
Experience Using a Low-Cost FPGA Design
to Crack DES Keys

Richard Clayton and Mike Bond

University of Cambridge, Computer Laboratory, Gates Building,
JJ Thompson Avenue, Cambridge CB3 0FD, United Kingdom

{richard.clayton, mike.bond}@cl.cam.ac.uk

Abstract. This paper describes the authors’ experiences attacking the
IBM 4758 CCA, used in retail banking to protect the ATM infrastruc-
ture. One of the authors had previously proposed a theoretical attack to
extract DES keys from the system, but it failed to take account of real-
world banking security practice. We developed a practical scheme that
collected the necessary data in a single 10-minute session. Risk of dis-
covery by intrusion detection systems made it necessary to complete the
key “cracking” part of the attack within a few days, so a hardware DES
cracker was implemented on a US$995 off-the-shelf FPGA development
board. This gave a 20-fold increase in key testing speed over the use of
a standard 800 MHz PC. The attack was not only successful in its aims,
but also shed new light on the protocol vulnerabilities being exploited.
In addition, the FPGA development led to a fresh way of demonstrating
the non-randomness of some of the DES S-boxes and indicated when
pipelining can be a more effective technique than replication of process-
ing blocks. The wide range of insights we obtained demonstrates that
there can be significant value in implementing attacks “for real”.

1 Introduction

The IBM 4758 is a “cryptoprocessor” or “security module” – a tamper-resistant
coprocessor that runs software providing cryptographic and security related ser-
vices. Its API is designed to protect the confidentiality and integrity of data while
still permitting access according to a configurable usage policy. Cryptoprocessors
are commonly used in financial environments to protect ATM (cash machine) in-
frastructures, process customer Personal Identification Numbers (PINs), and se-
cure transaction streams between banks. Other applications of cryptoprocessors
include the protection of credit dispensing networks for prepayment electricity
meters, and governing access to keys at certification authorities.

In [2] one of the authors of this paper described a number of flaws in the
Common Cryptographic Architecture (CCA) – the default financial software for
the IBM 4758. We set out to implement an actual attack on a 4758 in a simulated
banking environment, combining these flaws to extract valuable key material. In
particular, we wished to demonstrate the extraction of a “PIN derivation key”,
a Triple DES (3DES) key which can be used to calculate a customer’s PIN from

CHES 2002

2 Richard Clayton and Mike Bond

the account number embossed on the front of their card. By creating fake cards
with real account numbers, an attacker could then use the calculated PINs to
plunder ATMs of their choice, anywhere in the country.

During this process, it became clear that there is far more to implementing
a practical attack than meets the eye, and we had to make substantial modifica-
tions to the scheme and create new technology in order to get the job done. As
a direct result of this work, IBM have released a new version of the CCA [12]
containing multiple modifications to the API to defeat each technique used, and
so the attack we describe can no longer be mounted.

Section 2 summarises the theory behind the building blocks of the attack,
and section 3 describes why the banking environment and procedural controls
make successful application of these building blocks a difficult task. Section 4
describes the extensions made to satisfy the requirements from section 3 – in
particular, the attack was restructured to collect all necessary data within a
single, very quick, period of access to the 4758. Section 5 covers the design and
implementation of an FPGA based DES cracker to provide the necessary brute
force attack performance. This provided some unexpected insights into DES and
key cracker design generally. Section 6 presents brief results from test runs, and
finally, conclusions are drawn in section 7.

2 Attacks on the IBM 4758 CCA

In his earlier paper [2], Bond identifies a number of weaknesses in the CCA,
which he termed “building blocks”.

The CCA keys are typically DES or 3DES keys, and are stored by encryption
under a master key. When keys are to be transferred between banks, they are
encrypted with a key-encrypting key (KEK) instead of the master key. As a
KEK is the highest level of key shared between banks, there is no option but to
transfer the KEK itself in plaintext. The standard procedure is to split it into
three parts using XOR, and transfer each part with a separate courier. At the
destination, three “security officers” enter the key parts into the cryptoprocessor,
which recombines them into the original key. This procedure leads to a significant
security problem: although the security officers must all collude to discover the
key value, just one of them could modify the final key at will by changing the
value of their single key part. In fact, unknown key parts can be generated which
simulate the presence of other officers and so the control that a single corrupt
security officer has over their own key part is enough to allow the CCA software
to be attacked.

The CCA software does not place restrictions on key generation, so it is easy
to create a large number of unknown DES keys. A particular test pattern can
be encrypted under each of these keys to create a set of test vectors. A brute
force attack can then be used to attack all of the unknown keys in parallel. To
determine a single key by brute force might take decades to complete, but as
there are multiple targets the expected time to determine one of the key values
becomes only a few days. Therefore there is a trade-off between the time spent

Experience Using a Low-Cost FPGA Design to Crack DES Keys 3

on key generation and the time (and memory) spent on the brute force activity,
which can be characterised as a “meet-in-the-middle” attack.

Bond also described a key binding problem. The CCA uses the common “two
key” mode of 3DES, where keys consist of two halves, each a single DES key.
The mode consists of encryption with the first half, decryption with the second
and then encryption again with the first half. So-called “replicate keys” can be
generated with both halves identical. In this case, two of the DES operations
cancel out, making the key in effect a single DES key, and therefore suitable
for inter-working with legacy systems. However, the CCA permits halves to be
swapped at will between different keys. This binding problem means that if two
replicate keys can be discovered, their halves can be swapped to create a full
(non-replicate) 3DES key whose value is known.

Bond went on to combine these building blocks into several hypothetical
attacks that were capable of compromising all the exportable keys in the device.
However, the assembly of building blocks was only demonstrative, and his paper
stopped short of actually describing attack code that could be deployed. Further
investigation has made it clear that although the basic theory was correct, the
security procedures in a banking environment would put extra requirements
upon the attack that are not easy to fulfil.

