Who wants to snoop on your Internet traffic?

Dr Richard Clayton
Overview

- Phorm
- Great Firewall of China (GFC)
- Peer-to-Peer (p2p)
- Internet Watch Foundation (IWF)
- Interception Modernisation Programme (IMP)
- ...and many more
Behavioural advertising

- Advertising is big business!
- Basic Google model is “put ads on relevant pages”
- Alternative approach is “show ads that are relevant to people who happen to visit”
 - DoubleClick tracks visits to participating sites by cookies (returned to DoubleClick)
 - Phorm proposed to inspect HTML on (almost) all visited pages to deduce nature of content, then serves relevant advert if you visit a participating site
- Advertisers want to know what you do, not who you are
 - they break people down into categories
 - ABC1, “empty nesters”, lots of fancy new names....
- So they can live with anonymity
Phorm design #1

16byte unique ident

Layer 7 switch

profiler

anonymiser

channel server

CNN.com
Phorm design #2
This is what all those rubbish search engines used to do before Google came along!
Channel server

- Channel server is also told about URLs
- Hence channel server is also told of search terms (Google &c keep them within the URLs) and these are then mined
- Channel server only learns UID not IP address
 - hence some “anonymity” properties
- Channel server matches top 10 words against advert “channel”
- Then records just the UID and time against channel
- When user visits a partner site, sees best (££) advert for matches like “has visited 3+ travel sites in the past week”
- Phorm promise rules about channel specifications that would prevent identification of individuals
Dance of the cookies

#1 faked cnn.com response redirects user to “webwise.net”

GET cnn.com/index.htm
307 webwise.net/bind?cnn.com/index.html

#2 16byte UID allocated and sent in webwise.net cookie

GET webwise.net/bind?cnn.com/index.htm
307 webwise.net/bind-2?cnn.com/index.html

#3 check that the user is returning webwise cookies

GET webwise.net/bind-2?cnn.com/index.html

#4 faked cnn.com responds with a faked cnn.com cookie

GET cnn.com/magic?cnn.com/index.html&UID
307 cnn.com/index.html

#5 now permit access to real cnn.com, since cookie holds UID

GET cnn.com/index.html
Opting-out

- User can opt-out with a webwise.net cookie
- User can effectively opt-out by refusing to return webwise.net cookies (or cnn.com cookies)
- But note that deleting all cookies will set you back to default state (and opt-out is forgotten)
- User will have significant problems if they set webwise.net to resolve to 127.0.0.1
 - System supposed to disable itself if lack of browsing progress
- ISPs looking at network level opt-outs
 - presumably RADIUS setting to select IP pool
 - some hints that this turned out to be complicated...
Opt-in versus opt-out

• May be processing “sensitive personal data” (religion, trade union, medical etc)

<h1>Union advice for vicars living with AIDS</h1>
 ▪ DPA requires an informed opt-in for this

• Information Commissioner says that Privacy and Electronic Communications Regulations requires an opt-in

• But it’s illegal wiretapping so opt in/out irrelevant:
 ▪ RIP 2000 requires permission from both ends of communication
 ▪ RIP s16 shows Phorm keywords do infringe
 ▪ whatever user says, permission for data TO servers not given
 ▪ whatever user says, permission for data FROM servers not given
 ▪ whatever user says, permission from THIRD PARTIES not given
 – think “email” or “web forum”
Privacy

- Privacy and Data Protection are not the same!
- Data Protection just mechanistic approach to controlling corporations with mainframes
 - and UK has minimal watered down variant
 - to a first approximation, anonymity fixes everything
- Privacy relates to controlled disclosure of information that matters TO YOU
 - your privacy is violated even if you are anonymous
- ANALOGY: Suppose the Post Office opened all your letters, so you can get a better class of junk mail
Great Firewall of China

