TGP is able to provide a better fit to the variance

(the difference is not as marked as the Friedman examples partially because the set

is very small: with only 133 points, we created twelve folds of the data, holding out

for testing each time a different set of eleven points (one had twelve)). For these

data, we found the EP updates required heavy damping in order to achieve adequate

convergence, and even with this precaution certain hyperparameter settings caused in-

soluble difficulties for the optimizer; our results were obtained from initializing several

7Note that the warped GP is useful when the magnitude of corruption depends on the output value,

in constrast to the TGP, which is an input-dependent model.
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Figure 3.10: In panel (a) we compare the performance of four GP models on Silverman’s

motorcycle data set. Panel (b) illustrates the posterior obtained for one run of the TGP,

where the green line shows the mean posterior on u.

runs at random hyperparameter settings and testing the model with greatest estimated

marginal likelihood. We discuss the results in more detail in the following section,

where comparisons are made with the posterior obtained by Monte Carlo methods.

3.4 Stochastic inference

Although our implementation has proven useful empirically, the faithfulness of the

posterior approximation obtained by EP to that of the underlying TGP model remains

unclear. In this section, a Markov chain Monte Carlo (MCMC) method is described

which attempts to draw independent samples from the true posterior, allowing com-

parisons between true and approximate solutions. From the perspective of MCMC,

the TGP model is related both to the mixture of Gaussians (3.1) used often in robust

regression, and to the conventional model for GP classification: to the former because,

by introducing a set of latent variables cn ∈ {±1} that assigns observations to either the

real (+1) or the outlier (−1) model, the likelihood conditional on c becomes Gaussian:

let

snn =







σ2
R if cn = 1,

σ2
O if cn = −1,

where S = diag(s), (3.8)
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and p(cn|un) = σ(cnun). Then

p(y|c) =

∫

p(y|f , c)p(f |X)df = N (y ; 0 , Kf f + S) .

This property allows us to avoid sampling explicitly the f : they are always marginal-

ized. We can then use Gibbs sampling for each cn.

The mixing weights vary in the TGP as a sigmoidal function of un, making marginal-

ization of u intractable, and requiring explicit samples of the u-process. This reveals

an isomorphism to a GP classification model in which the target labels are c. There

are two approaches to sampling from the posterior in the literature: Neal (1997)

uses Gibbs sampling to update sequentially the components of the latent vector, while

Kuss and Rasmussen (2005) use “hybrid” or Hamiltonian Monte Carlo (HMC). In the

following, the latter method is adopted since HMC will in any case be used to sample

the model hyperparameters.

3.4.1 Inference

The Monte Carlo chain proceeds in two stages, broadly alternating between c|u and

u|c. In the first, the c are updated by Gibbs sampling from theN Bernoulli distributions

p(cn|c\n,u,y) =
p(y|c)p(cn|c\n,u)

p(y|c\n,u)
=
p(y|c)p(c|u)/p(c\n|u)

p(y, c\n|u)/p(c\n|u)
=
p(y|c)p(c|u)

p(y, c\n|u)
;

discarding terms independent of cn leaves only the weighted evidence expressions

πR = p(y|c\n, cn = 1)σ(un) and πO = p(y|c\n, cn = −1)σ(−un),

hence

p(cn = 1|c\n,u,y) =
πR

πR + πO
and p(cn = −1|c\n,u,y) =

πO

πR + πO
. (3.9)

The log evidence term itself is

log p(y|c) = −1

2
yT (Kf f + S)−1

y − 1

2
log |Kf f + S| − N

2
log(2π). (3.10)

Calculating (3.10) for cn ∈ {±1} would appear prohibitively expensive, but the com-

plexity at each iteration is reduced to O(N2) if a low rank update to (the Cholesky
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decomposition of) Kf f + S is made. The updated covariance is retained in case the

proposal is accepted, else the original is restored.

Monte Carlo methods for mixture models are often troubled by the inability of Gibbs

sampling to achieve coordinated updates: traversing the various modes of the poste-

rior that correspond to different assignments of c usually requires the simultaneous

adjustment of several cn because intermediate states have low probability. To help

overcome the poor mixing of the Markov chain, overrelaxation is employed, specifi-

cally the ordered overrelaxation of Neal (1995) which generalizes the ideas of Adler

(1981) to non-Gaussian distributions. The intuition is that we encourage cn to change

as frequently as possible while maintaining the correct marginals: let πn be the proba-

bility of switching the component assignment cn := −cn as determined by (3.9). Using

ordered overrelaxation, we flip the component assignment with the revised probability

π̂n = min

(

1,
πn

1 − πn

)

.

A simple derivation of this result is presented in appendix C.

In the second stage of the chain, all remaining parameters, including hyperparameters

of the kernel, are updated using Hamiltonian Monte Carlo (see section 1.5). This

requires expressions for the negative log probability and its derivatives. The joint is

p(u, σ2
R, σ

2
O, mu,ψu,ψf |c,X,y, ζ) ∝ p(y|c,ψf ,X)p(c|u)p(u|X, mu,ψu)p(σ2

R, σ
2
O, mu,ψu,ψf |ζ)

= N (y ; 0 , Kf f + S)

N∏

n=1

σ(cnun)N (u ; mu , Kuu) p0,

where p0 = p(σ2
R, σ

2
O, mu,ψu,ψf |ζ) allows non-uniform priors on the model parameters

and hyperparameters, and mu = mu1. Within a constant term c,

− log p(u, σ2
R, σ

2
O, mu,ψu,ψf |c,X,y, ζ) =

1

2
log |Kf f + S| + 1

2
yT (Kf f + S)−1

y

−
N∑

n=1

log σ(cnun) +
1

2
log |Kuu| +

1

2
(u− mu)TK−1

uu(u− mu) + log p0 + c.

There is a marked difference in complexity for different updates: a change in u or

mu costs only O(N2); adjusting the noise parameters σ2
R and σ2

O or varying the kernel



80 3.4 Stochastic inference

hyperparameters requires the recalculation of a full N ×N matrix inverse. For speed,

it is therefore sensible to make these latter updates only comparatively infrequently.

The Markov chain may be initialized by using the ML parameters obtained after run-

ning the EP method, or more simply by a preprocessing stage of standard GP regres-

sion, after which we may guess σ2
O := 2σ2

R. Hyperparameters of the kernel for the u

process are set equal to those of the f process, and its mean is initialized to zero or a

small positive value.

3.4.2 Prediction

Given a set of posterior samples
[

u(t), c(t), σ2
R

(t)
, σ2

O
(t)
, m

(t)
u ,ψ

(t)
u ,ψ

(t)
f

]T

t=1
, predictions of

f⋆ are given by

p(f⋆|x⋆,X,y) =

∫

p(f⋆|f)p(f |X,y)df

≈ 1

T

T∑

t=1

∫

p(f⋆|f)
p
(

y
∣
∣f , c(t), σ2

R
(t)
, σ2

O
(t)
)

p
(

f
∣
∣X,ψ

(t)
f

)

p
(

y
∣
∣c(t), σ2

R
(t)
, σ2

O
(t)
) df

=
1

T

T∑

t=1

N
(

f⋆ ; µ
(t)
f , σ2

f
(t)
)

,

where

µ
(t)
f = K

(t)
f⋆

(

K
(t)
f f + S(t)

)−1

y; σ2
f
(t)

= K(t)
⋆⋆ −K

(t)
⋆f

(

K
(t)
f f + S(t)

)−1

K
(t)
f⋆ ,

and S(t) depends on c(t), σ2
R

(t)
and σ2

O
(t)

, and the various K
(t)
·· all depend on ψ

(t)
f . If

predictions of y⋆ are required, the distribution of u⋆ is also important:

p(y⋆|x⋆,X,y) =

∫∫

p(y⋆|u⋆, f⋆)

∫∫

p(u⋆, f⋆|u, f)p(u, f |X,y)dudfdu⋆df⋆

≈ 1

T

T∑

t=1

∫∫

p(y⋆|u⋆, f⋆)N
(

u⋆ ; µ(t)
u , σ2

u
(t)
)

N
(

f⋆ ; µ
(t)
f , σ2

f
(t)
)

du⋆df⋆

=
1

T

T∑

t=1

∑

λ∈{±1}






σ



λ · µ
(t)
u

√

1 + σ2
u
(t)



N
(

y⋆ ; µ
(t)
f , σ2

f
(t)

+ σ2
λ
(t)
)






,
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where λ has been reintroduced to keep the equation concise and carries the same

meaning as (3.6), and where

µ(t)
u = m(t)

u + k(t)T
u⋆

(
K(t)

uu

)−1 (
u(t) − m(t)

u

)
; σ2

u
(t)

= k(t)
⋆⋆ − k(t)T

u⋆

(
K(t)

uu

)−1
k(t)

u⋆.

3.4.3 Experiments

We explore the posterior for the two kinds of noise distribution that concerned us ear-

lier: data with clusters of outliers, and data with more smoothly heteroscedastic noise.

In the first case, refer to fig. 3.11a. The mode around which the Monte Carlo algorithm

has sampled corresponds fairly closely with that fit by EP (fig. 3.11b). The variance on

the latent f is a good match for that located in the MCMC iterations, although some

subtleties of the u process have been lost. The relatively small magnitude for the u

process in this case has also allowed considerable uncertainty in the class assignment

for data near the corrupted regions.

If we consider now the remaining panels of fig. 3.11 we see a different side to the TGP

behaviour in fitting heteroscedastic data. The solution obtained by MCMC is in fact

rather poor: the variance estimate switches quite abruptly from a narrow band around

the data between t = 0 to t = 10, to a much broader distribution further along the

t axis. This aspect of the posterior is captured well by the EP fit, although again we

observe some loss of smoothness in the estimate of u, observed clearly in fig. 3.11e:

in black is the probability of the input being labelled “real” according to the MCMC

model, while in red is the EP estimate. The latter behaves essentially like a binary

switch, which is what we observe in fig. 3.11d.

At first glance this is rather disappointing. We explain the problem as follows: in

fig. 3.11f is the posterior obtained for a GP using an i.i.d. Gaussian noise assumption.

Except for its inability to shrink its variance estimate in the region on the left identified

earlier, the distribution is in fact very similar to that obtained by the TGP under both

MCMC and EP. What our model has done is break the task into essentially two regions

and learned a GP to fit each, approximately independently. (We will consider harness-

ing this “mixture of experts” in section 4.4.) Here then is a case of model mismatch,

and that perspective is corroborated by Rasmussen and Ghahramani (2002, sec. 5),

where an infinite mixture of GPs is sampled from by MCMC: “the posterior distribu-

tion of number of needed GPs has a broad peak between 3 and 10, where less than 3

occupied experts is very unlikely, and above 10 becoming progressively less likely”.
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Figure 3.11: Data appear as black dots. Two standard deviations around the inferred mean

are shown in grey; for panels (a) and (b) we consider variance on the latent f , while the

remaining panels consider that on observed y. The green line indicates the mean of the

latent u process, while the red circles in panels (a) and (c) indicate how frequently the

associated data were assigned to the “real” noise model (red circles at +2 means “always”)

or the “outlier” model (red circles at -2 means “always”) by the sampling routine.
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3.5 Discussion

The generality of GPs means they can easily be allied with any non-Gaussian noise

model to provide a more robust regressor (although the convenience of a tractable

inference procedure is usually lost). Choices which have been applied widely, and

which are reviewed in detail by Kuss (2006), were discussed above: the mixture of

two Gaussians, the double exponential, and Student’s t distribution. Since the essen-

tial structure of the GP remains unchanged, in all these cases the noise is assumed

i.i.d., and none may be appropriate when errors appear with their own structure.

We are not aware of any work that explicitly targets the problem of clustered outliers.

