
Software Prefetching for Indirect Memory Accesses
Sam Ainsworth, Timothy M. Jones

University of Cambridge

Software Prefetching for Indirect Memory Accesses
Sam Ainsworth, Timothy M. Jones

University of Cambridge

Overview

Many modern data processing and HPC workloads are heavily memory-

latency bound. A tempting proposition to solve this is software prefetching,

where special non-blocking loads are used to bring data into the cache hi-

erarchy just before being required. However, these are difficult to insert to

effectively improve performance, and techniques for automatic insertion are

currently limited.

We have developed a novel compiler pass to automatically generate software

prefetches for indirect memory accesses, a special class of irregular memory

accesses often seen in high-performance workloads. Across a set of memory-

bound benchmarks, our automated pass achieves average speedups of 1.3×
and 1.1× for an Intel Haswell processor and an ARM Cortex-A57, both

out-of-order cores, and performance improvements of 2.1× and 2.7× for the

in-order ARM Cortex-A53 and Intel Xeon Phi.

Software Prefetching

for (i=0; i<a_size; i++) {
SWPF(b[f(a[i + offset])]);
SWPF(a[i + offset*2]);
b[f(a[i])]++;

}

Good Prefetches are Challenging

 0.9

 1

 1.1

 1.2

 1.3

 1.4

Naive Offset too small Offset too big Optimal

S
p
e
e
d
u
p

•Need to stagger prefetches to each data structure, even those covered by

the stride prefetcher!

•Need to set a good look-ahead offset, that brings in the data neither too

late, nor too early.

•But the behaviour is surprisingly resilient across microarchitectures and

workloads, in terms of both strategy and lookahead distance!

Acknowledgements

This work was supported by ARM Ltd and the Engineering and Physical Sciences Research
Council (EPSRC) through grant references EP/K026399/1 and EP/M506485/1.

Algorithm

We use a dataflow analysis in LLVM IR to auto-

matically insert prefetches:

• Identification: Trace back through loads, to

find both an induction variable and a set of de-

pendent loads based off of it.

•Safety Analysis: Look for array bounds infor-

mation, to ensure no real loads, used for prefetch

address generation, cause faults.

•Scheduling: Use the load pattern to statically

set look-ahead offsets for prefetches.

�
��

�
�����

�
�����

	

��


��

�

��

�
���

Large Speedups on Real Cores

 1

 2

 3

 4

G500-CSR HashJoin RandAcc ConjGrad IntSort

A53

 3

 6

 9

G500-CSR HashJoin RandAcc ConjGrad IntSort

Xeon Phi

 1

 2

 3

G500-CSR HashJoin RandAcc ConjGrad IntSort

Haswell

 1

 2

 3

G500-CSR HashJoin RandAcc ConjGrad IntSort

A57


