Route Fingerprinting in Anonymous Communications

George Danezis & Richard Clayton

IEEE P2P2006, Cambridge, UK 6th September 2006

Tarzan "v1"

- Freedman, Sit, Cates, Morris: IPTPS Mar 2002
 - "me relay, you relay" : thousands of p2p participants
 - IP traffic sent hop to hop using encrypted "onions"
 - multiple servers should provide anonymity
 - lack of "network edge" avoids traffic analysis
 - "mimics" provide cover traffic
 - servers located by dipping into a Chord ring
 - route reconstruction from point of failure

Tarzan v2

- Freeman MSc thesis, May 2002
- Freedman & Morris, CCS, Nov 2002
- Same basic design, but notably:
 - servers located by asking peers for neighbour lists; which they learn with a gossip protocol
 - route reconstruction now starts at a random location within the tunnel
- The reason for these changes remain relevant to many other proposed designs!

#1: Node knowledge profiling

- Possible for an eavesdropper to determine which other nodes a Tarzan user learnt about
- So Tarzan learn about several hundred (out of tens of thousands or even millions) and used a few (typically far less than 10) at random
- Unfortunately, this means that their path through the network is likely to be unique!

Node knowledge attack

- Examine traffic at a node the user knows about
- Determine if any traffic *at all* is arriving from another node known to the user and any traffic *at all* is going to another node known to the user if so then the user *may be* using the node
- Unless user learnt about more than 10% of the nodes in the whole network then *very likely indeed* that the node is being used

– full explanation and equations are in the paper

#2: Route reconstruction attack

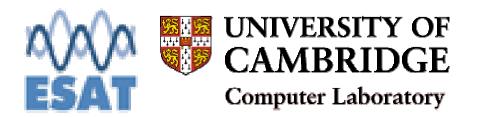
- Tarzan designed to deal with very high rates of churn, so routes will often fail
 - cheap to rebuild around the point of failure because existing tunnel keys remain valid
- But attacker can overload "good" nodes to cause them to fail, until reconstructed route goes through a "bad" node they control
 - if attacker controls fraction *c* of network and paths are of length *l* then only *l/c* attacks needed

Mitigations

- Tarzan v2
 - uses gossip style protocols to learn about nodes
 - rebuilds all of the path from a random position onward so "bad" nodes no longer accumulate
- Mixmaster, Tor etc assume full knowledge of all nodes and rebuild routes from scratch
 - both attacks are avoided
 - works well when nodes are reliable, churn is low and network size is not enormous

Who else is vulnerable?

- MorphMix, Wongoo, SAS let nodes along the path choose the next hop
 - completely side-steps our attacks
 - but this can of course lead to other problems!
- But other systems (AP3, Landsiedel *et al*, Xiao et al) assume originator will select the path...
 - insufficient details given in these papers to see if problem arises, but talk of selecting nodes "at random" gives some cause for concern


Conclusions

- In an anonymity system with large numbers of participants, peer discovery can be hard work;
 but relying on random selection from small subsets of peers has a significant problem
- In anonymity systems with high churn, route reconstruction can be an expensive overhead;
 but cutting corners may lay you open to a route capturing attack

Route Fingerprinting in Anonymous Communications

George Danezis & Richard Clayton

http://homes.esat.kuleuven.be/~gdanezis/
 http://www.cl.cam.ac.uk/~rnc1/