However, several solutions to problems of more general heteroscedasticity that build

on a GP framework have been proposed. One of the earliest, due to Goldberg et al.

(1998), is similar in design to the twinned GP, but the second process is placed on the

log variance itself. Inference is analytically intractable so Gibbs sampling is used to

generate noise vectors from the posterior distribution by alternately fitting the signal

process and fitting the noise process. A further stage of sampling is required at each

test point to estimate the predictive variance, and model hyperparameters are sampled

by Metropolis-Hastings (although more efficient Hamiltonian methods would be appli-

cable). As we have suggested, the TGP has a similar flavour but sacrifices the flexibility

of directly fitting the variance for a more efficient inference based on EP. We envisage

slightly different domains for the two models: if an accurate estimate of variance is

required in a truly heteroscedastic domain, the approach of Goldberg et al. is certainly

superior. If the data are polluted with outliers, or accuracy of the variance prediction

is less important than speed of inference, the TGP would seem more suitable.

Two papers which address models involving mixtures of GPs for heteroscedastic mod-

elling are Tresp (2000) and Rasmussen and Ghahramani (2002). The former con-

structs a mixture of a prespecified number M of GPs by fitting three sets of supple-

mentary GPs over the means, variances, and the gating process; each of these uses M

processes. Tresp appears to assume knowledge of the correct hyperparameters, after

which inference is by an EM-style procedure, although a more general Monte Carlo

inference would certainly be feasible. The latter paper is more adventurous, proposing

a potentially infinite mixture, for which the correct number of components is deter-

mined as part of the inference. This is achieved by deriving a localized estimate of

“occupation number” for use in a Dirichlet process: in each sweep, each datum may be

assigned either to an existing component or to a fresh (unpopulated) component. This
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strict partition of the inputs bestows computational benefits (each GP models only a

subset of the data, and an upper bound on its size can be enforced by adjusting the

component assignment probabilities), as well as preventing the contamination of pre-

dictions with data fit by other components; these advantages are not present in the

model of Tresp, and indeed nor in the TGP since with a deterministic approximation

it is hard to see how such partitioning could be achieved. Hence, for Tresp, time com-

plexity is O(3MN3), while for Rasmussen and Ghahramani each iteration of the Monte

Carlo algorithm is O(N3/M) provided the data have been divided equally amongst the

experts.

Cawley et al. (2003) and Le et al. (2005) take the regularization view of obtaining a

MAP predictor of the GP mean, treating the inference procedure directly as an opti-

mization process. In both cases are suggested efficient procedures for deriving “unbi-

ased estimates” of the input-dependent variance, but their regularization perspective

precludes a principled approach to learning the kernel parameters, both employing

cross-validation.

The ingenious suggestion of Kersting et al. (2007) requires no additional machinery

beyond standard homoscedastic GP regression, and will also fit parameters of the ker-

nel. The objective is calculation of the “most likely” variances: first, a standard GP is

fit to the data, and from its predictions we derive empirical estimates of the variance

zn at each observation. A second data set is created, with ordinates X and targets z—

the estimated variances—on which we learn another GP model. In conjunction with

the first, this yields a third, essentially heteroscedastic, GP but for which inference is

tractable: the known variances are simply added to the diagonal of the full covariance

matrix. These last two steps are repeated until convergence, although the authors note

this is not guaranteed and may be to an inferior local optimum. A comparison of their

model with ours, and also with that of Goldberg et al. (1998), would form an inter-

esting avenue for future research. In particular, we are curious how robust the “most

likely” regressor would be towards clustered outliers.

The SPGP model for sparse GP regression (Snelson and Ghahramani, 2006a), described

in chapter 2 in a more general setting, embodies a non-stationary kernel function pa-

rameterized by pseudo-inputs. By taking advantage of the “pinching” effect that re-

duces the variance in the region of these points, it is possible to fit heteroscedastic

data better than a standard i.i.d. Gaussian GP. Snelson and Ghahramani (2006b) ex-

tend the idea further by associating with each pseudo-input a weight which allows it
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gradually to be “turned off”, broadening the variance around that point. Empirically

they observe some benefits with the extension, but learning the additional parameters

can lead to overfitting on some small data sets.

3.5.1 Convergence

Although not flawless, we have found better convergence when EP is run on the TGP

than when used with a conventional mixture model, and particularly on data with

clustered outliers (for more widely heteroscedastic data, the TGP often requires heavy

damping to allow convergence). In this section, we explore the modes of failure of the

mixture, and explain how the TGP ameliorates these problems with its extra process

on u. Initially, however, we consider how EP behaves for log concave likelihoods in

general, since it is conjectured (Rasmussen and Williams, 2006, sec. 3.6) but unproven

that it will always converge in such cases, and they provide an instructive example as

to how relaxing the constraint of log concavity can introduce difficulties.

An intuitive understanding of the stability of EP comes from appreciating how each site

refinement modifies the covariance. First, it is evident from the definition of concave

functions that they preserve the log concavity of the marginal prior: if p(x) and q(x)

are log concave, i.e. if for all α ∈ [0, 1], and for all x, x′ ∈ R,

p(αx+ (1 − α)x′) ≥ p(x)αp(x′)(1−α) and similarly for q(·),
then p(αx+ (1 − α)x′)q(αx+ (1 − α)x′) ≥ (p(x)q(x))α (p(x′)q(x′))

(1−α)
,

and the product is log concave, thus guaranteed to remain unimodal. We can make

a stronger statement: recall that, for a Gaussian cavity distribution and log concave

likelihood q(f), the normalizing constant of the tilted distribution is

Z =

∫

q(f)N
(
f ; µ , σ2

)
df ;

first, as a function of µ, it can be shown Z is also log concave by virtue of this property

in its components (Bogachev, 1998, sec. 1.8). Recall further that

∂Z

∂µ
=
Z

σ2

(
E[f ] − µ

)
and

∂2Z

∂µ2
=
Z

σ4

(

V[f ] − σ2 +
(
E[f ] − µ

)2
)

,

hence
V[f ] − σ2

σ4
=

1

Z

∂2Z

∂µ2
− 1

Z2

(
∂Z

∂µ

)2

,
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which is an expression for the change in marginal variance, and is non-positive if

the variance of the tilted distribution is bounded by that of the cavity distribution.

Indeed, since Z is log concave, it can be shown (Bergstrom and Bagnoli, 2005, lemma

4) that 1
Z2

(
∂Z
∂µ

)2

≥ 1
Z

∂2Z
∂µ2 ; we conclude the variance never grows beyond the cavity,

and in consequence the EP iterations are “well-behaved”. This is an intentionally vague

statement, since it remains possible for changes at other sites to adjust the posterior in

such a way that, although the site refinement gives a marginal variance no larger than

the cavity, it may still be larger than the variance had been before refinement. It is this

feature of the algorithm that contributes to making a convergence proof so elusive.

Consider now the standard heavy-tailed likelihoods: except for the Laplace, these are

not log concave (refer to fig. 3.3), and in general we can make no guarantees about the

variance of the updated marginal. Particularly when the two modes of the tilted dis-

tribution (corresponding to explanations of the observation as genuine or erroneous)

are of comparable magnitude, its variance may become greater than that of the cavity.

This plagues convergence of EP-style algorithms: the iterations can initially settle on a

certain mode only for subsequent site refinements to demand a revised interpretation.

In consequence it becomes hard to determine if or when the algorithm has found a

satisfactory solution.

Although we have seen that EP encourages the approximation to place mass every-

where the tilted distribution does (by which means we hope to account for both modes

of the marginal), one peak usually dwarfs the other, sometimes so dominating the mo-

ment contributions that the approximation essentially disregards altogether the alter-

native interpretation. Usually this is desirable, but if an outlier has mistakenly been

classified “real”, the assignment can be difficult to reverse because the posterior is

pulled sharply towards the observation. Rather, without substantial evidence of their

legitimacy, nearby observations tend to be regarded instead as outliers: the preference

of the heavy tails is to conform to the current hypothesis. In this respect, EP can be

very sensitive to the order in which sites are accumulated in its initial “assumed den-

sity filtering” loop, and we will see this problem is more severe with the mixture of

Gaussians noise model than with that of the TGP.

A further difficulty can arise, particularly when we revisit an outlier mislabelled as real

and attempt to reform the cavity distribution: having incorporated the other sites, the

marginal variance σ2
n at the outlier may have grown, reflecting the difficulty of coercing

nearby observations into the paradigm. However, the site precision πn remains large
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from the initial inclusion, and the cavity variance σ2
\n = (σ−2

n −πn)−1 may as a result be

negative. In this case, we have little option but to skip the site and hope a refinement

is possible after subsequent iterations have stabilised the posterior. Alternatively, we

can restart the inference and use a higher damping factor in an effort to prevent the

premature shrinking of the posterior at the observation. When the outliers appear in

clusters, or when they possess some inherent structure, these problems are exacerbated

since local smoothness properties are less violated upon their inclusion as “real”, and

there is even less evidential support for subsequently relegating them to outlier status.

We emphasise that for the mixture model, such clusters are generally neither neces-

sary nor sufficient to cause convergence to the wrong mode: the problem is created

primarily by their inclusion at the early stages of the first EP loop—when the posterior

approximation is still akin to the rather agnostic prior—and the consequent collapse

of the posterior onto the erroneous data. The left-hand column of fig. 3.12 illustrates

its behaviour when a cluster of outliers is introduced into the data; we find EP readily

adopts them as truth and essentially forgets the context of the observations provided

by the prior. The other columns illustrate the more reserved response of the TGP, and

will be discussed below.

There are two related issues to recognise about the i.i.d. mixture. First, EP does not

retain sufficient uncertainty about the marginal distribution; early decisions made too

firmly cannot easily be undone. Second, there is no communication between data

about their reliability; particularly if we suspect that outliers may occur in clusters,

then detecting the presence of one should make us wary of its neighbours.

Let us consider these points in turn. We have already described how i.i.d. mixture noise

is a special case of the TGP: it corresponds to using everywhere a constant value for u.

However, if we allow a more general process and regard the u as “level 1” parameters

(like f), to be marginalized, not optimized, then use of the standard mixture seems

slightly curious. It is somewhat reminiscent of the historical debate over how to deal

with the lower parameters of a Bayesian model: MacKay (1999) warns of the dangers

of optimizing (particularly after marginalizing out the hyperparameters, as is done for

example in Buntine and Weigend (1991)), since this often locates a filamentary peak

in the likelihood, highly unrepresentative of the bulk of posterior mass. Of course, in

the Gaussian mixture, the solution is heavily regularized since we set only a single e,

not the vector u. However, referring again to fig. 3.12, the central column illustrates

the joint distribution over u and f when multiple outliers are introduced, and in these
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Figure 3.12: Using the twinned Gaussian process provides a natural resilience against clus-

tered noisy data. The left-hand column illustrates the behaviour of a fixed heavy-tailed

likelihood for one, two, four and five repeated observations at f = 5. (Outliers in real

data are not necessarily so tightly packed, but the symmetry of this approximation allows

us to treat them as a single unit: by “posterior”, for example, we mean the a posteriori

belief in all the observations’ (identical) latent f .) The context is provided by the prior,

which gives 95% confidence to data around f = 0±2. The top-left box illustrates how the

influence of isolated outliers is mitigated by the standard mixture. However, a repeated

observation (box two on the left) causes the EP solution to collapse onto the spike at the

data (the log scale is deceptive: the second peak contributes only about 8% of the poste-

rior mass). The twinned GP better preserves the marginal distribution of f by maintaining

a joint distribution over both f and u: in the second and third columns respectively are

contours of the true log joint (we use a broad zero-mean prior on u) and that inferred

by EP, together with the marginal posterior over f . Only with a fifth observation—final

box—is the context of f essentially overruled by the TGP approximation. The thick bar in

the central column marks the cross-section corresponding to the unnormalized posterior

from column one.
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figures we find just such a spike of probability. Observe too that the global distribution

does not necessarily have two well-separated modes, even if a slice through it at fixed

u does. Notice further that for fixed u = 2 (corresponding to an assumption that about

2.5% of observations are outliers), the cross-sections (first column) are generally a poor

representation of the full distribution. Finally, in the third column, witness the effect

of using EP with a bivariate Gaussian to match moments. A welcome consequence

of deferring marginalization of u until prediction time is that the algorithm remains

agnostic about the distribution of f until more data are considered.