- Chinese firewall shuts connections if it spots specific keywords passing by
 - for example: GET /?falun HTTP/1.0
- Keywords spotted as they pass by in both directions (dealing with requests & results)
- CAUTION: parts of Chinese system DO use other blocking methods, the academic network isn’t currently using the scheme & other protocols are blocked at the application level!
- Shutting of connections is done by sending TCP reset packets
- If you ignore these packets your connection is unhindered!
Example packet trace

cam(54190) → china(http) [SYN]
china(http) → cam(54190) [SYN, ACK] TTL=39
.cam(54190) → china(http) [ACK]
.cam(54190) → china(http) GET /falun HTTP/1.0<crlf><crlf>
.china(http) → cam(54190) [RST] TTL=47, seq=1, ack=1
.china(http) → cam(54190) [RST] TTL=47, seq=1461, ack=1
.china(http) → cam(54190) [RST] TTL=47, seq=4381, ack=1
.china(http) → cam(54190) HTTP/1.1 200 OK (text/html)<crlf><crlf>..
cam(54190) → china(http) [RST] TTL=64, seq=25, ack zeroed
.china(http) → cam(54190) . . . more of the web page
cam(54190) → china(http) [RST] TTL=64, seq=25, ack zeroed
.china(http) → cam(54190) [RST] TTL=47, seq=2921, ack=25
Blocking peer-to-peer traffic

- Rights holders are concerned about file sharing of copyrighted material (they believe it is costing them money)
- Music industry is joining in to the networks to determine the identity of peers, but they find this slow and expensive
- So they’d like to see technical measures taken by the ISPs
- ISPs concerned about traffic implications of widespread use of file sharing protocols
- ISPs actually control the networks, so their concerns have been addressed for some time:
 - traffic shaping (slowing things down)
 - traffic blocking (stopping it altogether)
Peer-to-peer traffic detection #1

- Once upon a time you could tell what traffic was by looking at the port number (25: email, 80: http, 53: dns, 6699: napster)
- Firewalls stopped this being so useful (80 & 53 go through)
- So initially you could categorise peer-to-peer by port numbers
- But, once these ports began to be blocked software evolved to use many different port numbers (and/or just port 80!)
- ISPs then deployed “deep packet inspection” kit to look for telltale signs of p2p protocols:
 69 74 54 6f 72 72 65 74 68 74 20 70 72 6f 74 6f 63 6f 6c 65 78 80 2c 01 03 01 00 03 00 00 00 20 00 00 34
- Protocols started to use encryption
 - albeit compatibility may leave handshakes in plain text
Peer-to-peer traffic detection #2

- Peer-to-peer traffic is (fairly) distinctive:
 - connections to multiple peers, patterns of traffic in and out
- Trend towards using heuristics to decide what is p2p
- This is fine for ISP (who wants to reduce usage)
- Useless for rights holders – since there are important non-infringing uses of file sharing technology
 - standard examples: World of Warcraft patches; Linux distros
- Music industry was much enamoured of “Audible Magic”
 - Picked apart p2p protocol to extract payload
 - Identified payload by signal processing and checking dictionary
- Encryption makes Audible Magic a non-starter today
 - Belgium (Scarlet) case drags on; Irish (eircom) settled out of court
The IWF

- Internet Watch Foundation
- Set up in 1996 to address issue of child pornography on Usenet
 - phrases “child pornography” or “kiddy porn” seen to trivialise issue
 - politically correct term became “child abuse images” (CAI)
 - or rather more recently “child sexual abuse images”
- IWF operates a consumer “hot-line” for reports
- UK institution, but cooperates via INHOPE with other hotlines
- Funded by industry and also by EU (seen as leading light)
- Now mainly concerned with websites
- Has a database of sites not yet removed (for efficiency)
- Database now underpins various blocking systems
Taxonomy of blocking methods

• DNS poisoning
 ▪ refuse to resolve the wicked domains
 ▪ low cost, and highly scalable
 ▪ overblocks (since all of geocities.com is affected)

• Blackhole routeing
 ▪ refuse to carry the traffic to the wicked site
 ▪ low cost, but limits to size of ACLs/routing-table
 ▪ also overblocks, and struggles with “fast-flux” systems

