
Insecure Real-World Authentication Protocols
(or Why Phishing is so Profitable)

Richard Clayton

University of Cambridge, Computer Laboratory, William Gates Building,

15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

richard.clayton@cl.cam.ac.uk

Abstract. The users of online banking systems are currently at risk

from “phishing” scams. Confidence tricksters persuade them to visit

fraudulent websites and use their authentication credentials to steal from

the victims’ accounts. We analyse the authentication protocols used for

online banking, find that they are entirely inadequate, and consider how

to improve systems design so as to discourage attacks.

1 Introduction

“Phishing” is the use of email messages to entice customers of legitimate com-
panies into the sharing of passwords or other credentials such as credit card
numbers or PINs. The third party who has successfully conned the customer
into revealing their details is then able to masquerade as the customer in order
to steal money or services.

The earliest recorded use of the word “phishing” is in a Jan 2 1996 Usenet
article by drspamcake@aol.com [2] and relates to the theft of America Online
(AOL) passwords. However, the actual attacks are far older and, for example, the
sending of instant messages, apparently from AOL staff, that asked for a pass-
word was so widespread that by 1995 the AOL software package contained a spe-
cific “report password solicitation” button [5]. A 1990 paper on a closely related
attack, obtaining passwords from public terminals by altering the firmware [4],
uses the spelling “fishing”.

In recent years, the term phishing has come to be specifically associated with
the operation of fake websites that purport to be a bank or an online system such
as eBay (www.ebay.com) or PayPal (www.paypal.com). The customer is sent an
email that claims to be from the bank and is invited to click on a link within it.
This takes them to the fraudster’s site where a superficially plausible web page is
used to capture the customer’s access credentials. The fraudster then uses these
credentials to impersonate the customer.

Phishing emails and the associated websites are now almost indistinguishable
from legitimate activity (not least because marketing departments continue to
value the use of clickable links in their emails). MailFrontier have run a couple
of online quizzes [6] and found that about 30% of respondents make at least

one mistake in categorising ten emails into legitimate or con-trick. So we should
look to the authentication protocols and the overall system design to prevent
phishing, rather than to user education or a change to the email standards.

In this paper we consider the inadequacy of current authentication protocols
in section 2. Since no easy solution is apparent we consider how websites are
authenticated in section 3. A real fix still being absent, in section 4 we consider
how client certificates can also fail to deliver. We conclude that existing security
primitives and security protocols fail to provide the tools needed to secure real-
world online applications, though all is not lost because high-level system design
changes may be sufficient to make online banking “secure enough”.

2 Authentication Protocols

The standard protocol used for an online banking session with a bank B is for
the Alice the user A, to supply a login name and a shared secret (password) S:

A −→ B : A,S

If the phisher, P, persuades Alice to visit his website then clearly he can
masquerade as Alice:

A −→ P : A,S

P −→ B : A,S

In fact, because there is no freshness in this protocol, P can do this at any
future time until Alice changes her password (or the Bank freezes the account).

This can be tackled by using a one-time password Sn which can never be
reused. Example implementations would be a pad of single-use random numbers
shared between Alice and the Bank, or a hardware token device such as RSA’s
SecurID [7]. This does not prevent the man-in-the-middle attack:

A −→ P : A,Sn

P −→ B : A,Sn

but P can only use the one-time password on the one occasion. The usage must
also be done quickly. In the SecurID case, the password is inherently time-limited;
but in both cases Alice is very likely to try and contact the bank again and as soon
as she reaches the correct destination she will probably discover any attempted
fraud before any money has been transferred.

The phisher can discourage Alice from making a new connection by acting as
a man-in-the-middle for the entirety of her session. Most simply this would mean
relaying all messages back and forth between Alice and the Bank except for a
final “logoff”; thereafter P can perform extra transactions to his own benefit.

The bank can prevent extra transactions that are unknown to Alice (and
force the phisher into providing a live service) by insisting on a fresh password

for every transaction, such as paying a bill, that occurs within the banking
session. Essentially Alice is signing each transaction Tn by the password Sn.

Unfortunately, since there is no binding between Tn and Sn this still does not
prevent the man-in-the-middle attack where P replaces Tn (“pay the gas bill”)
by a wicked (“send all A’s money to P”) transaction Wn.

A −→ P : Tn, Sn

P −→ B : Wn, Sn

Of course, if this was a purely computer protocol in the Needham-Shroeder
tradition then one would be looking to establish a binding between the signature
and that which was signed, viz we’d design messages such as:

A −→ B : {A,B, nonce, Tn}K
−1

A

where the messages are cryptographically signed with Alice’s private key K−1

A
.