By placing a full GP on u we have the further benefit that information about outliers

can propagate through the data in a manner impossible with i.i.d. methods. Thus,

even if a firm assignment happens to be made incorrectly (see final plot in fig. 3.12)—

a decision which can irrevocably damage convergence under the i.i.d. assumption—

the TGP provides a natural mechanism for its reversal provided the distribution on

u has not also collapsed.8 In the neighbourhood of outliers mistaken for “real” data,

any genuine observations are likely themselves to be mislabelled as outliers since they

violate the current hypothesis. However as a result, the u-process is encouraged to lend

weight to the outlier component of the mixture, broadening the noise model in their

vicinity. This in turn can provide a bridge to the more probable mode of the posterior,

in which all these data receive their correct interpretation. This process of revision

is illustrated in fig. 3.13, and contrasted with the results of using the conventional

mixture model, in which no such recovery may be possible.

3.5.2 Conclusions

We argue that a two-component Gaussian mixture is a sensible model for many real

data, with a natural interpretation and the heavy tails required for robustness, whose

weaknesses are exposed primarily when the noise distribution is not homoscedastic.

The TGP extends the applicability of the standard mixture to such difficult cases while

retaining tractability with respect to EP—significantly faster than the heavy duty Monte

Carlo methods required for the more complex models. It can be viewed both as a

generalization of the mixture, and as a specialization of flexible GP mixtures developed

by Tresp (2001) and Rasmussen and Ghahramani (2002).

8This is unlikely to occur unless the prior is made too restrictive, since there is generally insufficient

evidence from the observations themselves to describe the distribution on u with great certainty.
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(a) Mixture; 1st iteration (b) Mixture; 2nd iteration (c) Mixture; 4th iteration

(d) TGP; 1st iteration (e) TGP; 2nd iteration (f) TGP; 3rd iteration

-6

(g) TGP; 3rd iteration (h) TGP; 3rd iteration (i) TGP; 4th iteration

Figure 3.13: In the top row, the GP with i.i.d. mixture noise converges to a comparatively poor

solution, because adversarially we have forced it to consider initially the three outliers in

the data. In the right-hand plot of each of these panels is, in solid grey, the true posterior

on f , and dotted, the Gaussian which matches its moments. The lower two rows show the

behaviour of the TGP model with an identical ordering of site refinement. Initially, it too

finds the inferior approximation (e), but now there is the implication of an implausible

kink in u at the outlying data. In the third iteration of EP, the kink is ironed out, and by

the start of the fourth, the posterior has converged to the desired solution. The right-hand

plots of these panels show the bivariate approximation (above) and the true posterior

(below), with u on the horizontal axis, and f vertically. Observe the slender ridge of high

probability for large u in the lower plot, which considered globally has insufficient mass

to capture the Gaussian approximation.

With respect to the conventional model, we have illustrated how convergence in the

TGP may be more reliable under EP, and experimentally we have exhibited its supe-

rior ability to model uncertainty in the latent signal: even in domains for which the

mixture can perform well (such as homoscedastic corruption with infrequent, isolated

outliers), the predictive performance of the TGP is significantly stronger. For more

general heteroscedasticity, the mixture is obviously straitened by its i.i.d. assumption;

furthermore, prior knowledge about the noise distribution can be incorporated readily

into the TGP. On the other hand, for data in which the sample variance changes over
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several orders of magnitude, we have found the TGP to be rather inadequate. With

respect to the more ambitious models, we believe ours is a valuable addition to the

library of GP mixtures: on a qualitative plot of error rate against prediction time, we

envisage it appearing somewhere near the lower-left corner of the axes. Although the

mixture of Rasmussen and Ghahramani drives the error lower, it is at the expense of

considerably increased time complexity.



CHAPTER 4

Extending the twinned Gaussian process

THE TWINNED GAUSSIAN process (TGP) presented in chapter 3 was devised as a

model for efficient robust regression. In this chapter we aim to illustrate how

the TGP constitutes a flexible class of Gaussian process models that share the

property of tractable EP inference. In section 4.1, we consider a robust approach to

binary classification; section 4.2 presents an alternative noise model for robust regres-

sion, while the remaining three sections describe approaches to mixture modelling

motivated by the TGP framework.

4.1 Robust classification

In the regression domain of chapter 3, we used the term “outlier” to refer to those

observations which grossly violate the structure of data in their vicinity. The light

tails of a Gaussian likelihood were unsuitable, and an alternative noise model was

proposed. In the context of binary classification the equivalent notion is less well

defined, where “outliers” can only manifest themselves as mislabelled data. If we

encounter clusters of apparently mislabelled data, our indirect knowledge of the latent

process via binary assignments means we are likely to be less confident of their outlier

status than in the regression case because the continuous latent process is less directly

92
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related to the discrete observations. In fact, the classical probit noise model is already

somewhat robust to labelling errors since any finite value on the latent f process yields

a non-zero (although potentially very small) probability for either class assignment. In

this case, erroneous data in sufficiently sparse quantities have the effect of moderating

the latent signal such that predictions are made with less certainty.

For these reasons, we do not envisage an extension to classification of the TGP to be

employed widely in practice, but present the derivation here for two reasons. First,

it is possible that such a model would find application in a noisy classification task;

the behaviour of the u process may itself be of interest, for example, if we believe a

priori that corruptions are arising at some frequency we seek to establish. Second,

the extension is of theoretical interest in its own right, since it serves as a convenient

introduction to an approximation also employed in section 4.5, where a secondary EP

loop calculates intractable moments of the tilted distribution.

4.1.1 The model

Following the ideas of the TGP, we introduce an auxiliary GP on u that will form a soft

partition of the domain into two generative processes. A flexible likelihood distribution

is used,

p(yn = +1|un, fn,π) = σ(un)σ(πRfn) + σ(−un)σ(πOfn),

with additional parameters π to control the slope of the sigmoid function on fn. In the

limit πR → ∞, the “real” process behaves like a step function; when πO → 0, the “out-

lier” process assigns labels equiprobably and independently of fn. The introduction of

π is crucial: without different factors in evaluating the second pair of sigmoids, certain

derivatives in the EP loop cancel and prevent the inference of any useful process on u

whatsoever.

In conjunction with a bivariate Gaussian prior and after renormalizing, we obtain the

joint distribution, an example of which appears in fig. 4.1. It is qualitatively of a similar

shape to the marginal posterior in the original TGP (fig. 3.6c); again, we observe that

in general there will be a posteriori correlations between un and fn.
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Figure 4.1: The marginal posterior at a positively-labelled example. Observe that for large

positive u, the latent f is almost certainly greater than zero, whereas if u is negative the

distribution on f is rather broad.

4.1.2 Inference

Implementation of an expectation propagation (EP) inference procedure requires a

closed form for each

Zλ
n =

∫∫

σ(un)σ(πλfn)N
([

un

fn

]

; µ\n , Σ\n

)

dundfn, (4.1)

with λ ∈ {R,O}, to derive µλ = E

[

un

fn

]

and Σλ = V

[

un

fn

]

.

Unfortunately, no analytic solution exists. We could rewrite (4.1) as an integral over a

bivariate Gaussian by expanding the σ functions, after which stochastic methods can

be employed to calculate approximations to Zn, µλ and Σλ; see for example Genz

(2004). However, a more efficient and purely deterministic solution presents itself if

we identify (4.1) as the marginal likelihood of a standard GP classification model with

a data set of size two: a secondary EP loop (or library call to a GP classifier) then

yields approximations to Zn,µλ and Σλ. They can be plugged into expressions from

the primary EP loop (see section 1.3); by the chain rule:

αn =
∂ logZn

∂µ\n
=

1

Zn

(
∂ZR

n

∂µ\n
+
∂ZO

n

∂µ\n

)

(4.2)

= (Σ\n)−1

(
ZR

n µR + ZO
n µO

ZR
n + ZO

n

− µ\n

)

,
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and

νn = − ∂2 logZn

∂µ\n∂µ\nT
=

(
∂ logZn

∂µ\n

)2

− 1

Zn

(
∂2ZR

n

∂µ\n∂µ\nT
+

∂2ZO
n

∂µ\n∂µ\nT

)

(4.3)

= ααT − 1

ZR
n + ZO

n

(Σ\n)−1
(
ZR

n BR + ZO
n BO

)
(Σ\n)−1,

where Bλ = Σλ + µλ(µλ − µ\n)T + µ\n(µ\n − µλ)
T −Σ\n.

Let us pause for a moment: recall that by making a Gaussian approximation, EP is

actually ignoring the asymmetry in the marginal posterior that arises from the product

of a Gaussian and two sigmoids. However the original problem (finding a Gaussian

approximation to the full posterior over u and f) requires only the zeroth, first and

second moments at each site; hence, provided their estimates from the inner EP loop

are sufficiently accurate—which empirically, they certainly are—the intractability of

(4.1) is not a critical concern. Furthermore, although we are assured only of termwise

moment matching, in this case there are always precisely two sites involved, and we

may expect that the global approximation is faithful.

We note that the restricted form of (4.1) means we can use a relatively pared down

GP classifier for αn an νn; convergence tests, for example, are unnecessary. This inner

EP loop forms the bottleneck in the main inference procedure, and an implementation

would benefit from a precompiled subroutine.

Model selection

Derivatives of the marginal likelihood are required to optimize hyperparameters of the

model. Those relating to parameters of the prior (of the kernel function, for example)

can be obtained as before. However, since the moment contributions of the individual

sites no longer exist in closed form, derivatives corresponding to hyperparameters of

the likelihood (such as the π) require a different treatment. Let α be such a variable

and let L denote the log marginal likelihood. At convergence (see section 1.3), we

have

∂L

∂α
=

N∑

n=1

∂ logZn

∂α
, (4.4)

where Zn = ZR
n +ZO

n is the zeroth moment of the tilted distribution at site n, and is the

sum of two terms like (4.1). Commonly, the right-hand side of (4.4) can be calculated

directly, but in this setting there is only an EP estimate of Zn and no immediate means
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Figure 4.2: The data appear as black dots, divided at ±1 into two classes. In feint grey is the

solution obtained using standard GP classification (a probit model, trained by EP). The

TGP classifier appears in red, with the associated u process oscillating at high frequency

in green. Observe that the red curve is more confident in its class assignments, and that

the troughs of the green curve largely coincide with anomalies in the data.

to calculate the derivative. Fortunately, we can again apply the chain rule: if α appears

in Zλ
n only at subsite j (i.e. one of the sigmoids in (4.1)),

∂ logZn

∂α
=

1

Zn

∂Zλ
n,j

∂α
=

1

Zn

∂Zλ
n,j

∂ logZλ
n,j

∂ logZλ
n,j

∂α
=
Zλ

n,j

Zn

∂ logZλ
n,j

∂α
,

and the derivative in the final expression is analytically tractable.

