
CHERIvoke: Characterising Pointer Revocation using
CHERI Capabilities for Temporal Memory Safety

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael Roe, Alexander Richardson,
Peter Rugg, Peter G. Neumann*, Simon W. Moore, Robert N. M. Watson and Timothy M. Jones

University of Cambridge, *SRI International

CHERIvoke: Characterising Pointer Revocation using
CHERI Capabilities for Temporal Memory Safety

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael Roe, Alexander Richardson,
Peter Rugg, Peter G. Neumann*, Simon W. Moore, Robert N. M. Watson and Timothy M. Jones

University of Cambridge, *SRI International

Use-After-Free Attacks

A lack of temporal safety in low-level languages has led to an epidemic
of use-after-free exploits. These have surpassed in number and severity
even the infamous buffer-overflow exploits violating spatial safety.

CHERI Capabilities

CHERI is an architectural extension to provide hardware capability ad-
dressing for spatial safety. It allows unique identification of pointers at
the architectural level, with distinct access bounds, and identification of
pointer-free cache lines and pages.

We develop CHERIvoke, a technique for deterministic and fast sweeping
revocation to enforce temporal safety on CHERI systems. CHERIvoke
quarantines freed data before periodically using a small shadow map to
revoke all dangling pointers in a single sweep of memory.

CHERIvoke Algorithm

• Quarantine manual frees until we can clear dangling references.

• Fill 1/128-sized shadow region with “poison” bits, to tell us which
capabilities to revoke.

• Fast sweep through memory region, to remove dangling capabilities
based on shadow space and optimised to avoid capability-free pages
and cache lines, once 25% of memory is in quarantine.

Acknowledgements

This work is part of the CTSRD and ECATS projects sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contracts FA8750-10-C-0237 and HR0011-18-C-0016. This work was
also supported by the Engineering and Physical Sciences Research Council (EPSRC),
through grant references EP/K026399/1, EP/P020011/1, and EP/K008528/1 and by
Arm Limited and Google, Inc.

Low Overhead on Real Systems

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

Geomean

N
or

m
al

is
ed

 E
xe

cu
tio

n 
T

im
e

CHERIvoke
Oscar

 1

 2

 3

 4

 5

 6

 7

 8

Worst Case

pSweeper
DangSan

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

Geomean

N
or

m
al

is
ed

 M
em

or
y 

U
til

is
at

io
n

CHERIvoke
Oscar

 1

 2

 3

 4

 5

 6

Worst Case

pSweeper
DangSan

22 135

We evaluate CHERIvoke using high-performance x86 processors, simulating the existence of capabilities. When configured with a heap-size overhead
of 25%, we find that CHERIvoke achieves an average execution-time overhead of under 5%, far below the overheads associated with traditional garbage
collection, revocation, or page-table systems.


