“Proof-of-Work” Proves Not To Work

Richard Clayton
(joint work with Ben Laurie)
Summary

• The current “spam” problem
• Viewing spam as an “economic” problem
• Proof-of-work mechanisms
• How much proof do you want?
• Analysis from an economic viewpoint
• Analysis from a security viewpoint
• Conclusions
The ages of “spam”

- Clueless sales & marketing personnel
- Disposable dial-up accounts
- Open SMTP relay “rape”
- Broadband and open proxies
- Spam friendly trojans (sent via virus?)
- Brute Force password guessing

… and doubtless more tomorrow
Worldwide Spam Category Data
May 2004

Adult
Financial
Fraud
Health
Internet
Leisure
Political
Products
Scams
Spiritual

All other email attacks = 6%

Source: Brightmail Logistics and Operations Center
Percentages of Total Internet Email Identified as Spam

64% Spam in May 2004

Over 100 Billion Email Messages Filtered by Brightmail in May 2004
You think you get a lot of spam?

- junkname @ highwayman.com
 - May 2004: ~60,000 per day

- richard @ various domains
 (demon, turnpike etc etc)
 - 270 per day

- richard @ locomotive.com
 (last used Summer 1994)
 - 390 per day
Why?

• More multiply addressed spam
 – seems to be a policy change by the senders
 – this affects my counts, but not overall traffic

• More senders
 – SpamHaus lists 200+ major league spammers

• I’m an early adopter
 – my name will be on more lists
 – and lists come mainly from other lists
Let’s build “Something Else”

• Why should email be push not pull?
 – actually on POP3 it’s pull already

• Doesn’t really tackle the human attention issue (how do you decide what to pull?)
 – It is not the Internet bandwidth cost that makes spam expensive!

• Main problem is that there’s very limited incentive to change to a new system
Countermeasures: Blocklists

- Idea is to record where spam comes from and then refuse to accept any more email from that particular source
- Usual implementation is using DNS queries
- Has scaled pretty well from initial ideas of a few dozen rogue sites
 - SORBS 1,414,266 open SOCKS proxies
 - 1,154,224 open HTTP proxies
Problems with Blocklists

- Many lists: no standard rules or processes
- Operators are pretty much unaccountable
 - SPEWS only reachable via *nan-ae*
- Have been used for personal vendettas
- Listing mail relays can be disproportionate
- Common to list /24s, affecting server farms
- Legacy lists (& shut-downs) are a problem
Countermeasures: Authentication

• Idea is to only allow authenticated senders to send you email
• Popular idea with Verisign, Microsoft and others who might handle the certificate
• Essentially a cryptographically supplied whitelist (with a third party attesting to stranger’s probity)
Problems with Authentication

- Why should companies pay to send solicited email to their own customers?
- What happens when companies slip up?
 - how is the certificate be revoked?
- Spammers regularly compromise end-user systems — so will be authenticated anyway
- We’ve been authenticating IP addresses for years & it hasn’t been a silver bullet
Countermeasures: Filtering

- Idea is to assess content of email and decide that it is spam and discard it
- Works well for viruses
- Modern systems should not (!) suffer from the Scunthorpe effect
- Systems like SpamAssassin use a great many rules
- Currently this is fairly effective
Problems with Filtering

- False positives can cost the recipient dearly
- Legitimate email often blocked
 - eg opt-in promotional material
 - eg newsletters
 - eg airline ticket confirmations
- Spammers can use the filters too and tune their material to get through it
 - ie: spam is “evolving”
Is spam an Economics problem?

• Many argue that problem is “Economics”
 – no charge for sending email
 – hence “one in a million” response is profitable

• Hence the fix is to charge for email?
 – real money? $1p/email => $160 billion annually
 • phone companies would love this -- would we?
 – eCash? doesn’t seem to have happened yet!
Proof-of-work schemes I

• Idea is to show that you care enough about your email to have expended effort in doing a (rather pointless) calculation first
 – there are ideas for useful calculations eg “Bread Pudding Protocols” (Jakobsson & Juels 1999) but generally just warms up the planet 😞

• Original idea: Dwork & Naur : Crypto 1992
 – used central server 😞😞😞
Proof-of-work schemes II

- Reinvented as HashCash (Adam Back, 1997)
 - compute $\text{HASH}(\text{destination}, \text{time}, \text{nonce})$ such that result has “n” leading zeros
 - 2^n hard for sender, but trivial check for receiver

- Dwork, Goldberg, Naor (Crypto 2003)
 - analyse a function limited by memory speed
 - small variation between systems (factor of 4)
 - so this is much better than using classic HASH
Email statistics

• November 2003 (consistent stats available)
 – 2.30 x 10^8 Internet hosts (ISC)
 – 5.13 x 10^8 Internet users (Radicati)
 – 5.70 x 10^{10} emails sent daily (Radicati)
 – 56% of all email is "spam" (Brightmail)

• Hence the average situation is
 – 60 spam (& 50 real) emails per person per day
 – 125 real emails per host per day
What about “mailing lists”?