4.1.3 Experiments

As proof of concept and for easy visualization, we consider a unidimensional toy set

in which the training labels have been flipped according to the oscillations of a high-

frequency latent sinusoid (fig. 4.2). After training, we find the TGP extended to clas-

sification is able to give more confident predictions than the standard GP classifier

since labels which would otherwise heavily penalize the marginal likelihood can be

relegated to the outlier component. The GP classifier in contrast must moderate the

amplitude of its latent process globally in order to compensate for the outliers.

In addition, the u process (here with a squared exponential kernel) provides a descrip-

tion of the behaviour of the corruptions. We remark that in certain fields, it is precisely

these rare and anomalous labels that are of interest to the investigator, in which case

the TGP gives significantly more useful feedback than the standard model.
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Figure 4.3: In panels (a) and (b), the likelihood of the “ignorance model” for fixed u. These

are cross-sections at u = ±1 of panel (c), the posterior after observing y = 3; in this

example, we have set f0 = 0. For a comparison with the conventional TGP mixture, refer

to fig. 3.6.

4.2 A model for ignorance
The TGP noise model (3.5) used in chapter 3 demands that outliers are evenly dis-

tributed around the latent f , albeit with the possibility of large variance. If, however,

outlying observations in the data do not appear as large-variance corruptions of f , but

rather as if drawn from some secondary distribution, we may prefer to use an outlier

model that more closely accords with our prior beliefs. One option would be to fix the

mean at some value f0, learned as an additional parameter, such that

yn =







N (yn ; f0 , σ
2
O) with probability en = 1 − σ(un),

N (yn ; fn , σ
2
R) with probability 1 − en = σ(un).

Because dependencies between yn and fn are eradicated entirely as en approaches 1,

the behaviour of this noise model is to ignore data deemed to have originated from

the outlier component. The marginal posterior is illustrated in fig. 4.3.

Inference for this model proceeds identically to the TGP, except that obtaining mo-

ments from the outlier component is more straightforward due to its f -independence:

ZO =

∫∫

σ(−u)N
(
y ; 0 , σ2

R

)
N
([

u

f

]

;

[

µu

µf

]

,

[

σ2
uu σ2

uf

σ2
fu σ2

ff

])

dudf

= N
(
y ; 0 , σ2

O

)
∫

u

σ(−u)N
(
u ; µu , σ

2
uu

)
du

= N
(
y ; 0 , σ2

O

)
σ

(

− µu
√

1 + σ2
uu

)

.
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Figure 4.4: In panel (a), the ignorance noise model is applied to toy data; its inferred mean

appears in red, while that of the original TGP is in black. Panel (b) shows the model

applied to ten folds of the set Friedman (2). On two folds, the results were very poor;

these have been included in “ig1”, but omitted from “ig2”.

The only non-zero derivatives are

∂ZO

∂µu
= −

N (y ; 0 , σ2
O)N

(

µu√
1+σ2

uu

)

√
1 + σ2

uu

;
∂2ZO

∂µ2
u

=

µuN (y ; 0 , σ2
O)N

(

µu√
1+σ2

uu

)

1 + σ2
uu

.

4.2.1 Experiments

To illustrate how the “ignorance” model can differ from the original TGP, its behaviour

on unidimensional toy data is shown in fig. 4.4a. Since corruptions in the data are

now explained as Gaussian noise spread around a fixed value (in this case arbitrarily

fixed at zero, although f0 can easily be learned as an extra hyperparameter), once data

have been classified as outliers they exert no pull on the latent mean, which can more

smoothly interpolate the remaining data. The parameters have been tied between

models in this example, and chosen to accentuate their differences; after training, the

contrast is less pronounced since with a sufficiently broad “outlier” distribution, the

pull on the TGP interpolant can be made very small. In the general case, more varied

data in other regions of the input may prevent this adaptation.

We also evaluate performance on the second Friedman set introduced in section 3.3.

Corruptions there were clustered distantly from the underlying signal; the expectation

is that explicitly ignoring them will improve accuracy. In practice (see fig. 4.4b), the
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ignorance model performed very poorly for two of the ten folds, consistently converg-

ing on a markedly inferior solution: our belief is that it confidently ignores isolated

data which in reality are part of the latent signal, in a manner that the original TGP

did not. Interestingly, the two folds on which the TGP performed worst were amongst

those on which the ignorance model performed best, so it is difficult to make a uni-

versal statement about suitability. However, with such variability in results, it would

seem that the “ignorance” paradigm is a rather dangerous one!

4.3 Mixtures of Gaussian processes

We consider the following scenario. Measurements of the heights and weights of a

series of individuals are made, and a broadly positive correlation is observed. However,

it is also noticed that the data may best be explained by two models; although they

have not been annotated, we presume these correspond to men and women. In this

example (and related settings), we might attempt to fit a single regression curve, i.e. a

solution for the generic human. Alternatively, we could ignore portions of the data

as “outliers”, attempting to focus on either male or female—in this case, there is no

reason to expect the clustering behaviour the TGP was designed to address, and a

standard heavy-tailed model may work (although it will likely be difficult to establish

which points to “ignore”). The ideal solution is probably to fit two regression functions

simultaneously.

We describe next how the TGP can be extended very easily to mimic a two-component

mixture, but avoiding any requirement for stochastic sampling (Tresp, 2001): infer-

ence is by EP. With this perspective, the notion of “outlier” is discarded: there is a

symmetry between the two generative models, with one GP on latent f , and another

on g; noise is now i.i.d., although its variance may differ between the two processes.

We still employ a set of latent variables u, but they are now a priori independent

since our assumptions have changed: we expect to observe two overlapping functions,

rather than a dominant function with (clustered) outliers. In summary,

p(f |X) = N (f ; 0 , Kf f ) ; p(g|X) = N (g ; 0 , Kgg) ; p(u) = N (u ; mu , I) .

The likelihood is

p(yn|fn, gn, un) = σ(un)N
(
yn ; fn , σ

2
f

)
+ σ(−un)N

(
yn ; gn , σ

2
g

)
. (4.5)
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(a) Training data (b) Inferred generative processes

Figure 4.5: Extending the TGP to a mixture of GPs.

There are three GPs to deal with, hence space and time requirements grow to O ((3N)2)

and O ((3N)3) respectively, but no new mathematics is introduced beyond the original

TGP. The symmetry in the likelihood allows both components to be treated essentially

the same (being careful to account for −un in the second); moment calculations and

estimates of the marginal likelihood and its derivatives all follow without alteration or

complication. After we have run the EP inference procedure, the only processes likely

to be of interest are on f and g: since a priori we assumed no correlation in u, there

can be none in the posterior.

4.3.1 Experiments

By way of example, we drew unidimensional data from two GP priors with different

covariances and combined them into a single set (see fig. 4.5a). Due to the over-

lap, there is some difficulty in distinguishing which points belong to which genera-

tive component, but using our GP mixture model, the distinction is made clear (see

fig. 4.5b), and orders of magnitude more quickly than by sampling from the posterior

with MCMC.

To investigate the reliability of convergence on higher dimensional problems, we tested

our model on toy data generated by combining the output of two independent GPs.

Training ordinates were sampled from the ten-dimensional unit cube, with between

50 and 100 points from each source, with the source processes using the anisotropic

squared exponential covariance initialized with random parameters (each log length-

scale was drawn from a unit-variance Gaussian with mean −2; the log amplitude was
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drawn from a unit-variance Gaussian with mean 1). To the latent values was added

i.i.d. noise of variance 0.01. When the hyperparameters were intialized close to those

of the generative model, the iterations converged without fail for ten instantiations

of the data, achieving error rates identical to those obtained by training two separate

GPs (in conjunction with an “oracle” labelling each input with its source component).

This confirms that EP is theoretically able to fit the latent processes optimally. How-

ever, the multimodality of the posterior caused problems when we attempted to opti-

mize randomly-initialized hyperparameters. Fitting an arbitrary mixture without prior

knowledge is certainly a difficult problem, and we conclude that for our method, train-

ing should begin at several trial initializations, from which can be chosen that model

with greatest evidential support.

4.3.2 Variational methods

An alternative paradigm for deterministic inference is provided by the variational ap-

proach, introduced briefly in section 1.4. It enjoys certain advantages; for example,

in contrast to EP, convergence is guaranteed, in this case to some local optimum of

the Kullback-Leibler divergence between approximating and true distributions. We

also obtain a strict lower bound on the true evidence. Furthermore, in the case of

the mixture model presented above, the extension to an arbitrary number of compo-

nents in fixed proportions is relatively straightforward, by placing a Dirichlet prior on

their weights. However, in practice the inference is also sensitive to intialization of

the latent assignments: although we are assured of convergence it is by no means

necessarily to a global optimum (with respect to the posterior belief in each datum’s

generative component).

We must make clear that variational methods cannot be applied as easily to the TGP

as they can to mixtures of GPs with unknown but fixed weights. To make this clear,

consider attempting a variational implementation: first, we introduce latent allocation

variables c, so the joint distribution is

p(y, c, f ,u) =
N∏

n=1

[
σ(un)N

(
yn ; fn , σ

2
R

)] 1
2
(1+cn) [

σ(−un)N
(
yn ; fn , σ

2
O

)] 1
2
(1−cn)

p(f)p(u),

where cn ∈ {±1} indexes “real” and “outlier”, and the likelihoods p(yn|fn) and priors

p(u) and p(f) are all Gaussian. We make a factorizing approximation (which, we note
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in passing and with reference to fig. 3.6c, seems rather counterintuitive),

Q(c, f ,u) = qc(c)qf(f)qu(u),

and alternate VBE steps to update qc, and VBM steps to update qf and qu:

VBE qc(cn) ∝ exp
(
〈ln p(yn, cn|fn, un)〉qf(fn),qu(un)

)
;

VBM qf (f) ∝ p(f) exp
(
〈ln p(y|c, f ,u)〉qc(c),qu(u)

)
;

qu(u) ∝ p(u) exp
(
〈ln p(y|c, f ,u)〉qc(c),qf (f)

)
.

Since cn is binomially distributed and appears in linear form only, expectations with

respect to the c are tractable. Similarly tractable are expectations with respect to

f . Unfortunately, we find intractable expectations
∫
N (un) lnσ(un)dun arise in both

steps of the algorithm, and these require further approximations. One option is to

use the logit rather than the probit and apply an exponential bound to the link func-

tion (Jaakkola and Jordan, 1996); the approach was employed successfully for binary

classification in GPs by Gibbs and MacKay (2000). Indeed, if we write the joint as

p(y, c, f ,u) = p(y|f , c)p(c|u)p(f)p(u) = N (y ; f , S)

(
N∏

n=1

p(cn|un)

)

p(f)p(u),

where the diagonal matrix S was defined in (3.8), the difficult term p(z|u) is a product

of sigmoids, and in conjunction with the prior on u is isomorphic to the GP classifi-

cation problem (we also observed this relationship in the Monte Carlo evaluation of

section 3.4). Alternatively, we might instead only consider working with moments of

the distribution on u. Since we know EP converges reliably for binary classification and

with excellent results, they can be obtained approximately in that manner for a given

set of latent assignments c. We defer the development of such ideas, and the more

general investigation of a variational approximation to the TGP posterior, to future

work.

4.4 Mixtures of two experts

Allowing for a more general prior on u (together with priors on f and g) recovers

an instance of the classic mixture of experts architecture (Jacobs et al., 1991), which

attempts to divide a learning problem into a series of sub-problems and conquer each
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Figure 4.6: Employing a mixture of experts architecture to approximate the step function.