Since Alice will be unable to perform cryptography in her head, we’ve moved into
a more complex area than we’ve considered so far. We’ll return to cryptography
below, but first we’ll consider another notion: the use of secure channels.

2.1 Secure Channels

If a secure channel from the Bank to Alice is available then this can be used to
prop up an otherwise insecure protocol. By a secure channel we mean for example
delivering a “text message” to Alice’s mobile phone, or sending an email to a
previously agreed address. Although P has managed to persuade Alice to visit
the wrong website, P is not omnipotent enough to interfere with the rest of
Alice’s activities.

Of course it would be best if all transactions were carried out over secure
channels ! – but email and text messages are not as convenient as using a website,
because they are slower and far less interactive.

As an example of “propping up”, perhaps at the end of the session the Bank
could send Alice an email containing a summary of transactions. Alice would
then compare this with her records and any wicked transactions could be undone.
Bank transfers currently take several days, so Alice can be given the time to do
her checking before an irreversible event occurs. In protocol terms, using the
symbolism

secure
−→ to mean a message from the Bank over the secure channel we

would have:

A −→ B : A,S0

A −→ B : T1, S1

.
A −→ B : Tn, Sn

B
secure
−→ A : A, T1, . . . , Tn

In practice this scheme would fail if P was able to borrow one of Alice’s
transaction keys to validate a change to her email address (viz to alter the secure
channel) and then supply a forged email contained a spurious set of transactions.
Similarly, the Bank is very likely to report upon transactions in human friendly
terms such as “Payment to ‘Gas Company’ (a/c 01–02–03 1234567), £100” and
so there is a risk that P can change the account number associated with the Gas
Company and Alice will fail to see the fraud.

This suggests that there is a need for multiple levels of authentication; run-
of-the-mill validation of transactions, and higher levels for operations such as
changes to payees, inspection and alteration of out-of-band contact details. Fur-
ther thought will show that the lower level of authorisation need not be onerous
since it just prevents denial-of-service attacks (why would P go to considerable
trouble to cause Alice to make specious payments to the Gas Company, who
can be trusted to refund the excess?). However, the authenticators Sn will have
significant value when a sensitive operation is occurring. The highest level of
authentication (perhaps using old-fashioned pen and ink?) is needed for changes
to the secure channel itself, which can be made even more robust by insisting
that it is impossible to inspect the current setting.

However, the effect of all of this analysis and invention is merely to change
the nature of phishing from “visit my website and type in an authenticator” to
“visit my website and perform sensitive operations” which, since there are many
plausible reasons for having to do sensitive operations, is unlikely to slow down
the confidence tricksters significantly.

It is clear that we need proper cryptographic signing of Alice’s messages, but
this requires special software to achieve. Some cryptographic software ships as
standard within web browsers. Maybe we can prevent phishing by having Alice
realise that she has reached the wrong website?

3 The Standard Website Security Model

Secure Sockets Layer (SSL) was invented by Netscape Development Corporation
in 1995 and version 3.0 [3] has become widely deployed. A closely related protocol
called TLS (Transport Layer Security) was standardised by the IETF in 1999 [1].
By convention, websites using these protocols have URLs that commence https

rather than http.
SSL/TLS is intended to provide a private connection, which cannot be eaves-

dropped, between two entities using symmetric encryption with a specially ne-
gotiated session key. The connection is reliable in that a message integrity check
is used to ensure that messages have not been altered in transit. The entities
can establish each other’s identity by inspecting cryptographically signed pack-
ets. Certificates issued by a mutually trusted third party can be exchanged to
demonstrate the authenticity of those signatures.

In practice, web sites have a certificate signed by a CA (Certificate Authority)
such as Verisign. The consumer’s browser is pre-loaded with the root certificate
for the CA and can verify that the certificate presented by a website is owned

by that website. Unfortunately, customers seldom understand what has been
verified by an https connection and believe that very different guarantees are
in place.

If a fraudster obtains a certificate for www.fakebank.com then the certifi-
cate issued by Versign would correctly show that the site being connected to
was indeed the promised www.fakebank.com and not an imposter. However, the
consumer will believe that Verisign is promising that the site is wholesome and
indeed that it is somehow related to the www.truebank.com that the customer
thought they were visiting. This is entirely clear in protocol notation:

P −→ A : { site-P }
K

−1

CA

where A reads site-P as site-B and also believes the CA guarantees P ’s pro-
bity.

