
The Guardian Council: Parallel Programmable Security

Sam Ainsworth and Timothy M. Jones

University of Cambridge

The Guardian Council: Parallel Programmable Security

Sam Ainsworth and Timothy M. Jones

University of Cambridge

The Best of Both Worlds

Systems security is becoming more challenging in the face of untrusted
programs and system users. Safeguards against attacks currently in use,
such as buffer overflows, control-flow integrity, side channels and mal-
ware, are limited. Software protection schemes, while flexible, are often
too expensive, and hardware schemes, while fast, are too constrained or
out-of-date to be practical.
We demonstrate the best of both worlds with the Guardian Council, a
novel parallel architecture to enforce a wide range of highly customisable
and diverse security policies.

The Guardian Council

We leverage heterogeneity and parallelism to perform security enforce-
ment for a large high-performance core on a set of small microcontroller-
sized Guardian Processing Elements. Alongside these highly parallel
cores we provide fixed-function logging and communication units, and
a powerful programming model, as part of an architecture for security.

Guardian Processing Elements

Guardian Processing Elements (GPEs) are many orders of magnitude
more efficient than conventional out-of-order superscalar processors,
bringing high-performance security at very low power and area over-
heads, through inter- and intra-task-level parallelism of security defences.

Guardian Kernels

For a given process running on the main core, a number of Guardian
Kernels, each providing a certain security property, are run on the GPEs.

Here we show a shadow stack from observations of the main core’s
executed instructions (left), parallelised across five GPEs. The work is
split up and filtered for common push-and-pops in a segment, before
being aggregated to find inconsistent behaviour.

1 (op, addr) = get_fifo();
2 if (op == call) stack.push(addr);
3 else {
4 if (stack.size() > 0) {
5 assert(addr == stack.top());
6 stack.pop();
7 }
8 else put_fifo(0,(return, addr));
9 }

Kernels are written in standard C/C++, with the addition of primitives for
accessing events from the GPEs’ FIFO stacks, via the main core’s filter
and mapper, or from other GPEs.

Acceleration of Diverse Defences

 0

 5

 10

 15

 20

Contro
lFlowGuard

Coarse C
FI (4

 G
PEs)

LLVM-C
FI

Fine C
FI (6

 G
PEs)

Shadow-LBP

Shadow (8
 G

PEs)

AddressSanitiz
er

Sanitis
er (2

4 G
PEs)

Avg 74, Max 168

O
v
e
rh

e
a
d
 (

%
)

Software Guardian Council

Acknowledgements

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC), through grant references EP/K026399/1,
EP/P020011/1 and EP/M506485/1, and ARM Ltd.