The result appears in thick black; the training data are hollow circles, and the two source

processes appear in feint grey; the dashed line is the gating process.

individually with a specialized model. The gating process is used to select the ap-

propriate regressor based on the location of the test input alone: here, the u process

occupies the role. We use the likelihood (4.5), and the priors are

p(f |X) = N (f ; 0 , Kf f) ; p(g|X) = N (g ; 0 , Kgg) ; p(u) = N (u ; mu , Kuu) ,

Tresp (2001) gives the example of using a GP mixture model to learn a step function

from squared exponential kernels. The solution in that paper uses three GPs (plus the

additional gating processes) to fit regions around the transition, with a very high fre-

quency function modelling the critical region, and lower frequencies employed further

from it. The learning procedure employs Monte Carlo simulation. For comparison, we

applied our model to the same problem, using two GPs and the gating process; our

results are illustrated in fig. 4.6. The processes have arranged themselves to fit either

half of the step, treating them nearly as constants by increasing the lengthscale. A

short-wavelength GP on u then makes the sharp transition between the experts. (In

fact, this problem can be solved easily using a more suitable covariance function; see

Rasmussen and Williams (2006, sec. 5.4).)

We note that there is a computational issue in this essentially zero-noise regime, since

underflow can be a problem while EP is trying to settle on a solution. It is necessary

for convergence to make an initial run with a rather wide noise distribution (σ2
f =

σ2
g = 0.01), retaining the resulting approximation into a subsequent iteration of EP for

which the variances can be reduced to 10−5.
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4.5 Enriching the outlier process

We have argued that the two-component mixture is a sensible model for real world

data in which non-Gaussian corruptions may arise. The principal component mod-

els the underlying function, while the secondary process is employed to explain any

implausible large-variance deviations. Occasionally, this model may be too restric-

tive. It was explained in section 3.3.1 how the TGP struggles accurately to model

heteroscedastic data with a very large range in variance. A second problem may arise

in the simple assumption of a unimodal error distribution. Consider for example when

outliers arise not only as large-variance corruptions of the latent signal (due perhaps

to the heavy tails of the corrupting process), but also in the form of section 4.2, highly

correlated outputs that are independent of the modelled signal (this systematic corrup-

tion may result from a faulty measurement device). Such variability in the behaviour

of the nuisance noise is a potential problem for any unimodal likelihood, since it must

explain simultaneously clusters away from the signal and widely spread pure noise

scattered around it. This is a motivating example, but the extension we propose in

this section is applicable wherever just two components prove insufficient. In fact, the

idea appears in its most general form as an arbitrary mixture of GP experts in which

all inference is conducted by EP.

4.5.1 The model

Concentrating initially on the question of a complex outlier distribution, there are two

avenues we can explore. The first introduces a compound likelihood for the second

component

pO(yn|fn) =

C∑

c=1

αcN
(
yn ; µc(fn) , σ2

c

)
;

C∑

c=1

αc = 1; (4.6)

the arrangement is illustrated in fig. 4.7a. In this case, the inference of section 3.2

applies with only small changes: each component of pO contributes moments indepen-

dently, and EP proceeds with the slight extra cost of these additional calculations at

each iteration.

There are certain drawbacks. First, the generative model sacrifices correlations in

the data for a simple representation, by merging two or more distributions into a

single Gaussian mixture: the u-process encourages the formation of clusters of outliers
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Figure 4.7: Two proposed methods for extending the TGP noise model: in panel (a), outlying

observations are drawn from a mixture of two Gaussians, while in panel (b), the outlier

mixture is split into its components, whose input-dependent responsibilities are assigned

by an extra node in the gating network.
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Figure 4.8: The black dots are “fantasy” data, drawn in panel (a) from the marginal likelihood

for (4.6) and in panel (b) for (4.7). The solid grey line is the latent u(1) process, which

determines where outliers are likely to occur. The dashed grey line in the second panel is

u(2): if its value is less than zero, outlying observations tend to cluster around −5; where

it is positive, a wide Gaussian corruption predominates.
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as before, but now those clusters consist of independent samples from the mixture

(4.6). A related problem is that, although we can learn the hyperparameters α that

maximize the evidence, there is always the constraint that the relative weight of outlier

corruptions is constant across the entire domain: if the various models of corruption

are themselves of interest, it is difficult to determine how their responsibilities vary

within the data. A computational issue arises too: multimodality of the likelihood

makes a multimodal posterior more likely than simply using a heavy-tailed model, and

this can further hamper the convergence of EP.

For a richer alternative, the gating network can be extended to operate on a series of

process variables u(1),u(2), . . . ,u(C), in conjunction with an appropriate broadening of

the sampling distribution. In the related mixture model of Tresp (2001), the exponen-

tial softmax function is used in the gating network, but to permit our continued use of

EP in the tractable approximation of the posterior distribution, we use here a binary

tree arrangement of cumulative Gaussian sigmoid functions. An example appears in

fig. 4.7b, corresponding to a noise model with C = 2 and

p(yn|fn, u
(1)
n , u(2)

n , f0,σ
2) = σ(u(1)

n )N
(
yn ; fn , σ

2
R

)
+

σ(−u(1)
n )σ(u(2)

n )N
(
yn ; f0 , σ

2
O1

)
+

σ(−u(1)
n )σ(−u(2)

n )N
(
yn ; fn , σ

2
O2

)
. (4.7)

Typical data drawn from the marginal likelihoods of these two models are shown in

fig. 4.8. In the following sections, we concentrate exclusively on the latter since it is

considerably more flexible, and includes the simpler as a special case.

Evidently, we can further generalize (4.7) in a similar way to our development of

the “ignorance” model into a full secondary process on g. For example, we might

introduce three GPs on latent f , g and h, as well as the gating processes on u(1) and

u(2), arranging the former processes at the leaves of a tree constructed from the latter:

p(yn|fn, gn, hn, u
(1)
n , u(2)

n ,σ2) = σ(u(1)
n )N

(
yn ; fn , σ

2
f

)
+

σ(−u(1)
n )σ(u(2)

n )N
(
yn ; gn , σ

2
g

)
+

σ(−u(1)
n )σ(−u(2)

n )N
(
yn ; hn , σ

2
h

)
. (4.8)

There is theoretically no limit to how many processes we can use, but due to their

interaction in the posterior, costs scale with the cube of this number, probably imposing
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a fairly small practical limit.

Observe a further subtlety: since the gate on σ(u(1)) precedes that on σ(u(2)), we find

the model on f takes precedence over models on g and h. In consequence, there

is no longer the symmetry between f and g of the two-component solution. This

is reasonable if the extra distributions are describing only outliers, but may be less

appropriate if they model equally valid extra processes in the data. In the more general

mixture of Tresp (2000), the gates were not arranged in a tree but selection was via a

softmax exponential. This maintains symmetry in the various latent signals, but cannot

readily be allied with our deterministic inference procedure due to the interactions

induced by the renormalization across gating processes.

4.5.2 Inference

Our extension of the TGP largely overcomes the problems encountered when a simple

mixture of Gaussians (4.6) is used for the outlier distribution, but suffers a greater

computational burden through the maintenance of a posterior distribution over f and

all C us. Let this posterior approximation be

N
([ {

u(c)
}

f

]

; h , A

)

, where
{
u(c)
}

=







u(1)

...

u(C)






.

We initialize

h =

[ {
m(c)

}

0

]

and A =









Ku(1)u(1) 0 0 0

0
. . . 0 0

0 0 Ku(C)u(C) 0

0 0 0 Kf f









,

with the natural generalization (to include Kgg) if we are using model (4.8). The non-

zero means m(c) for the u-processes allow the adjustment of the frequency and nature

of corruptions to fit our prior beliefs.

The covariance A is initially block diagonal: each block of sizeN×N consists of one of

the kernel matrices Ku(c)u(c), or Kf f . We again use EP to refine the Gaussian approxi-

mation, and the algorithm of section 3.2.2 can be applied with minor changes. Primary
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among these is how to estimate the marginal moments of the tilted distribution. The

general expression for which we require a closed form is intractable:

Z =

∫

· · ·
∫

σ(u(1)) · · ·σ(u(C))N
(
f ; µf , σ

2
f

)
N
([ {

u(c)
}

f

]

; µ\n , Σ\n

)

dudf, (4.9)

but again recognised as a close relation of the marginal likelihood for a GP classifi-

cation model, with a data set of size C and with an extra Gaussian site at f . Using

an auxiliary EP loop in the spirit of section 4.1, necessary derivatives α and ν of the

partition function Z can be obtained by following the procedure of (4.2) and (4.3). In

this inner loop, there are up to C + 1 sites, although the number will depend on the

arrangement of the gating network: we make a separate moment calculation for each

leaf in the tree, and adding to that at f , each node on the path to the leaf contributes

its own site approximation. Thus, when the path contains a single node the moment

calculation is analytic, as exploited by the TGP, while longer paths call for the alter-

native approach. Although it is possible to incorporate the Gaussian over f directly

into the “prior” of (4.9), it can equivalently be included in the EP iterations as an exact

special case, for which we find

Z(f) =

∫

N
(
f ; µf , σ

2
f

)
N
(

f ; µ
\n
f , Σ

\n
f

)

df = N
(

µf ; µ
\n
f , Σ

\n
f + σ2

f

)

The other sites are treated as for conventional GP classification, the relevant moments

for which are reviewed in appendix B.

Returning to the main problem, we find it is now very similar to those we have already

seen: there are N multivariate Gaussian site approximations, each of C + 1 dimen-

sions. Once we have the necessary moments, the mathematics of their refinement is

essentially unchanged from the TGP case, except with rank-(C + 1) updates of the

covariance at each iteration.

4.5.3 Motorcycle revisited

Let us return to Silverman’s motorcycle set, which we encountered in the context of

the TGP model in section 3.4.3. Our conclusion was that a two-component model

was insufficient to capture the variance in the data, and with reference to the exper-

iments of Rasmussen and Ghahramani (2002) that at least three components should

be required.
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To investigate whether an extra component may allow the TGP enough flexibility to fit

the data well, we trained an extended twinned GP model—a “triplet” GP—using two

u processes and a single mean f about which all noise is Gaussian distributed. Our

results appear in fig. 4.9. There are now three noise models, and our experiments

confirm that suitable variances can be learned for each, together with an appropriate

gating function. For approximately t < 13 (where t is the index variable), the low-

variance component is weighted heavily by u(1), but this is almost entirely “switched

off” for larger t. Beyond t > 13, u(2) switches between a large-variance component

in the central region, and a component of intermediate variance for t > 42. It can

be observed that this fit is far superior to that of the TGP (fig. 3.11d); there is a

much sharper transition between the low- and high-variance regions, and a better fit

to the reduced variance data on the right-hand side. We also notice a spike in the

mixing processes at around t = 22 which is not anomalous: the model is attempting

to “pinch” the variance at the data (which are less spread at this point) but the global

lengthscales are such that the u signals cannot grow large enough to make the effect

visible.

Finally, it was discovered that for these highly heteroscedastic data, the EP iterations

converged more reliably for the triplet model (that is, with less damping) than the ear-

lier TGP, despite the increased complexity imparted by an additional process and noise

model. We suspect that much of the instability in the TGP inference was caused by the

model mismatch yielding a poorly-peaked posterior, a situation which is improved by

the additional flexibility enjoyed in this case.
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Figure 4.9: The green line is the mean process on u(1), switching between the “real” compo-

nent and the two outliers. The blue line is the mean of u(2); when positive it preferentially

chooses a medium-variance noise distribution, if it is negative the large-variance compo-

nent is favoured. Compare with fig. 3.11d.



CHAPTER 5

Conclusions

THIS THESIS HAS presented methods for speeding up inference in Gaussian pro-

cesses, for making them more robust to outlying observations, and for their

efficient use in general mixture modelling tasks.

