ISP Content Filtering: methods, failures and some politics

Richard Clayton

Leuven
15th November 2006
Summary

• Content blocking system taxonomy
• Overblocking and avoidance
• Cleanfeed and the “oracle attack”
• The Great Firewall of China
• The political landscape
Taxonomy (blocking methods)

• DNS poisoning
 – refuse to resolve the wicked domains
 – low cost, and highly scalable

• Blackhole routeing
 – refuse to carry the traffic to the wicked site
 – low cost, but limits to size of ACLs/routing-table

• Proxy filtering
 – refuse to serve the wicked pages
 – high cost, and all traffic has to be inspected
Problems with DNS poisoning

• Apparently easy…

 @ IN SOA localhost. root.localhost. (2004010100 86400 3600 604800 3600)
 @ IN NS localhost.
 @ IN A 127.0.0.1
 * IN A 127.0.0.1

• But getting it right for subdomains and for email requires some thought! Dornseif found that every German ISP he studied had made errors!
Problems with blackhole routing

- Dropping packets will (obviously) affect every website hosted at the IP address!
 - hence useless for geocities.com
 - in fact useless for huge numbers of other sites as well. Edelman study found “overblocking” a significant issue: 87.3% of com/net/org sites share IP address with at least one other; 69.9% with at least 50 others (and a continuum exists at all sizes)
 - do you really want to block the “Romanian Tourist Board” website?
Problems with proxy filtering

- This method avoids overblocking (huzzah!)
- However, it can have significant costs in equipment, in customer satisfaction and in network reliability
 - Economic justifications for caching proxies continue to get weaker
 - Proxies often slower than going direct!
 - Caching proxies obstruct many personalisation schemes for website content providers
Avoidance for clients

- Use a different DNS server
- Use IP addresses
- Use a relay (often encrypts and anonymises)
- Encode request%73 to avoid recognition
 - look at your spam to see this raised to an art form
- Send malformed HTTP requests
 - eg: multiple HOST protocol elements
Avoidance for servers

• Move site to another IP address (easy)
• Change port number (hard to discover)
• Provide same content on many different URLs
• Accept unusually formatted requests
 – servlets at client could obfuscate or encrypt so that an intermediary has no chance of using anything short of the IP address to identify content
The IWF

- Internet Watch Foundation
- Set up 1996 in the UK to address problem of child pornography on Usenet
- Operates a consumer “hot-line” for reports
- Now mainly concerned with websites
- Has a database of sites not yet removed
- Database underpins blocking system
Design of CleanFeed

• Part of BT “anti-child-abuse initiative”
 – two stage (hybrid) system, BT, June 2004
• First stage is IP address based
 – candidate traffic for blocking is redirected
• Second stage matches URLs
 – redirected traffic passes through a web proxy
• Best of both worlds?
 – highly accurate
 – but can be low cost because #2 is low volume
Design of CleanFeed
So it’s an elegant design…

… are there any problems with it?

YES!
Can attack the system

• Redirect extra traffic
 – add specious IP addresses into DNS lookup so that high bandwidth sites are sent to stage #2

• Block valid traffic
 google cache: 66.102.9.104/search=?q=cache:FF9etc
 ‘etc venues’: 195.224.53.128/directions/parkstreet

• NB: more efficient when sure is the IWF
Detecting IWF accesses

• Content providers can self-report
 – provides valuable info about timing etc
 – NB: recognising CleanFeed also relevant
• IWF have a fixed /26 network
 – need anonymising systems (caches, Tor, JAP..)
• Detect multiple accesses for same identifier
 – first AS is (outraged) consumer, second IWF, third the police or other investigators
The oracle attack

• Detect the redirection by the first stage by seeing what traffic reaches the second

• Send `tcp/80` packets with TTL set to 8, see what then comes back:
The oracle attack
The oracle attack

- Detect the redirection by the first stage by seeing what traffic reaches the second
- Send tcp/80 packets with TTL set to 8, see what then comes back:
 - ICMP time exceeded means no redirect
 - RST (or SYN ACK) means redirect to proxy
- Then use a suitable database to get domain names, eg: whois.webhosting.info
Oracle attack results

