ISP Content Filtering: methods, failures and some politics

Dr Richard Clayton

LINX55, London
21st November 2006
Summary

• Content blocking system taxonomy
• Avoiding the blocking altogether
• Attacking the blocking systems
• Cleanfeed and the “oracle attack”
• The IWF website list
• The political landscape
Method #1: DNS poisoning

- DNS poisoning
 - refuse to resolve the wicked domains
 - low cost, and highly scalable
- Apparently easy, just add a local SOA in bind
- But getting it right for subdomains and for email (MX records) requires some thought! Dornseif found that every German ISP he studied had made errors!
Method #2: Blackhole Routeing

• Refuse to carry traffic to/from the wicked site
 – step-cost (limits to size of ACLs/routing-table)
• Affects every website hosted at the IP address!
 – hence useless for geocities.com; and for many other sites as well. Edelman measured “overblocking”: 87.3% of com/net/org sites share IP address with at least one other; 69.9% with at least 50 others
• Do you really want to find that you’re blocking the “Romanian Tourist Board” website?
Method #3: Proxy Filtering

- Proxy refuses to serve the wicked pages
 - high cost, and all traffic has to be inspected
 - but it does avoid overblocking (huzzah!)

- However, significant costs in equipment, in customer satisfaction and in network reliability
 - economic case for caching proxies ever weaker
 - obstructs many server personalisation schemes
 - proxies often slower than going direct!
Avoidance for clients

• Use a different DNS server
• Use IP addresses rather than hostnames
• Use a relay (often encrypts and anonymizes)
• Encode request%73 to avoid recognition
 – look at email spam to see this raised to an art form
• Send malformed HTTP requests
 – eg: multiple HOST protocol elements
Avoidance for servers

- Move site to another IP address (easy)
- Change port number (harder to discover)
- Provide same content on many different URLs
- Accept unusually formatted requests
 - servlets at client could obfuscate or encrypt so that an intermediary has no chance of using anything short of the IP address to identify content
CleanFeed

• Part of BT “anti-child-abuse initiative”
 – two stage (hybrid) system, BT, June 2004
 – similar designs deployed by other ISPs
• First stage is IP address based
 – candidate traffic for blocking is redirected
• Second stage matches URLs
 – redirected traffic passes through a web proxy
• Best of both worlds?
 – accurate, but low cost because #2 is low volume
Design of CleanFeed
Fragility of Cleanfeed

• Evading either stage evades the system
 – all previous attacks continue to be relevant

• PLUS can attack the system in new ways
 – the credulous will fail to notice Google (or iTunes) IP addresses in DNS results for wicked sites, flooding the second stage with legitimate traffic
 – the clueless will fail to spot local IP addresses in DNS results and construct routing loops
The oracle attack

• Detect the redirection by the first stage by seeing what traffic reaches the second

• Send `tcp/80` packets with TTL set to 8, see what then comes back:
The oracle attack

BT's Network

ICMP

SYN/ACK

The Internet
The oracle attack

• Detect the redirection by the first stage by seeing what traffic reaches the second

• Send \texttt{tcp/80} packets with TTL set to 8, see what then comes back:
 – ICMP time exceeded means no redirect
 – RST (or SYN ACK) means redirect to proxy

• Then use a suitable database to get domain names, eg: \texttt{whois.webhosting.info}
Oracle attack results I

17:54:28 Scan: To [~~~.~~~.191.38] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.39] : [166.49.168.1], ICMP
17:54:28 Scan: To [~~~.~~~.191.40] : [~~~.~~~.191.40], SYN/ACK
17:54:28 Scan: To [~~~.~~~.191.41] : [166.49.168.13], ICMP
17:54:28 Scan: To [~~~.~~~.191.42] : [~~~.~~~.191.42], SYN/ACK
17:54:28 Scan: To [~~~.~~~.191.43] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.44] : [166.49.168.5], ICMP
17:54:28 Scan: To [~~~.~~~.191.45] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.46] : [166.49.168.13], ICMP
17:54:28 Scan: To [~~~.~~~.191.47] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.48] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.49] : [~~~.~~~.191.49], SYN/ACK
17:54:28 Scan: To [~~~.~~~.191.50] : [~~~.~~~.191.50], SYN/ACK
Oracle attack results II

~~~.~~~.191.40  lolitaportal.****
~~~.~~~.191.42  no websites recorded in the database
~~~.~~~.191.49  samayhamed.****
~~~.~~~.191.50  amateurs-world.****
 anime-worlds.****
 boys-top.****
 cute-virgins.****
 cyber-lolita.****
 egoldeasy.****
 elite-sex.****
 ... and 26 more sites with similar names

NB: missing names probably .ru or outdated database
NB: dodgy names on .41 .43 ... BUT no IWF “endorsement”
NB: It is illegal for me to check the ACTUAL contents
The IWF

• Internet Watch Foundation
• Set up 1996 in the UK to address problem of child pornography on Usenet
• Operates a consumer “hot-line” for reports
• Now mainly concerned with websites
• Has a database of sites not yet removed
• Database underpins many blocking systems
Politics

• Blocking was considered “impossible” until BT deployed CleanFeed

• ISPA claim 80% of consumers covered by systems that block illegal child images

• Minister now wants all of (broadband) industry to be blocking by the end of 2007
 – voluntary except: “If it appears that we are not going to meet our target through co-operation, we will review the options”
Whitehall comprehension?

• “Recently, it has become technically feasible for ISPs to block home users’ access to websites irrespective of where in the world they are hosted”

• In my personal view, it is doubtful that they understand the cost, fragility or ease of evasion of these blocking systems, let alone the reverse engineering of the blocking lists.
Other uses?

• Fratini (EU) wants Internet to be a “hostile environment” for terrorists
 – “I think it’s very important to explore further possibilities of blocking websites that incite to commit terrorist action”

• Drugs, gambling, holocaust denial…

• and don’t overlook civil cases:
 – such as: defamation, copyright material, industrial secrets, home addresses of company directors, lists of MI6 agents, allmymp3.com … etc etc etc
Conclusions

• Three basic ways of blocking content
• All have problems and can be evaded
• Hybrid systems can be lower cost, but have some extra problems as well
• Government signalling that blocking of sites on IWF list to become de rigueur
• Top of a very slippery slope
ISP Content Filtering: methods, failures and some politics

http://www.cl.cam.ac.uk/~rnc1/
PhD Thesis (see Chapter 7) is Tech Report #653