To summarize its contributions, in chapter 2 it was shown how to extend the pseudo-

input regression model of Snelson and Ghahramani (2006a) to arbitrary likelihoods,

using EP to drive the inference. In this model, the speed of training and prediction can

be regulated a priori by controlling the size of the active set; furthermore, elements

of this set become explicit hyperparameters of the kernel, and it was described how

these could be learned as part of a continuous optimization. The experimental section

was devoted to the task of binary classification, and in a detailed comparison on data

sets of intermediate size, the sparse GP classifier was found to be highly competitive

with other state of the art sparse methods. Theoretical and practical insight was pro-

vided on the problem of finding sparse solutions, and it was suggested that the very

sparsest may only be found by global optimization rather than in a greedy manner.

An investigation into the ability of a supervised dimensionality reduction technique to

afford efficiency gains gave disappointing results, although its successful application

in Snelson and Ghahramani (2006b) for regression models suggests this is may be as

much a difficulty with the classification domain as with the concept.
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Chapter 3 introduced a new robust model for regression. It was shown how inference

could be conducted by EP with only a constant factor more complexity than for the

standard Gaussian mixture which it generalizes. Experimentally, the new noise model

was found to give more confident predictions on homoscedastic data, and to remain

more stable with respect to clusters of outlying observations than the mixture. Also

observed was improved EP convergence, for which practical measures were suggested

to aid the process. Some ability to model heteroscedastic data was exhibited, and the

sources of difficulty were discussed in detail together with possible resolutions.

In chapter 4 the twinned GP was further developed, yielding new models for robust

classification, regression and mixture modelling. In all these cases, it was shown how

inference could be conducted without recourse to costly Monte Carlo integration; the

EP framework was used throughout, and in a new manner which employed EP subrou-

tines to evaluate intractable site moments. By adding a third component to the TGP

model from chapter 3, the heteroscedastic data that was modelled inadequately there

could be fit with significantly improved predictive density.

We identify several areas for further research. Our work with the generalized sparse

pseudo-input GP is restricted to probit noise, but it would be interesting to extend

the model to other regimes; for example, Seeger et al. (2006) discuss ordered regres-

sion and multi-class classification for the IVM. They also consider “virtual informative

vectors”, in which the active set is augmented with extra inputs derived by known

invariant deformations such as rotation and translation of images. The technique was

found to improve the performance of the IVM and SVM (where it originated), and its

effect on our model would constitute a fruitful investigation.

The twinned GP opens numerous avenues of inquiry. We are particularly curious to

explore an alternative inference procedure based on variational methods. Since they

tend to focus on a single mode of the posterior, it is interesting to speculate how a

problem of clustered outliers would be resolved (see fig. 3.12). Our primary moti-

vation is that the issue of EP convergence remained in some cases problematic. An

alternative solution would be to employ more expensive “double loop” algorithms

(Opper and Winther, 2005) which are assured to find a fixed point of the associated

energy function. Other valuable extensions include a sparsified model, bringing the

ideas of chapters 2 and 3 together, and more elaborate structures (we note, for ex-

ample, that the TGP may be combined usefully with the ordinal regression model

described in Paquet et al. (2005)).



APPENDIX A

Mathematical preliminaries

A.1 Exponential families

A set of distributions F with densities

p(x|θ) = exp
(
θTτ (x) − Φ(θ)

)
, where θ ∈ Θ,

Φ(θ) = log

∫

exp
(
θTτ (x)

)
dµ(x)

w.r.t. a base measure µ is called an exponential family. The natural parameter space

is Θ, θ the natural parameters, τ (x) the sufficient statistics, and Φ the log partition

function. The moment parameters are η = E[τ (x)]. Many familiar distributions are

exponential family; of particular interest will be the Gaussian, for which

τ (x) =

[

x

xxT

]

, θ =

[

Σ−1µ

−1
2
Σ−1

]

, η =

[

µ

Σ + µµT

]

. (A.1)
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A.2 The Gaussian distribution

The set of Gaussian distributions is closed under many common operations. In partic-

ular, marginal and conditional distributions are also Gaussian; that is, if

p(x,y) = N
([

x

y

]

;

[

a

b

]

,

[

A C

CT B

])

,

then

∫

p(x,y)dy = N (x ; a , A) ;

and p(x|y) = N
(
x ; a + CTB−1(y − b) , A −CTB−1C

)
.

Furthermore, the product of two Gaussians is proportional to a third Gaussian, and the

proportionality is regulated by a fourth. This result holds in general for the product

under linear projection P:

N (x ; a , A)N (Px ; b , B) = N
(
b ; Pa , B + PAPT

)
N (x ; c , C) ,

where C−1 = A−1 + PTB−1P, and c = C
(
A−1a + PTB−1b

)
. The marginal follows

trivially: ∫

N (x ; a , A)N (Px ; b , B) dx = N
(
b ; Pa , B + PAPT

)
.

A.2.1 Derivatives of Gaussian forms

It is helpful to remember the following identities, in which σ(u) =
∫ u

−∞
N (z ; 0 , 1) dz,

the probit or cumulative distribution function of the Gaussian.

∂N (r ; m , Σ)

∂m
= N (r ; m , Σ)Σ−1(r −m);

∂N (u(z) ; 0 , 1)

∂z
= −u(z)N (u(z) ; 0 , 1)

∂u(z)

∂z
;

∂σ(u(z))

∂z
= N (u(z) ; 0 , 1)

∂u(z)

∂z
.

A.3 Matrix algebra

The matrix inversion lemma, or the Sherman-Morrison-Woodbury formula, states that

(
A + PBPT

)−1
= A−1 − A−1P

(
PTA−1P + B−1

)−1
PTA−1, (A.2)



A.4 Kullback-Leibler divergence 115

and equivalently for determinants,

log |A + PBPT | = log |A| + log |B| + log |B−1 + PTA−1P|,

where A is N ×N , B is M ×M , and P is N ×M .

A.3.1 Cholesky decomposition

The Cholesky factorization of positive definite matrices should always be preferred

to generalized inversion: it is more stable, slightly more efficient, and the triangular

factors can be used to calculate common forms. They appear in two orientations,

upper R and lower L:

K = LLT = RTR,

from which quadratic terms can be calculated in O(N2) by backsubstitution:

vTK−1v = vTL−T L−1v = ‖L\v‖2.

Determinants are also readily evaluated:

log detK = 2
∑

n

log(Lnn)

A.3.2 Derivatives of matrix forms

In the following, • denotes the element-wise or Hadamard product:

∂K−1

∂θ
= −K−1∂K

∂θ
K−1 (A.3)

∂ log |K(θ)|
∂θ

= tr

(

K−1∂K

∂θ

)

=
∑

m,n

(

K−1 • ∂K
∂θ

)

m,n

. (A.4)

A.4 Kullback-Leibler divergence
The asymmetric KL-divergence between two probability distributions is

KL (p(x)‖q(x)) =

∫

p(x) ln

(
p(x)

q(x)

)

dx.
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Sparse Gaussian process classification

B.1 EP for Gaussian process classification

We make use of the EP framework provided in section 1.3. The site functions are

evaluations of the probit with bias b, tn(fn) = p(yn|fn) = σ(yn(fn + b)), so that the

zeroth moment of the tilted distribution is

Zn =

∫

σ(yn(fn + b))N
(
fn ; µ\n , σ

2
\n

)
dfn

=

∫ ∫ yn(fn+b)

zn=−∞

N (zn ; 0 , 1)N
(
fn ; µ\n , σ

2
\n

)
dzndfn

=

∫ ∞

zn=0

∫

N (yn(fn + b) ; zn , 1)N
(
fn ; µ\n , σ

2
\n

)
dfndzn

=

∫ ∞

zn=0

N
(
zn ; yn(µ\n + b) , 1 + σ2

\n

)
dzn = σ




yn(µ\n + b)
√

1 + σ2
\n



 ,

whose derivatives with respect to µ are

∂Zn

∂µ\n

=
yn

√

1 + σ2
\n

N




yn(µ\n + b)
√

1 + σ2
\n



 ;
∂2Zn

∂µ2
\n

= − yn(µ\n + b)
(

1 + σ2
\n

)3/2
N




yn(µ\n + b)
√

1 + σ2
\n



 ,
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so that

αn =
yn

Zn

√

1 + σ2
\n

N




yn(µ\n + b)
√

1 + σ2
\n



 ; νn = αn

(

αn +
µ\n + b

1 + σ2
\n

)

.

These expressions can be plugged into the update rules (1.13) and iterated to yield

the EP approximation to the posterior.

B.2 Model selection for the generalized FITC approxima-

tion

Model selection is complicated by two issues: first, we must consider gradients of the

kernel with respect not only to its hyperparameters (such as lengthscale and ampli-

tude), but also to locations of the pseudo-inputs X̄. Second, we must be vigilant that

the complexity of the derivative calculations remains bounded by O(NM2), which re-

quires expandingN×N matrices into their components, typically the sum of a diagonal

term and a rank-M term.

We have from section 1.3.2 that ∇ξ(0)L = η − η(0), where L is the log marginal likeli-

hood, ξ(0) are the natural parameters of the prior, and η are the moment parameters.

In the prior,

µ = 0 and Σ = diag
(
Kf f − Kf f̄K

−1
f̄ f̄

Kf̄ f

)
+ Kf f̄K

−1
f̄ f̄

Kf̄ f .

Write D0 for the diagonal term in Σ, and write the posterior covariance in terms site

precisions Π as (Σ−1 + Π)
−1

= Σ −Σ (Σ + Π−1)
−1

Σ. Then

∇ξ(0)L = −Σ
(
Σ + Π−1

)−1
Σ +

(
Σb− Σ

(
Σ + Π−1

)−1
Σb
)(

Σb −Σ
(
Σ + Π−1

)−1
Σb
)T

= −Σ
(
Σ + Π−1

)−1
Σ + Σ

(
Σ + Π−1

)−1
Π−1bbT Π−1

(
Σ + Π−1

)−1
Σ,

where b are site parameters corresponding to precision times mean. This leaves the

calculation of ∇θξ
(0) for some θ (either a kernel hyperparameter or the coordinate of

a pseudo-input). In the latter case, we find we can combine derivative calculations

for all dimensions while still dealing with standard matrices (rather than higher-order

tensors) because moving the jth pseudo-input affects only covariance calculations that

involve x̄j: most entries in the tensor evaluate to zero and can be ignored. Recalling
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(A.3), and dropping θ subscripts on ∇,

∇L = Tr
((
∇ξ(0)

)(
∇ξ(0)L

))

=
1

2
Tr
((

Σ + Π−1
)−1

(∇Σ)
)

− 1

2
bTΠ−1

(
Σ + Π−1

)−1
(∇Σ)

(
Σ + Π−1

)−1
Π−1b.

(B.1)

Now let E = D0 + Π−1, which is diagonal and allows easy inversion;

(
Σ + Π−1

)−1
= E−1 − E−1Kf f̄

(
Kf̄ fE

−1Kf f̄ + Kf̄ f̄

)−1
Kf̄ fE

−1

= E−1 − BTB, (B.2)

where B = chol (Kf̄ fE
−1Kf f̄ + Kf̄ f̄ ) \Kf f̄E

−1 has dimensions M × N . Derivatives ∇Σ

of the prior covariance with respect to hyperparameters of the kernel include the term

∇D0 = diag (∇Kf f)−2diag
(
(∇Kf f̄ )K

−1
f̄ f̄

Kf̄ f

)
+diag

(
Kf f̄K

−1
f̄ f̄

(∇Kf̄ f̄ )K
−1
f̄ f̄

Kf̄ f

)
. (B.3)

For stationary covariance functions, ∇Kf f has constant diagonal; the other terms are

evaluated in O(NM2), and we should retain the partial derivative matrices they con-

tain, since

∇Σ = ∇D0 + (∇Kf f̄)Kf̄ f̄Kf̄ f + Kf f̄K
−1
f̄ f̄

(∇Kf̄ f̄ )K−1
f̄ f̄

Kf̄ f + Kf f̄Kf̄ f̄ (∇Kf̄ f ) . (B.4)

Multiplied together, (B.2) and (B.4) provide the necessary terms for evaluating (B.1)

within the complexity bounds.