• Proxy filtering
 ▪ refuse to serve the wicked pages
 ▪ high cost, and all traffic has to be inspected

• BT’s CleanFeed (2004)
 ▪ combined custom iBGP routing with a proxy system
Design of CleanFeed
CleanFeed

- Part of BT “anti-child-abuse initiative”
 - two stage (hybrid) system, BT, June 2004
- First stage is IP address based
 - candidate traffic for blocking is redirected
- Second stage matches URLs
 - redirected traffic passes through a web proxy
- Best of both worlds?
 - highly accurate
 - but can be low cost because #2 is low volume
- BUT easy to avoid
 - use an external proxy or Tor
 - use HTTPS, or anything not on port 80
- AND can be reverse engineered
 - Raising public policy issue: does it do more harm than good?
The oracle attack
The oracle attack on CleanFeed

- Detect the redirection by the first stage by seeing what traffic reaches the second
- Send tcp/80 packets with TTL=8, see what then comes back:
 - ICMP time exceeded means no redirect
 - RST (or SYN ACK) means redirect to proxy

```
17:54:28 Scan: To [~~~.~~~.191.38] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.39] : [166.49.168.1], ICMP
17:54:28 Scan: To [~~~.~~~.191.40] : [~~~.~~~.191.40], SYN/ACK
17:54:28 Scan: To [~~~.~~~.191.41] : [166.49.168.13], ICMP
17:54:28 Scan: To [~~~.~~~.191.42] : [~~~.~~~.191.42], SYN/ACK
```

- Then use a suitable database to get domain names
 - eg: whois.webhosting.info
 - [~~~.~~~.191.40] lolitaportal.****
 - [~~~.~~~.191.42] no websites recorded in the database

- Attack cannot be fixed, just detected
 - and it works against other 2-stage systems as well
Whitehall comprehension?

• Blocking considered “impossible” until BT deployed CleanFeed

• Parliament told: “Recently, it has become technically feasible for ISPs to block home users’ access to websites irrespective of where in the world they are hosted”

• In my view, doubtful that they actually understood the cost, fragility or ease of evasion of these blocking systems, let alone the reverse engineering of the blocking lists.

• Ministers want all (consumer?) broadband suppliers to filter
 ▪ original target date of end of 2007 else “review our options”

• ISPA claimed 80% (more recently 95%) of consumers covered by systems that block illegal child images
 ▪ methodology for count unclear (& not all ISPs filter all customers)
Most (all?) UK filtering is proxy based

- Comparison of URLs in proxy means no “overblocking”
- Proxying all web traffic very expensive (and other downsides)
- So select only traffic that might need filtering
 1. DNS poisoning
 - resolve dubious domains to address of web proxy
 - low cost, and highly scalable – widely used in UK
 - assumes customers using the local DNS server!
 2. custom iBGP
 - resolve dubious domains and route their /32 to web proxy
 - mechanism used by BT’s “cleanfeed” system
 3. exotica (DPI, WCCPv2 etc)
 - can have scaling issues, so used mainly by smaller ISPs
Wikipedia

- Member of public reports Virgin Killer album cover to IWF
- IWF conclude it is an indecent image, and add URLs to blocklist
- List rolled out midday Friday December 5th 2008
- Large numbers of UK accesses to Wikipedia now proxied
 - this breaks Wikipedia security model!
- Mechanism rapidly identified, as is particular image
 - propriety of keeping image debated in May 2008
- Many instances of image located (some on Amazon US)
- On Monday 8th IWF considers Wikipedia “appeal” & rejects it
- On Tuesday 9th IWF board decide to remove URL from list
- Wikipedia blocked elsewhere for some time thereafter!
What was blocked?

- **#1: Main page was blocked**
 - http://en.wikipedia.org/.../virgin_killer
 - blocked entire text about The Scorpions album, not just the image

- **#2: Image description page was blocked**
 - this is also a text page (despite the URL!)

- Did not block ../Virgin_Killer (there are four duplicate URLs!)