17:54:28 Scan: To [~~~.~~~.191.38] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.39] : [166.49.168.1], ICMP
17:54:28 Scan: To [~~~.~~~.191.40] : [~~~.~~~.191.40], SYN/ACK
17:54:28 Scan: To [~~~.~~~.191.41] : [166.49.168.13], ICMP
17:54:28 Scan: To [~~~.~~~.191.42] : [~~~.~~~.191.42], SYN/ACK
17:54:28 Scan: To [~~~.~~~.191.43] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.44] : [166.49.168.5], ICMP
17:54:28 Scan: To [~~~.~~~.191.45] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.46] : [166.49.168.13], ICMP
17:54:28 Scan: To [~~~.~~~.191.47] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.48] : [166.49.168.9], ICMP
17:54:28 Scan: To [~~~.~~~.191.49] : [~~~.~~~.191.49], SYN/ACK
17:54:28 Scan: To [~~~.~~~.191.50] : [~~~.~~~.191.50], SYN/ACK
Oracle attack results II

~~~.~~~.191.40  lolitaportal.****
~~~.~~~.191.42  no websites recorded in the database
~~~.~~~.191.49  samayhamed.****
~~~.~~~.191.50  amateurs–world.****
 anime–worlds.****
 boys–top.****
 cute–virgins.****
 cyber–lolita.****
 egoldeasy.****
 elite–sex.****
 ... and 26 more sites with similar names

NB: missing names probably .ru or outdated database
NB: dodgy names on .41 .43 ... BUT no IWF “endorsement”
NB: It is illegal for me to check the ACTUAL contents
(Not) fixing the oracle attack

- There were other two-stage systems deployed in the UK (unknown to me)
- The oracle attack worked there too!
- Attempted to fix them by discarding all packets with low TTL
- Scanning program rewritten to examine TTL on *incoming* packets instead!
- It is never going to be possible for a nearby proxy to perfectly emulate remote servers!!
The Great Firewall of China

Joint work with Steven Murdoch & Robert Watson

+ assistance was provided for logging etc by a Chinese citizen [who was unaware of what we proposed to do]. Their site does NOT contain any material that should be censored and no censorable requests were made from the Chinese end of the connection.
Keyword filtering

• Chinese firewall shuts connections if it spots specific keywords passing by
 – for example GET /?falun HTTP/1.0

• Keywords spotted as they pass by in both directions (dealing with requests & results)

• CAUTION: parts of Chinese system DO use other blocking methods, and the academic network isn’t currently using the scheme, and other protocols are blocked at the application level!
Actual mechanism

cam(54190) \rightarrow china(http) [SYN]
china(http) \rightarrow cam(54190) [SYN, ACK] TTL=39

china(http) \rightarrow cam(54190) [ACK]
cam(54190) \rightarrow china(http) [ACK]
cam(54190) \rightarrow china(http) GET /?falun HTTP/1.0<cr><lf>
china(http) \rightarrow cam(54190) [RST] TTL=47, seq=1, ack=1
china(http) \rightarrow cam(54190) [RST] TTL=47, seq=1461, ack=1
china(http) \rightarrow cam(54190) [RST] TTL=47, seq=4381, ack=1
china(http) \rightarrow cam(54190) HTTP/1.1 200 OK (text/html)<cr><lf>..
cam(54190) \rightarrow china(http)[RST] TTL=64, seq=25, ack zeroed
china(http) \rightarrow cam(54190) . . . more of the web page
cam(54190) \rightarrow china(http)[RST] TTL=64, seq=25, ack zeroed
china(http) \rightarrow cam(54190) [RST] TTL=47, seq=2921, ack=25
Meanwhile…

- The other end of the connection is also seeing RST packets from the firewall!
Ignoring the firewall

• **Q:** Since the packets pass through the firewall, what happens if the RST packets are ignored?

