Improving Onion Notation

Richard Clayton

Presented at: PET2003, Dresden, 26th March 2003

Why does notation matter?

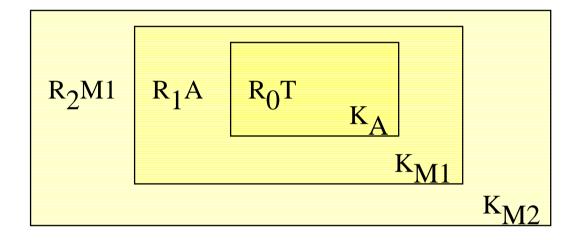
In signs one observes an advantage in discovery which is greatest when they express the exact nature of a thing briefly and, as it were, picture it; then indeed the labour of thought is wonderfully diminished.

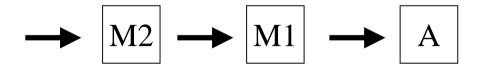
Leibniz, 1646–1716

Summary

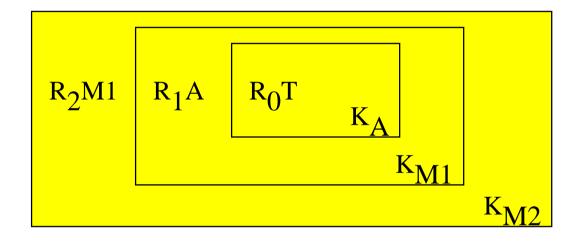
- Current onion notation
- What's important about a notation?
- A new notation
- Using the new notation
- Discussion
- Lunch!

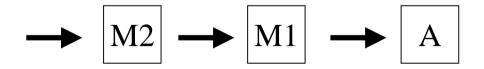
Sending message T to Alice





Sending message T to Alice





Onion notation

- MIXs invented by David Chaum, 1981
- K_i(x) means "seal" x with key K_i
- Hence an "onion" [Goldschlag et al 1996] for text T destined for node A (owner of key K_a) sent via MIX M₁ (owner of key K₁) is, with the addition of nonces R₁ and R₀:

 $\mathbf{K}_{1}(\mathbf{R}_{1},\!\mathbf{K}_{a}(\mathbf{R}_{0},\!\mathbf{T}),\!\mathbf{A})$

Onion notation II

- Ohkubo & Abe, 2000
- use $\mathcal{E}_{K_i}(x)$ to mean "encrypt" x with key K_i
- Hence an "onion" for text T destined for node A (owner of key K_a) sent via MIX M₁ (owner of key K₁) is, with the addition of nonces R₁ and R₀:

$$\mathcal{E}_{K_1}(\mathbf{R}_1, \mathcal{E}_{K_a}(\mathbf{R}_0, T), A)$$

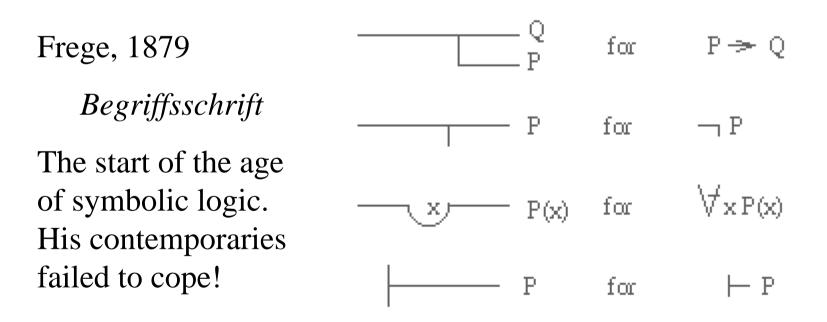
Onion notation III

- Serjantov, 2003, following BAN tradition
- $\{x\}_{K_i}$ means "encrypt" x with key K_i
- Hence an "onion" for text T destined for node A (owner of key K_a) sent via MIX M₁ (owner of key K₁) is, with the addition of nonces R₁ and R₀:

 $\{\mathbf{R}_{1}, \{\mathbf{R}_{0}, \mathbf{T}\}_{\mathbf{K}_{a}}, \mathbf{A}\}_{\mathbf{K}_{1}}$

Assessing notations

A) Make it fit on one line



Assessing notations

- B) Make it easy to write eg: " $\mathcal{E}_{K_i}(x)$ " has custom subscript, font size and line spacing
- C) Make it easy to readcan you read _{subscript} from the back ?

Assessing notations

- D) Will it allow errors to be detected ?
- E) Will it allow simple generalisation
- F) Will it be easy to comprehend

so what of this example? $K_n(R_n...(R_2,K_1(R_1,\underline{K_a(R_0,T)},A),M_1)...M_{n-1})$

There must be a better way!

 $| R_0, T \# K_a | R_1, *, A \# K_1$

| is the start of a section of the onion#K means encrypt this section with key K* is the result of the previous encryption

There's no nesting to unpick!