In the real world, if a fraudster obtains a certificate, sets up their site to
resemble a major bank and then sends out a phishing email to attract the gullible
then the emphasis placed on the value of using https is likely to make this a
more successful con than if http had been used. The only reason this is not
more common is the high cost of certificates and a slight risk that the CA might
become aware of the fraudster’s identity.

4 Client Certificates

As noted above, SSL is capable of securing both ends of a conversation. For this
to occur the customer must install a “client certificate”. The bank (who will
not confuse site-A and site-P) can verify that there is no man-in-the-middle.
In essence, the two parties A and B swap certificates signed by the CA, then
use the Diffie-Hellman protocol to agree a communication key KComm and sign
messages attesting to its value:

A −→ B : { site-A,KA}KCA
, {KComm}

K
−1

A

B −→ A : { site-B,KB}KCA
, {KComm}

K
−1

B

P is unable to forge either of these two messages and cannot interpose himself
between A and B without causing the communication keys on the two links to
differ – because those keys are constructed from secrets supplied by both ends
of each link and A and B will not choose the same values.

The problem with client certificates is that it is expensive to operate the
necessary certificate issuing system and it will prevent customers from using
random machines (at the office, or on holiday) to do their banking. Therefore
the use of client certificates has been restricted to high value systems such as
share trading where the inconvenience of only being able to use a machine with
the certificate installed is not significant.

However, if a certificated connection was only needed for the special transac-
tions we identified earlier then this might be an acceptable solution. One could

visit a beachfront cybercafé to pay the gas bill, but could only set up a new
payment destination from the living room at home.

It is also possible to use the secure channel mentioned above to replace the
client certificate. The Bank can be verified by making an https connection,
albeit with the risks already mentioned. The user must then compare the value
of KComm on their machine with the value sent over the secure channel.

B
secure
−→ A : KComm

Although in theory this works well, the main difficulty is that it hard to
display the value of KComm within today’s browsers and downloading a program
to display it provides another opportunity for the phishers to con the users. Even
if the value was displayed correctly, a phisher acting as a man-in-the-middle
might be able to overlay that part of the screen with a misleading value1, much
as phishing sites today overlay “lock symbols” and URLs with their own graphics.

Of course, if phishers change their modus operandi into asking Alice to mail
in her certificates (“we’ve discovered a security fault and need to replace them”)
then user certificates will become a significant liability because they do not
usually require any password or other authorisation to be activated.

5 Conclusions

The types of authentication currently employed by online banking systems are,
when analysed as security protocols, entirely ineffective. Some simple changes
can make the phisher’s task significantly harder – requiring them to run realtime
man-in-the-middle attacks and forcing them to persuade customers to perform
unnecessary sensitive operations. Although being in “the middle” and dynam-
ically altering the traffic is conceptually simple, there are a number of things
that banks could do to ensure that it is far from straightforward – and hence it
might become difficult for the phisher to automate.

Cryptography fixes the problem at the protocol level, but in the real world
there are significant limitations in how it can be effectively deployed.

However, from the banks’ point of view, it may not be necessary to provide a
perfect solution. If they can make phishing for bank details harder than capturing
merchant accounts on Amazon or Tesco then the attackers will change their
targets. As when two hunters are being chased by a bear, it is not necessary to
outrun the bear, but merely to go faster than the other fellow.

References

1. Dierks, T. and Allen, C.: The TLS Protocol, Version 1.0, IETF, RFC2246, Jan

1999.

1
P knows the value of KComm that will be sent via the secure channel, because P is

using that key for their own connection to B.

2. DrSpamcake: Get on aol from off aol. alt.online-service.america-online, 2 Jan 1996.

http://groups.google.com/groups?selm=4calah$eoh@newsbf02.news.aol.com

3. Freier, A. O., Karlton, P. and Kocher, P.C: The SSL Protocol Version 3.0. IETF

Internet Draft <draft-freier-ssl-version3-02.txt>, 18 Nov 1996.

4. Harriman, D. D.: Password Fishing on Public Terminals. Computer Fraud and

Security Bulletin, Elsevier Science Publishers, New York, Jan. 1990, pp. 12–14.

5. Lee, L.: AOL scam warning. bit.listserv.christia, 29 Sep 1995. http://groups.

google.com/groups?selm=950929165422 112740484@mail02.mail.aol.com

6. MailFrontier Inc: MailFrontier to Unveil Phishing IQ Test II at Inbox East. Press

Release, 11 Nov 2004. http://www.mailfrontier.com/press/press phishtest2.

html

7. RSA Security Inc: RSA SecurID Authentication. http://www.rsasecurity.com