• **A:** Web page is transferred just fine (though you get a LOT more RSTs as well)

• **NB:** necessary to ignore RST packets at both ends of the connection
Further connections

- Trying to connect again causes RST packets to be sent immediately (even if no “bad” keywords are transferred)

 \[
 \text{cam(54191) } \rightarrow \text{china(http)[SYN]}
 \]

 \[
 \text{china(http)} \rightarrow \text{cam(54191) [SYN, ACK] TTL=41}
 \]

 \[
 \text{cam(54191) } \rightarrow \text{china(http)[ACK]}
 \]

 \[
 \text{china(http)} \rightarrow \text{cam(54191) [RST] TTL=49, seq=1}
 \]

- Once again dropping RSTs allows transfer
Denial of service attack

- Send single packets (containing falun) to Chinese firewall, forging source & destination
- Connection from source to destination blocked
- Single dialup connection can knock many hundreds of connection over
- NB: only pairs of addresses
- NB: only nearby port numbers (? NAT ?)
Firewall design

Evidence:
- RST sometimes precedes & sometimes follows data
- RST values (+0, +n, +3n)
- Read the user manuals from (?)providers
- Shuffling of RSTs when a sudden burst of packets

NB: NO STATE IN FIREWALL!
Firewall “state”?

- Splitting ?falun across packets avoids detection (a surprise! hardware thought to be used can handle this (and overlaps!))
- Refined view is that firewall doesn’t assume it sees packets in both directions, so must do the best it can with the packet in its hand
- Future work will refine our explanation
False SYN/ACKs

cam(38104) \to china(http) [SYN]
china(http) \to cam(38104) [SYN, ACK] TTL=105
cam(38104) \to china(http) [ACK]
cam(38104) \to china(http) GET / HTTP/1.0
china(http) \to cam(38104) [RST] TTL=45, seq=1
china(http) \to cam(38104) [RST] TTL=45, seq=1
china(http) \to cam(38104) [SYN, ACK] TTL=37
cam(38104) \to china(http) [RST] TTL=64, seq=1
china(http) \to cam(38104) [RST] TTL=49, seq=1
china(http) \to cam(38104) [RST] TTL=45, seq=3770952438
china(http) \to cam(38104) [RST] TTL=45, seq=1
Fixing “blocking with confusion”

- Fake SYN/ACK does not confuse once real SYN/ACK has been accepted
- SYN/ACK currently easy to distinguish
- Real fix is for stack (or a bastion firewall) to hold alternative views of remote sequence value, avoid using a value until see further evidence
 - lack of state in Great Firewall makes this easy(ish)
Porn vs Politics

• Firewall capable of logging events
• No different from encryption/proxies – **but** firewall knows if you’re looking at porn or at politics: so may affect your sentence
• Special code is evidence on your machine
• Much better if stack vendors made special tools unnecessary; and there’s technical reasons to wish to drop fake resets
Some more general comments....
UK Politics

• Blocking was considered “impossible” until BT deployed CleanFeed
• ISPA claim 80% of consumers covered by systems that block illegal child images
• Minister now wants all of (broadband) industry to be blocking by the end of 2007
 – voluntary except: “If it appears that we are not going to meet our target through co-operation, we will review the options”
Whitehall comprehension?

• “Recently, it has become technically feasible for ISPs to block home users’ access to websites irrespective of where in the world they are hosted”

• In my view, doubtful that they understand the cost, fragility or ease of evasion of these blocking systems, let alone the reverse engineering of the blocking lists.
Other uses?

- Fratini (EU) wants Internet to be a “hostile environment” for terrorists
 - “I think it’s very important to explore further possibilities of blocking websites that incite to commit terrorist action”

- Drugs, gambling, holocaust denial…

- and don’t overlook civil cases:
 - such as, defamation, copyright material, industrial secrets, home addresses of company directors, lists of MI6 agents…
Other countries

- Norway, Sweden & several others blocking child pornography
- Italy blocking gambling sites
- Denmark (Tele2) blocking allmymp3.com
- Saudi Arabia, Singapore, Burma, and many central Asian countries blocking political speech... see: OpenNetInitiative for info
Conclusions

• Three basic ways of blocking content
• Many (and deep) flaws come from relying on validity of content providers data
• Hybrid systems can be lower cost, but have some extra problems (extracting the site list)
• A key part of the Great Firewall of China relies on acquiescence by the end-points
• Blocking illegal images is top of a very slippery slope, and systems will be used for many things
ISP Content Filtering: methods, failures and some politics

http://www.cl.cam.ac.uk/~rnc1/

PhD Thesis (see Chapter 7) is Tech Report #653
plus two PET Workshop papers, 2005 & 2006