We turn now to derivatives ∇x̄j
L of the log marginal likelihood with respect to points

in the active set. It was observed how these are simplified by an independence prop-

erty, namely that moving the dth component of x̄j cannot affect Kf̄ f̄ or Kf̄ f at rows

or columns not involving the jth pseudo-input, so that we can consider derivatives

with respect to full x̄j while dealing only with standard matrices. We consider the

various terms we need in turn, namely the derivatives of the diagonal and low-rank

components of the covariance.

The tensor ∇x̄j
Kf̄ f , which may be visualized as a cuboid M ×N with depth D (where

D is the dimensionality of the data), can be condensed for efficiency into a D × N

matrix since only the jth row is non-zero. Similarly, ∇x̄j
Kf̄ f̄ is zero everywhere except

along the jth row and column; it can be condensed into a D × M matrix consist-
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ing only of (half) these non-zero elements (the tensor must be symmetric). Finally,

consider ∇x̄j
D0 (B.3): the term Kf f has derivative zero, since it is independent of

the pseudo-inputs altogether. The term Kf f̄K
−1
f̄ f̄

(
∇x̄j

Kf̄ f

)
is an N × N × D tensor,

but we require only the diagonal which is N × D. The final term is the diagonal

of Kf f̄K
−1
f̄ f̄

(
∇x̄j

Kf̄ f̄

)
K−1

f̄ f̄
Kf̄ f ; we make the same simplification, using the condensed

D ×M form of ∇x̄j
Kf̄ f̄ but remembering to account for both row and column of the

original tensor.

B.3 Dimensionality reduction

In section 2.5, we suggested how the training data could be projected in a supervised

manner onto a low-dimensional manifold in order to accelerate in many dimensions

the learning process, or to allow a greater number of pseudo-inputs without raising

its cost. Unfortunately, there is no easy way to deal with entire rows or columns of

the projection matrix in the manner we could with the separate components of each

pseudo-input, since there is no comparable independence property. Hence, we must

iterate over every element Pij, although only terms involving ∇Pij
Kf f̄ survive:

∇D0 = −2diag
((
∇Pij

Kf f̄

)
K−1

f̄ f̄
Kf̄ f

)
,

where we have assumed a stationary covariance to eliminate ∇Pij
Kf f .
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Robust Gaussian process regression

C.1 Inference

Recall that the prior over u and f is

p

([

u

f

] ∣
∣
∣
∣
∣
X

)

= N
([

u

f

]

;

[

mu

0

]

,

[

Kuu 0

0 Kf f

])

and the likelihood factorizes into a product of terms

tn(yn|fn, un) = σ(un)N
(
yn ; fn , σ

2
R

)
+ σ(−un)N

(
yn ; fn , σ

2
O

)
.

We use N scaled natural Gaussian site functions snt̃n to construct an approximate

posterior distribution

N
([

u

f

]

;

[

mu

0

]

,

[

Kuu 0

0 Kf f

])
N∏

n=1

snt̃n

([

un

fn

]

; bn , Πn

)

.

We require the moments of the tilted distribution, the product of a likelihood term

tn and the cavity distribution N ([u; f ] ; µ , Σ). Dropping the n subscripts, the zeroth

120
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moment for the component corresponding to real data is

ZR =

∫∫

σ(u)N
(
y ; f , σ2

R

)
N
([

u

f

]

; µ , Σ

)

dudf

=

∫∫∫ u

z=−∞

N (z ; 0 , 1)N
(
y ; f , σ2

R

)
N
([

u

f

]

; µ , Σ

)

dzdudf

=

∫ ∞

z=0

∫∫

N (u ; z , 1)N
(
f ; y , σ2

R

)
N
([

u

f

]

; µ , Σ

)

dudfdz

=

∫ ∞

z=0

∫∫

f

N
([

u

f

]

;

[

z

y

]

,

[

1 0

0 σ2
R

])

N
([

u

f

]

; µ , Σ

)

dudfdz

=

∫ ∞

z=0

N
([

z

y

]

; µ ,

[

1 0

0 σ2
R

]

+ Σ

)

dz,

where the final marginalization is a standard result. If we write the inner Gaussian as

N
([

zn

yn

]

;

[

µu

µf

]

,

[

A C

C BR

])

,

then

ZR = N (y ; µf , BR)

∫ ∞

z=0

N
(

z ; µu +
C(y − µf)

BR
, A− C2

BR

)

dz

= N (y ; µf , BR) σ(q), (C.1)

where

q =
µu + C

BR
(y − µf)

√

A− C2

BR

.
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A little algebra yields analytic expressions for the partial derivatives

∂ZR

∂µu

=
N (y ; µf , BR)N (q)

√

A− C2

BR

; (C.2a)

∂ZR

∂µf
=

N (y ; µf , BR)

BR



(y − µf)σ(q) − CN (q)
√

A− C2

BR



 ; (C.2b)

∂2ZR

∂µ2
u

= −qN (q)N (y ; µf , BR)

A− C2

BR

; (C.2c)

∂2ZR

∂µ2
f

=
N (y ; µf , BR)

B2
R



σ(q)
(
(y − µf)

2 − BR

)
− CN (q)
√

A− C2

BR



2(y − µf) +
qC

√

A− C2

BR







 ;

(C.2d)

∂2ZR

∂µu∂µf

=
N (q)N (y ; µf , BR)

BR

√

A− C2

BR



y − µf +
qC

√

A− C2

BR



 =
∂2ZR

∂µf∂µu

. (C.2e)

The integral for the outlier component develops in a similar way:

ZO = N (y ; µf , BO)σ(−q), (C.3)

hence

∂ZO

∂µu
= −N (y ; µf , BO)N (q)

√

A− C2

BO

; (C.4a)

∂ZO

∂µf
=

N (y ; µf , BO)

BO



(y − µf)σ(q) +
CN (q)
√

A− C2

BO



 ; (C.4b)

∂2ZO

∂µ2
u

=
qN (q)N (y ; µf , B)

A− C2

B

; (C.4c)

∂2ZO

∂µ2
f

=
N (y ; µf , BO)

B2
O



σ(−q)
(
(y − µf)

2 −BO

)
− CN (q)
√

A− C2

BO



2(y − µf) +
qC

√

A− C2

BO







 ;

(C.4d)

∂2ZO

∂µu∂µf
= −N (q)N (yn ; µf , BO)

BO

√

A− C2

BO



y − µf +
qC

√

A− C2

BO



 =
∂2ZO

∂µf∂µu
. (C.4e)



C.2 Predictions 123

C.2 Predictions

In the following, we partition the full posterior N
([

u

f

]

;

[

hu

hf

]

,

[

Auu Auf

Afu Af f

])

.

If the outlier component describes only nuisance noise that should be eliminated,

we require at test inputs x⋆ only the marginal distribution p(f⋆|x⋆,X,y) obtained by

marginalizing u:

p(f⋆|X⋆, X,y) =

∫

p(f⋆|X⋆, f)p(f |X,y)df

≈
∫

N
(
f⋆ ; kT

f⋆K
−1
f f f , k(f)

⋆⋆ − kT
f⋆K

−1
f f kf⋆

)
N (f ; hf , Af f ) df

= N
(
f⋆ ; kT

f⋆K
−1
f f hf , k

(f)
⋆⋆ − kT

f⋆K
−1
f f (Kf f −Af f )K

−1
f f kf⋆

)
.

Alternatively, the noise process may be of interest, in which case we require predictions

p(y⋆|x⋆,X,y) =

∫∫

p

(

y⋆

∣
∣
∣
∣
∣
x⋆,

[

u

f

])

p

([

u

f

] ∣
∣
∣
∣
∣
X,y

)

dudf

≈
∫∫∫∫

p

(

y⋆

∣
∣
∣
∣
∣
x⋆,

[

u⋆

f⋆

])

p

([

u⋆

f⋆

] ∣
∣
∣
∣
∣

[

u

f

])

N
([

u

f

]

; h , A

)

du⋆df⋆dudf .

The first term is the likelihood, while the second is a conditional Gaussian

p

([

u⋆

f⋆

] ∣
∣
∣
∣
∣

[

u

f

])

= N





[

u⋆

f⋆

]

;

[

P 0

0 Q

]T [

u

f

]

,

[

R 0

0 S

]

 ,

where

P T = kT
u⋆K

−1
uu; QT = kT

f⋆K
−1
f f ; R = k(u)

⋆⋆ − kT
u⋆K

−1
uuku⋆; S = k(f)

⋆⋆ − kT
f⋆K

−1
f f kf⋆.

If we first marginalize the final two terms of the integrand

∫∫

N





[

u⋆

f⋆

]

;

[

P 0

0 Q

]T [

u

f

]

,

[

R 0

0 S

]

N
([

u

f

]

; h , A

)

dudf

= N





[

u⋆

f⋆

]

;

[

P 0

0 Q

]T

h ,

[

R 0

0 S

]

+

[

P 0

0 Q

]T

A

[

P 0

0 Q

]


.
= N

([

u⋆

f⋆

]

; µ⋆ , Σ⋆

)
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then

p(y⋆|x⋆, X,y) =

∫∫

p(y⋆|f⋆, u⋆)N
([

u⋆

f⋆

]

; µ⋆ , Σ⋆

)

du⋆df⋆ = Z⋆
R + Z⋆

O.

The moments of the posterior are straightforward to calculate using (C.1) and (C.3).

C.3 Ordered overrelaxation for Bernoulli variables

Let the two states be R and O, and let π be the probability of changing state; the

marginal probability of the current state is therefore 1 − π. With respect to the transi-

tion matrix

T =

[

1 − p p

q 1 − q

]

,

the following relationship must hold:

1 − π = (1 − π)(1 − p) + πq =⇒ p =
πq

1 − π
.

The standard solution corresponds to p = π and q = 1−π, for which the successor state

is independent of the current state. However, there is no requirement that p + q = 1,

and ordered overrelaxation decouples the transition probabilities R → O and O → R

to encourage more frequent changes—clearly maximized when p and q are as large

as possible. For this case, the probability of switching states is π̂ = π
1−π

if π ≤ 1
2
, and

π̂ = 1 if π > 1
2
; succinctly,

π̂ = min

(

1,
π

1 − π

)

.



APPENDIX D

Creating kernel functions

KERNEL FUNCTIONS LIE at the heart of a variety of learning algorithms and prob-

abilistic models: in the learning theory literature they appear in the support

vector machine; in a Bayesian setting they feature in the Gaussian process.

Their role is to give a numeric value to the similarity between (or correlation in the la-

tent function value at) any two inputs, with the restriction that such valuations respect

a certain consistency property that ensures all derived kernel matrices are positive

semi-definite. In the absence of any substantial prior knowledge, the relatively benign

squared exponential is common; covariances from the Matérn class can be thought of

as its rougher cousins; further examples were presented in section 1.2.1.

