Lowering the cost of Bank Robbery
(or, “Why I was wearing a tie on the telly”)

Richard Clayton

Presented at: BA Festival of Science, 12th September 2002
Summary

• Keys and Ciphers
• The IBM 4758 cryptoprocessor
• How PIN values work
• Mike Bond’s “API attacks”
• The low-cost hardware “DES cracker”
• How to extract 3DES keys from a IBM 4758
• Some thoughts on “full disclosure”
Cambridge University Computer Laboratory Security Group
Keys and Ciphers

• Kerckhoff’s doctrine (1883)
 – the security of a system should depend upon its key and not upon its design remaining obscure

• If there is no shortcut then the security of a system depends upon its key length
 – trying all possibilities @ 33 million keys/sec
 • $2^{40} = 9.25$ hours
 • $2^{56} = 69.2$ years
 • $2^{80} = 1.2$ billion years
A History of Tamper Resistance

Problem: another program on the same machine can access your sensitive data

- Put keys into separate microprocessor
- Put microprocessor into a tin box
- Lid opening switches and photocells
- Epoxy “potting”
- Tamper detecting barriers
Smartcards: **NOT** Well Protected

- Simple attacks on Vpp, slow clocks &c
- Damage the processor to access all RAM
- Probing
- Focused Ion Beam (FIB) workstations
- Power analysis
- Attacks with flashguns!
Sergei P. Skorobogatov
The IBM 4758

- Protective barrier with wires of chemically similar compound
- Detectors for temperature & X-Rays
- “Tempest” shielding for RF emission
- Low pass filters on power supply rails
- Multi-stage “ratchet” boot sequence

= STATE OF THE ART PROTECTION!
CCA and PIN values

• Common Cryptographic Architecture
 – runs on many IBM platforms
 – available for free to run on a 4758

• A PIN value (in the CCA world) is the account number encrypted with (112 bit) 3DES key and last few bytes made decimal

• Changing a PIN => changing an offset
Key Entry under CCA

• Each key is loaded in two parts, which are then XORed together
 – XOR means that knowing one part tells you NOTHING about the final key value

• Two security officers, “trusted” not to collude, are given one part of the key each.
 – They authenticate themselves and then separately load these into the 4758.

• This makes the key entirely secure...
Mike Bond
Michael Bond’s “API attacks”

- New type of attack: use standard API in non-standard way to cause dumb things
 - Overloaded key types
 - Unauthorised type casting
 - 3DES binding attack
 - Related keys

Mike’s PhD topic targets formal methods that will detect (and avoid) these problems
The Meet-in-the-Middle Attack

Idea: Attack multiple keys in parallel

- Encrypt the same plaintext under each of the multiple keys to get a “test vector”
- Attack by trying all keys in sequence but check for a match against any test vector value (check is faster than encrypt)
- Typical case: A 2^{56} search for one key becomes a 2^{42} search for 2^{14} keys
Attacking the CCA : Part 1

- Create unknown DES key part
- XOR in “...001”, “...002”, “...003” etc
- Encrypt zero value under each key
- Repeat to get 16384 (2^{14}) results
- Some complexity because of parity issues, but essentially simple & takes 10 minutes.
- Use “brute-force” attack to get the DES key
X xor 001
X xor 002
X xor 003
X xor 004
X xor 005
X xor 006
X xor 007
X xor 008

V1
V2
V3
V4
V5
V6
V7
V8

$995 DES Cracker

4,5,6,7,8,9,10...

zero
Low-cost DES Cracker

- $995 Excalibur kit (Altera 20K200 FPGA)
 - chip cost is ~$5 (in volume; $178 one-off)
- 33MHz pipeline (& 60MHz possible)
- 2^{25} keys/second
 - 56 bit DES = 68 years
- However.. it looks for 16384 keys in parallel
 - with average luck find first key in 25.4 hours
Why Use Hardware Anyway?

Hardware DES implementation is \(>>25\) times faster than the best software implementations.

- **eg: Software [seeking any 1 of 64K keys]**
 - 6 modern PCs running in parallel
 - £4500
 - 84 hours (3.5 days)

- **& Hardware [seeking any 1 of 16K keys]**
 - Altera evaluation board (no soldering required)
 - $995
 - 22.5 hours (for same example, NB: 1/4 parallelism)
Attacking the CCA : Part 2

• Recall we had 16K related DES keys
• We can crack one of these in ~1 day
• Now create 16K related 3DES keys with “replicate” halves and “exporter” capability
 – 3DES = EncryptA; DecryptB; EncryptA
• Export the DES key under the 3DES keys
• Since replicate can also crack in ~1 day
Attacking the CCA: Part 3

• Create non-replicate 3DES key by combining two unequal halves with the replicate halves that we’ve now determined
• Export all the CCA keys under this key
• Download list of PIN offsets
• Use magnetic stripe writer to create cards
• Use any ATM to extract money from accounts
• Go to Bermuda!
IBM’s Response

- Nov 2000 (Mike’s first results)
 - nothing (typecasting seen as legitimate)
- May 2001 (Mike’s CHES paper)
 - nothing
- Nov 2001 (Newsnight program)
 - attack “infeasible in realistic system implementations”
 - followed by advice to disable Combine_Key_Parts
- Feb 2002
 - new version of CCA available [+ bug fix]
“Full Disclosure”

• Should you tell vendor & keep quiet?
 – vendor has limited incentive to act

• Should you publish & be damned?
 – “black hats” may be unaware of problem

• Should exploits be published?
 – “script kiddies” & sysadmins both need them

• Current consensus is to tell vendor and publish after pre-set delay. Recent decisions to suppress exploit info are controversial.
Make Your Own!

http://www.cl.cam.ac.uk/~rncl/descrack/