- Some blocking systems were case sensitive, some were not

- Caused considerable confusion as to what blocking was in place
 - general lesson about this event and the archive.org event; most consumer reports were almost entirely inaccurate!

- Evidence that some ISPs did not block until Monday
 - possibly just slow, possibly because a high-traffic website
What is the IWF currently blocking?

- Latest idea (NB: does not access the sites, since that’s illegal!)

```python
for $hostname in (list of all valid hostnames)
    if (resolve($hostname) == cache-IP-address)
        print "hostname is blocked"
```

- List of hostnames comes from ISC “passive DNS” dataset
 - systems collecting anonymised copies of DNS responses
- c 120 million hostnames – 40 million are DNSBLs etc
- Further clean-up gives c 70 million hosts to check
- Takes about 2 days (and 22Gbytes) over home ADSL
- NB: does not identify URLs, merely hostnames
Current results (this is ongoing research)

- IWF list currently holds about 450 URLs (says a mole)
- 40% not yet identified by the methodology (too obscure?)
- 35% clearly (from hostname) intentionally wicked
- Remaining 25% are legitimate “free” hosting sites (etc)

IWF removal process

• Bank phishing websites removed in 4 hours (when known about), 2 days (fast-flux systems), 10 days (not known about)

• Part time volunteers remove scam websites in 1-7 days

• Child Sexual Abuse Image sites: average lifetime ~ 4 weeks

• Only thing removed slower is fake pharmacy websites
 ▪ and they are not tackled by any group we can locate

• We were amazed to uncover this, and consider it a scandal

• Main reason appears to be lack of prompt contact with hosters
 ▪ IWF “not authorised” to contact foreign hosting providers
 ▪ INHOPE rules mean local hotline must act, not the IWF
 ▪ IWF not going after domain names, only the hosting
 ▪ IWF (& INHOPE) confused as to whether aim is to remove content or to catch the criminals
Interception Modernisation Programme

- Spooks would like to get their hands on “traffic data”
- Although “content” is interception, “traffic data” is almost as valuable since it shows who communicates with who
- Idea is to use DPI equipment to snoop on all UK citizens
- Classic (1998) dumb question: “this IP address I’ve found in a web log, who’s it belong to? And what’s their Hotmail address?”
- BUT under IMP proposals, DPI can pick apart webmail HTML pages to identify Hotmail identities and email correspondents
- DPI can pick apart Second Life protocols to see which avatars you were near in (x, y, z) coordinates
- DPI can pick apart World of Warcraft protocols to determine which other characters you have been chatting to
Problems with IMP

- But current DPI can’t do all of these things at once
- Plus protocols evolve and what is of interest changes
- Hence the DPI kit has to be remotely reconfigured by GCHQ
- ISPs deeply unhappy about presence of snooping boxes that are not under their control (may be insecure)
- Spooks unlikely to want to say what protocols are currently being targeted except to people with clearances
- Hence day-to-day policing unlikely to benefit from scheme
- Cost looks enormous
- And if traffic is regularly encrypted system is useless
- Home Office have consulted, and are currently cogitating
And no time to mention...

- **Criminals**
 - “man in the browser” trojans snoop on your eBanking sessions

- **Nation states**
 - Greek Vodaphone scandal
 - Dutch wiretapping scandal
 - How do we know that the Chinese phone exchange isn’t relaying every conversation to Beijing?

- **Partners**
 - Internet romances now playing a big part in divorces

- **Employers**
 - Are you reading Facebook in the office?
 - Are you planning your holiday or doing your shopping?
 - Are you looking at porn?
Summary

- Advertisers want to know what you’re interested in
- Some nations want to prevent you becoming interesting in particular topics: such as what really happened in Tiananmen Square back in 1989
- Some ISPs (and some ministers) want to ensure you don’t view child sexual abuse images by accident – but they don’t think that they’re able to get the sites removed from the Internet
- Some spooks think that knowing everything about your Internet activity will make the world a safer place

- Some people think that privacy, and proportionality, matters!
Who wants to snoop on your Internet traffic?

http://www.lightbluetouchpaper.org

http://www.fipr.org