In this chapter, we explore the merits of a scheme for generating kernels from a

class of simple discriminative functions. After introducing the fundamental idea in

section D.1 we derive the kernel in section D.2, a discussion of which follows in

section D.3. The original motivation for our ideas arose from a consideration of

boosting (Schapire, 1990; Freund and Schapire, 1996; Meir and Rätsch, 2003), and

we developed an empirically sparse algorithm for binary classification first presented

in Naish-Guzman et al. (2005). However, in the following exposition we maintain a

purely Bayesian perspective in keeping with the rest of the thesis.
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D.1 Kernels from basis functions

Given a class of binary hypotheses H and an associated prior p(h), we suggest a kernel

with the following structure:

k(x, z)
.
=

∫

I [h(x) = h(z)] p(h)dh−
∫

I [h(x) 6= h(z)] p(h)dh

= 1 − 2

∫

I [h(x) 6= h(z)] p(h)dh ∈ [−1, 1]. (D.1)

In other words, the metric of similarity is the volume of prior probability on H in which

functions disagree at x and z subtracted from the volume at which they agree. It is

straightforward to prove this is a valid kernel: we need only show that the positive

semi-definite property holds for any finite matrix K = {k(xn,xn′)}N
n,n′=1 of dimensions

N ×N . Observe that, since

k(x, z) =

∫

h(x)h(z)p(h)dh, then for any v ∈ R
N , (D.2)

vTKv =
N∑

n=1

N∑

n′=1

vnvn′k(xn,xn′) =

∫ N∑

n=1

N∑

n′=1

vnvn′h(xn)h(xn′)p(h)dh

=

∫
(

N∑

n=1

vnh(xn)

)2

p(h)dh ≥ 0.

This is not a new definition: the form (D.2) appears in Neal (1996) and is used directly

in the neural network kernels derived by Williams (1998). The basis functions there

take (bounded) real values, which in certain cases yields a tractable integral; Williams

treats erf and Gaussian forms. Viewed in relation to that work, we have considered

an alternative parameterization and restricted ourselves to binary-valued threshold

functions. To obtain the kernel, we need to specify the parameters of elements of H
and place a suitable prior on them, marginalizing for k(x, z).

D.2 General half-spaces

Initially we restrict our attention to the two-dimensional case, fixing H to be half-

spaces in R
2. Let the origin be O = (0, 0), and let all data lie in the region [−R,R]2.

With the exception of those that pass through the origin, linear half-spaces may be

paramaterised by a coordinate r ∈ R
2 that indicates the closest point on the boundary

to the origin O. Let us define the measure p(h) on H by placing a uniform distribution
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Figure D.1: The shaded region parameterises hypotheses h ∈ H′ ⊆ H for which h(x1) 6=
h(x2) ⇔ h ∈ H′. Two hypotheses are shown, h1 and h2, parameterised by r1 and r2

respectively. Observe that h1 ∈ H′ discriminates between x1 and x2, while h2 6∈ H′

classifies the two examples identically.

over r in the range [−R,R]2. In order to calculate (D.1), we must calculate the volume

of parameter space H′ ⊆ H, in which h(x) 6= h(z) ⇔ h ∈ H′. The situation is illustrated

in fig. D.1. We write the circular region parameterising hypotheses that discriminate

between a point x and the origin O as ©x. Now

∫

I[h(x) 6= h(z)]p(h)dh ∝ |©x \©z| + |©z \©x|

= |©x| + |©z| − 2 |©x ∩©z| . (D.3)

It can be shown that the area of intersection is given by

|©x ∩©z| =
1

2

(

‖x‖2(θx − sin θx) + ‖z‖2(θz − sin θz)
)

,

where θx is the angle subtended at the centre of ©x by radii extending to the two

points of intersection. Using (D.3), we find

k(x, z;R) = 1 − 2

R2

(
‖x‖2 (π − θx + sin θx) + ‖z‖2 (π − θz + sin θz)

)
.

There appears here a rather inconvenient “range” parameter R in which the data must

lie. We might hope to marginalize a Gaussian prior on elements of r, but due to the

complexity of the region over which we must integrate, it is difficult to do this while

remaining in a tractable model.
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D.2.1 Generalization to higher dimensions

In D dimensions, we can make equivalent prior assumptions and retain tractability.

The shapes of interest are D-dimensional hyperspheres, and critical to our kernel is

the volume of intersection of any two. Consider two such spheres: we write c1 and

c2 for the coordinates of their centres; let r1 and r2 be their radii. Without loss of

generality, let c1 = 0, and let r1 ≥ r2 and assume there is indeed an intersection. Any

point x = (x1, x2, . . . , xD) on the surface of sphere i satisfies

D∑

d=1

(xd − cd)
2 = r2

i .

The intersection of the spheres’ surfaces is where

‖x‖2 = r2
1 (D.4)

and ‖x − c2‖2 = r2
2. (D.5)

Again without loss of generality, let the line through the centres of the spheres be the

X1-axis of the Euclidean space. Substituting (D.4) into (D.5) we find

r2
1 − 2x · c2 + c2 · c2 = r2

2. (D.6)

Now considering only the X1 axis, the point of intersection is

x̂ =
r2
1 − r2

2 + c22
2c2

,

where we write c2 as a notational convenience for the X1 component of c2. For points

x in the range c2 − r2 ≤ x < x̂ on this axis, the volume of intersection is swept out

by a (D − 1)-sphere of radius s1(x) centred at x. Fix x, and observe that a point

p = (x, p2, p3, . . . , pD) on the surface of this sub-sphere satisfies

D∑

d=2

p2
d = s2

1, and (x− c2)
2 +

D∑

d=2

p2
d = r2

2,

so that the radius is given by s1(x). Similarly, for coordinates x̂ ≤ x ≤ r1 the volume

of intersection is swept out by a (D − 1)-sphere of radius s2(x) centred at x, where

s1(x) =
√

r2
2 − (x− c2)2; s2(x) =

√

r2
1 − x2. (D.7)
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Write the volume of a D-sphere of radius r as V (D, r). Using (D.7), the volume of

intersection is

V (c1 ∩ c2) =

∫ x̂

c2−r2

V (D − 1, s1(x))dx+

∫ r1

x̂

V (D − 1, s2(x))dx.

In fact, V (D, r) = 1
D
SDr

D, where SD = 2πD/2

Γ(D/2)
, so that

V (c1 ∩ c2) =
SD−1

D − 1

{∫ x̂

c2−r2

(
r2
2 − (x− c2)

2
)D−1

2 dx+

∫ r1

x̂

(
r2
1 − x2

)D−1
2 dx

}

=
SD−1

D − 1

{∫ r2

c2−x̂

(
r2
2 − x2

)D−1
2 dx+

∫ r1

x̂

(
r2
1 − x2

)D−1
2 dx

}

.

The indefinite integral can be written in analytic form:

∫

(a− x2)
D−1

2 dx = xa
D−1

2 F

([
1

2
,
1 −D

2

]

,
3

2
,
x2

a

)

,

where F denotes Gauss’ hypergeometric function (Abramowitz and Stegun, 1964, ch. 15).

D.2.2 Implementation

We need to check whether the spheres are entirely disjoint, and also whether the

larger sphere entirely encloses the smaller. In either case the limits are not properly

defined, although the solutions are trivial (for the former, V (c1 ∩ c2) = 0; for the

latter, V (c1 ∩ c2) = V (D, r2)). Let c̃1 and c̃2 define the diameters of two spheres in D

dimensions, from a common origin 0̃. The spheres intersect when c̃1 and c̃2 are not

antiparallel; conversely, one entirely encloses the other if they are parallel. Define

c1 = 0 and c2 =
c̃2 − c̃1

2
.

Let the radii of the circles be r1 and r2, r1 ≥ r2. Adopting the earlier terminology,

define the X1 axis as the line connecting the two centres 0 and c2. By considering

(D.6), we see the intersection on this axis is at αĉ2, where

r2
1 − r2

2 = 2α(ĉ2 · c2) + ‖c2‖2, (D.8)
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and ĉ2 is a unit vector along c2. This gives

α =
r2
1 − r2

2 + ‖c2‖2

2‖c2‖
. (D.9)

The calculation of the volume of intersection proceeds with x̂ = α and c2 = ‖c2‖.

D.3 Discussion

Our kernel function is closely related to the neural network kernel presented in Williams

(1998). In that work, evaluation of the error function

h(x;u) = erf

(

u0 +

D∑

d=1

udxd

)

is integrated over a prior in which its bias and scale terms are drawn from prespecified

Gaussian distributions. Using a clever trick involving the derivative of one of the error

functions, Williams is able to obtain a closed form for the correlation between any

two points relative to the specified function class, which amounts to the covariance

function for an infinite neural network.

In our model, we use the simpler class of threshold functions, parameterized by a

coordinate in the space of the data defining the closest point of the linear halfspace

to the origin. This is a different prior—although not obviously a better one, certainly

in higher dimensions—and yields different correlations. A particular property is non-

stationarity, which is also observed in the erf kernel. However, the parameterization

does not yield a form which allows a Gaussian expectation, and we are forced to

include a range parameter R which defines a region from which we take the infinite

limit of uniform samples, and in which the data (including test points) must lie. This

is a distinct inconvenience. Furthermore, the generalization to multiple dimensions

requires the machinery of Gauss’ hypergeometric function—unlike the arcsin used in

the neural network function, this is unlikely to be optimized in floating point units!

Although we obtained in Naish-Guzman et al. (2005) strong results when using our

kernel in a form of 1-norm support vector machine, and our classifiers were observed

empirically to be very sparse, we must acknowledge certain shortcomings and regard

the kernel more as a curiosity than one of enormous practical benefit.
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Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. In Advanced

lectures on machine learning, pages 118–183. Springer-Verlag, 2003.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equations of state calculations by fast computing ma-

chines. Journal of Chemical Physics, 21(6):1087–1092, 1953.

Thomas Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,

Massachusetts Institute of Technology, 2001.

Andrew G. P. Naish-Guzman and Sean Holden. The generalized FITC approximation.

In Advances in Neural Information Processing Systems 20, 2008a.

Andrew G. P. Naish-Guzman and Sean Holden. Robust regression with twinned Gaus-

sian processes. In Advances in Neural Information Processing Systems 20, 2008b.

Andrew G. P. Naish-Guzman, Sean Holden, and Ulrich Paquet. On the use of weighted

examples in classification. In Proceedings of the International Conference on Artificial

Neural Networks, 2005.

Subhash C. Narula and John F. Wellington. The minimum sum of absolute errors

regression: A state of the art survey. International Statistical Review, 50(3):317–326,

1982.

Radford M. Neal. Probabilistic inference using Monte Carlo methods. Technical Report

CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993.

Radford M. Neal. Suppressing random walks in Markov chain Monte Carlo using

ordered overrelaxation. Technical Report 9508, Dept. of Statistics, University of

Toronto, 1995.

Radford M. Neal. Bayesian Learning for Neural Networks. Number 118 in Lecture Notes

in Statistics. Springer, New York, 1996.

Radford M. Neal. Monte Carlo implementation of Gaussian process models for

Bayesian regression and classification. Technical Report 9702, Dept. of Statistics,

University of Toronto, 1997.

Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of

Computation, 35:773–782, 1980.

Anthony O’Hagan and Jon Forster. Kendall’s Advanced Theory of Statistics volume 2B.

Hodder Arnold, 2 edition, 2004.

Manfred Opper and Ole Winther. Gaussian processes for classification: mean field

methods. Neural Computation, 12(11):2655–2684, 2000.



Bibliography 135

Manfred Opper and Ole Winther. Expectation consistent approximate inference. Jour-

nal of Machine Learning Research, 6:2177–2204, 2005.

Ulrich Paquet. Bayesian inference for latent variable models. PhD thesis, Computer

Laboratory, University of Cambridge, 2007.

Ulrich Paquet, Sean Holden, and Andrew G. P. Naish-Guzman. Bayesian hierarchical

ordinal regression. In Proceedings of the International Conference on Artificial Neural

Networks, 2005.

John C. Platt. Probabilities for SV machines. In Advances in Large Margin Classifiers,

pages 61–74. MIT Press, 1999.
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