- Expect to delegate proof-of-work analysis
- Lists common, but no published figures
- Inspected logs at large UK ISP (200K users)
 - this was after a spam filtering stage
 - consider identical source but >10 destinations
 - approximately 40% are of this form
- ie: reduce total to 75 emails per host per day
 - “back of envelope”, but only magnitude matters
How much work must we prove?

- Legitimate hosts must be able to send 75 emails per day (best case situation)
- Must reduce spam from 3.2×10^{10} per day
- Must allow for factor of 4 in capabilities
- Must assume spammers work 24 hours per day, but legitimate hosts may be switched off when not being actively used

… so all we need to do is to pick “n”
Economic analysis I

- Spammers charge 0.001 to 0.030¢ per email
 - survey in Goodman & Rounthwaite, 2004
- PC costs $500 / three years 50¢ per day
 - and pay electricity bill! 25¢ per day
- Spammer invests $50K and buys 100 PCs:
 - Salary $30K/annum 100¢ per day
 - So break-even at 35,000 emails/day/PC if can charge 0.005¢ each (ie: total 3.5 million /day)
 [Scott Richter does 21 million/day @ 0.020¢]
Economic analysis II

- But spammers used to charge 0.1¢ per email (which leads to a break even rate of 1750)
- Spam response rates badly documented
 - Ms Betterly (WSJ Nov 2002) : 0.0023%
 - 0.0126% Iraqi Cards (“four times normal”)
- If 0.003% and 0.1¢ then cost of ads is $33/sale. Only viable for some products
 - $50/mortgage lead; $85/cellphone, $60/pills
Economic analysis III

• Iraqi cards article (NYT 9 July 03) goes on:
 – best days: $5000 profit per million emails
 ie: half a cent per email in commission
 – printer ink: $500 to $1200 per million emails
 ie: 0.05¢ to 0.12¢ per email in commission
• BUT note that legitimate email response rates are expected to be 0.7 to 1.6%
• Obviously wise to own more of value chain
Economic conclusion

- Good guys
 - 75 emails/host (best case)
- Bad guys
 - 1750 emails/host (if price returns to 0.1¢)
 - but this will exclude low margin products 😊
- BUT bad guys have “factor of 4” advantage
- So some headroom here, but not lots & lots
 at current response rates
Security analysis I

• Lots of *owned* machines out there
 – SORBS: 1.2M HTTP, 1.4M SOCKS proxies
 – Recent viruses have hit million+ machines each
• Currently easy to spot *owned* machines
 – they send a lot of email!
• But what if they computed “proof-of-work”
 – quietly giving results to sender systems
 – hard to spot and so likely to be long-lived
Security analysis II

- Nov 2003, 3.2×10^{10} spam emails
- Suppose one million machines hijacked for proof-of-work (spammers share them out!)
- So, they only need to do 32,000 each
 - consistent with ISP figures for abused hosts
- If want 99% of our mailboxes to be “real” then must restrict spam to 250/host per day
- & for just 0.1% to be spam, then 25 per day
Security conclusion

- Good guys
 - 75 emails/host (best case)

- Bad guys
 - 250 emails/host (if spam is just 1% of mailbox)

- No “factor of 4” advantage this time
 - unless spammers can choose *Owned* machines

- So very limited headroom
 - & impossible to reach “one in a thousand” level
Real hosts: daily rates

93.5% < 75
BUT
0.13% > 1750
1.56% > 250

viz: this impacts real senders
albeit some are just [exempted] mailing lists
Real hosts: hourly rates

Spammers run 24 hours/day, real users don’t!

1% > 73/hour
i.e. 1750/day

13% > 11/hour
i.e. 250/day

viz: this impacts lots of people
Conclusions

- HashCash payment for email is attractive
- **BUT** spammer profit margins per sale mean that some will be able to afford the PCs to do the proof-of-work required
- **BUT** hijacking of end-user machines means impractical to restrict them to 1% of email
- Simplistic proof-of-work just doesn’t work!
“Proof-of-Work” Proves Not To Work Proven

Ben Laurie

Richard Clayton

ALD

ben@algroup.co.uk

rnc1@cl.cam.ac.uk

& thanks to

Demon

The Cambridge-MIT Institute