
Parallel Error Detection Using Heterogeneous Cores
Sam Ainsworth, Timothy M. Jones

Computer Architecture Group
University of Cambridge Computer Laboratory

Overview

Hard and soft faults in silicon processors are becoming an increasing issue for reliability
in modern systems: temporary or permanent errors from physical properties can cause
executed computation to be incorrect. Traditional schemes to detect errors within the
CPU involve repeating the computation on either an identical core, or on the same core at
a later time, and have typically doubled power and silicon area requirements, or reduced
performance significantly.
However, we have developed a scheme which significantly reduces the overheads of all three
by exploiting new parallelism in the checking of computation which may not exist in the
original run. This allows execution of the checks on highly efficient micro-controller sized
cores attached to the CPU.

Comparison

Lock-stepping Redundant Multi-threading Our solution

Overhead Lockstep RMT Our Solution

Area Large Small Small
Energy Large Large Small
Performance Negligible Large Negligible

Duplicating the core and comparing the results between each, as in traditional lockstep-
ping schemes [1], is too expensive in both energy usage and silicon area. Redundant
multi-threading [2], where the same code is run twice on the same core, reduces per-
formance significantly, uses significant energy as instructions are executed twice, and can’t
cover hard faults within a particular core.
We solve these issues by exploiting heterogeneity between the initial run and
detection, allowing parallelism of the detection stream, and thus the use of many tiny,
low power checker cores to repeat the computation.

Parallelism

���������

���������

���������

���������

���������

���������

���������

���������

���������

���� ���� ����

����

����

����

����

����

�
��
�

�������������

Our solution attains parallelism to allow running the duplicate execution for error detection
on multiple small cores by:

• Splitting the main computation’s loads and stores into a partitioned log for forwarding
onto checker cores.

•Checking each log partition independently on a different checker core, allowing
different checks to overlap, then combining using strong induction to prove whole program
correctness.

•Taking register checkpoints between each segment on the main core, for independent
checker start points, making sure the start of one check is a valid end of the previous one.

Error Detection Structure

�������������

�������
�����������

�����������
��������������

�
�
�
�
��

�
�
��
�

��������������

����
�����

��������
�����������

�������
�����

�������
�����

���������
�����

�����
����������

����

•Our main out-of-order core forwards results of all loads and stores at commit time,
so that they are in order.

•These go into the partitioned load-store log. When a segment is filled, a check-
point of architectural registers is initiated on the main core.

•These checkpoints and log segments are used to start the corresponding micro-controller
sized checker core, which executes until an incorrect store is found or it reaches the
end of a segment.

•The main core can continue execution until every checker core is busy, at which point it
must wait until a new checker core becomes free.

Results

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

blackscholes

randacc

fluidanimate

swaptions

fre
qmine

bodytra
ck

bitcount

facesim
stre

am

S
lo

w
d
o
w

n

•Across a diverse set of workloads (Parsec, MiBench, HPCC) twelve micro-controller sized
cores each running at 1GHz is sufficient to achieve an average slowdown of only
2% compared to unchecked code.

• Similarly, we estimate only around 24% area overhead compared with the original
processor without shared caches, and only 16% energy consumption overhead.

Acknowledgements

This work was supported by ARM Ltd and the Engineering and Physical Sciences Research
Council (EPSRC) through grant references EP/K026399/1 and EP/M506485/1.

References

[1] X. Iturbe, B. Venu, E. Ozer, and S. Das. A triple core lock-step (TCLS) ARM R�Cortex R�-R5 processor
for safety-critical and ultra-reliable applications. In DSN-W, 2016.

[2] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via simultaneous multithreading. In ISCA,
2000.


