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Use-After-Free Attacks

A lack of temporal safety in low-level languages has led to an epidemic
of use-after-free exploits. These have surpassed in number and severity
even the infamous buffer-overflow exploits violating spatial safety.

CHERI Capabilities

CHERI is an architectural extension to provide hardware capability ad-
dressing for spatial safety. It allows unique identification of pointers at
the architectural level, with distinct access bounds, and identification of
pointer-free cache lines and pages.

We develop CHERIvoke, a technique for deterministic and fast sweeping
revocation to enforce temporal safety on CHERI systems. CHERIvoke
quarantines freed data before periodically using a small shadow map to
revoke all dangling pointers in a single sweep of memory.

CHERIvoke Algorithm

• Quarantine manual frees until we can clear dangling references.

• Fill 1/128-sized shadow region with “poison” bits, to tell us which
capabilities to revoke.

• Fast sweep through memory region, to remove dangling capabilities
based on shadow space and optimised to avoid capability-free pages
and cache lines, once 25% of memory is in quarantine.
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Low Overhead on Real Systems
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We evaluate CHERIvoke using high-performance x86 processors, simulating the existence of capabilities. When configured with a heap-size overhead
of 25%, we find that CHERIvoke achieves an average execution-time overhead of under 5%, far below the overheads associated with traditional garbage
collection, revocation, or page-table systems.