- Three MIXs:
 - $| R_0, T \# K_a | R_1, *, A \# K_1 | R_2, *, M_1 \# K_2$
- n MIXs:

 $|R_0, T \# K_a | R_1, *, A \# K_1 | ... | R_n, *, M_{n-1} \# K_{n-1}$

Pfitzmann & Waidner 1986

• Avoid end-to-end retransmission on failures

$$X_a \quad K_a(T)$$

$$X_n \quad K_n(k_n, A), k_n(X_a)$$

 $X_i = K_i(k_i, M_{i+1}, k_{i+1}, M_{i+2}), k_i(X_{i+1})$

 ie: besides normal information, each MIX is told about next but one MIX and can route around a failure. The sender also encrypts with k_i values and tells appropriate MIXs their values.

In the new notation

$$\begin{split} &X_{a} & |T \# K_{a} \\ &X_{n} & |k_{n}, A \# K_{n} | X_{a} \# k_{n} | *_{0} *_{1} \\ &X_{i} & |k_{i}, M_{i+1}, k_{i+1}, M_{i+2} \# K_{n} | X_{i+1} \# k_{i} | *_{0} *_{1} \end{split}$$

where $*_0$ is the result of encrypting the previous section and $*_1$ the result of encrypting the section before that

Avoiding the induction

$$|T \# k_{a} | k_{n}, A \# K_{n} | *_{0} *_{1} \# k_{n-1} | k_{n-1}, M_{n}, k_{n}, A \# K_{n-1} | *_{0} *_{1} \# k_{n-2} | k_{n-2}, M_{n-1}, k_{n-1}, M_{n} \# K_{n-2} | *_{0} *_{1} \# k_{n-3} | k_{n-3}, M_{n-2}, k_{n-2}, M_{n-1} \# K_{n-3} | *_{0} *_{1} \# k_{n-4} ...$$

and can now reason about security properties

Questions for a discussion

- Is it worthwhile making the notation resemble the implementation, or should it resemble Encryption(functions) ?
- Do we actually have trouble reading nested brackets? or lots of _{subscripts}? or ... ellipses?
- If this notation isn't useful, should we start to ruthlessly stamp out the new-fangled notations that are appearing ?

Why does notation matter?

In signs one observes an advantage in discovery which is greatest when they express the exact nature of a thing briefly and, as it were, picture it; then indeed the labour of thought is wonderfully diminished.

Leibniz, 1646–1716

Discussion

 $|R_0, T \# K_a | R_1, *, A \# K_1 | ... | R_n, *, M_{n-1} \# K_{n-1}$

| is the start of a section of the onion# K means encrypt this section with key K* is the result of the previous encryption

More ideas

• Brackets:

$$K_{a}(R_{0},T) | K_{1}(R_{1},*,A) | K_{2}(R_{2},*,A)$$

• Arrows:

$$|R_0, T > K_a | R_1, *, A > K_1 | ... | R_n, *, M_{n-1} > K_{n-1}$$

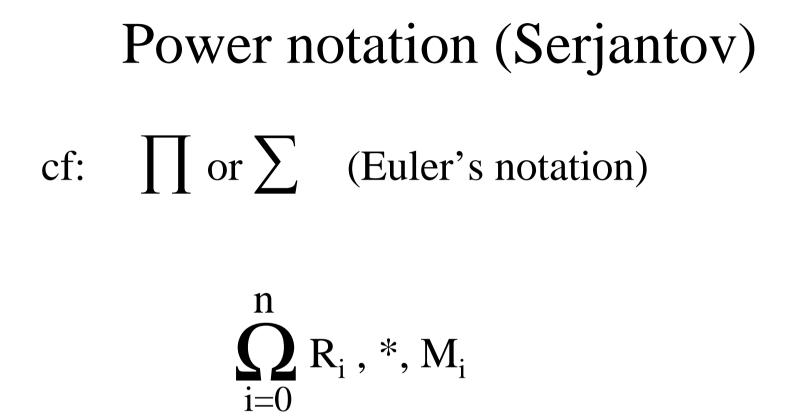
or

 $| \mathbf{R}_0, \mathbf{T} \rightarrow \mathbf{K}_a | \mathbf{R}_1, *, \mathbf{A} \rightarrow \mathbf{K}_1 | \dots | \mathbf{R}_n, *, \mathbf{M}_{n-1} \rightarrow \mathbf{K}_{n-1}$

And a functional notation (Grothoff)

 $F(a, b)(x) := E_{ka}(R_a, x, b)$

 $(f(A,B) \circ f(B,C) \circ f(C,C)) (T)$



• where A is M_0 and the "initial" * is empty

More discussion ?

- At lunch ?
- Or later in the workshop !

richard.clayton@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~rnc1/