3 Banking Security

To deploy any attack on a real-world bank, an attacker must circumvent a wide
range of bank procedures that protect against fraud. These include:

– Dual control
– Functional separation
– Double-entry book-keeping
– Regular audits of security procedures
– Analysis of mainframe audit trails
– Compulsory uninterrupted holiday periods for staff

Before we show how to defeat the dual control on the security module using
Bond’s techniques, it is instructive to consider why the attacker does not target
the bank mainframe. If an attacker had control over this he could simply in-
crease his bank balance, creating money from nowhere. But bank procedures are
specifically designed to ensure that even with top-level access, covering up the
evidence of such a change is very difficult, and sophisticated balancing checks
would report an inconsistency.

To determine how the fraud was done, the internal auditors would consult the
audit trails. Practically every action that takes place in a bank leaves a logging
record behind, from international fund transfers right down to the times that staff
enter and exit rooms. Given the size and complexity of these auditing systems,
cleaning every record to remove details of unauthorised activity is a mammoth
task. The need for redundancy in the face of failure means that many of the
mainframe logs will be append-only files kept at multiple remote, physically

4 Richard Clayton and Mike Bond

secured, sites. There may be further trails to clean on other external machines
and the attacker will only be able to guess whether the cover-up work is complete.

As an alternative to attacking the mainframe, security modules could be
targeted. They do have much better physical security than other bank systems
(for instance, the IBM 4758 is validated to FIPS 140-1 Level 4, which is the
highest commercial evaluation level attainable). However, access to their software
API is poorly audited, and the conditions under which to raise an alarm are
badly understood. For instance, in order to steal PINs, the attacker need only
breach the confidentiality of data rather than damage its integrity. The data
flowing out of security modules is encrypted and the programmers creating the
audit procedures may not fully understand the consequences of access to this
“unreadable” data and fail to record all of the relevant events.

Bond’s attack has the potential to defeat the dual controls on the CCA
software within the 4758 and steal PIN derivation keys (or encryption keys for
randomly chosen PINs), and this unauthorised activity would be likely to go un-
noticed. But to manufacture false cards for use with stolen PINs, access to the
mainframe database is needed to retrieve account information. If the attacker
chooses the right access point, he could passively observe genuine database ac-
cesses, or could camouflage his requests by mixing them in with other traffic. It
is definitely possible to collect this information stealthily, but there is always a
risk that a particular sequence of events will be flagged as unusual and a detailed
manual inspection triggered. The sooner the fraud is complete the better.

Similar time constraints apply to attacks on “Bills of Lading” systems, which
are also protected by security modules. Here, the assets might be the multi-
million pound cargo of an oil tanker that is in transit at sea for a month. If a
corrupt insider can defeat the security module and sell the same oil twice, he
will want the maximum possible time before the deception is detected.

Thus, in all attack scenarios the risk of early detection and the weight of
evidence remaining must be assessed. The attacker needs to buy as much time
as possible in which to launder money and assume a new identity.

Unfortunately, näıve application of Bond’s “meet-in-the-middle” approach to
key extraction from the CCA does not make for a promising attack. It requires
multiple DES keys to be discovered, with each discovery providing data for the
next stage of the attack. The source data has to be collected in three separate
sessions of unauthorised access to the security module, with the cracking intervals
between sessions lasting from a week to a month, depending upon the computing
power available to the attacker. This exposes the attacker to considerable risk of
detection and if one of the earlier sessions triggers an investigation it gives the
authorities the opportunity to catch him “red-handed”.

We therefore set out to optimise the key extraction attack with two main
goals in mind:

– Collect all the data required to complete the attack in one session lasting
under half an hour – fast enough to perform during a lunch-break.

– Minimise the number of meet-in-the-middle attacks required, and implement
the brute-force search cheaply and quickly.

Experience Using a Low-Cost FPGA Design to Crack DES Keys 5

4 Optimisation of the Attack Code

4.1 The Original Attack

Straightforward assembly of Bond’s building blocks results in a three-stage at-
tack:

(1) Test Pattern Generation: Discover a normal data encryption key to
use as a test pattern for attacking an exporter key. This is necessary because
exporter keys are only permitted to encrypt other keys, not chosen values. The
method is to encrypt a test pattern of binary zeroes using a set of randomly
generated data keys, and then to use the meet-in-the-middle attack to discover
the value of one of these data keys.

(2) Exporter Key Harvesting: Use the known data key from stage (1) as
a test pattern to generate a second set of test vectors for a meet-in-the-middle
attack that reveals two double-length replicate exporter keys (replicate keys have
both halves the same, thus acting like single DES keys). Once this stage is
complete, the values of two of the keys in the set will be known.

(3) Valuable Data Export: Retrieve the valuable key material (e.g. PIN
derivation keys). This requires a known double-length exporter key, as the CCA
will not export a 3DES key encrypted under a single DES exporter key, for
obvious security reasons. Here, the key-binding flaw in the CCA software is used
to swap the halves of two known replicate keys from stage (2) in order to make
a double-length key with unique halves. This full 3DES key can then be used for
the export process.

4.2 The Optimised Attack

In order to perform the attack in a single access session, the second set of test
vectors had to be generated immediately after the first. However, it was not
possible to know in advance which data key from the set would be discovered by
the search, in order to use it as a test pattern. Generating a second set of test
vectors for every possible data key would work in principle, but the number of
operations the security module would have to perform would be exponentially
increased, and at the maximum transaction rate (roughly 300 per second) would
take ten days of unauthorised access.

So the first stage of the online attack had to yield the value of a particular
data key that was chosen in advance, which could then be used as the test pattern
for the second stage. The solution was to create a “related key set” using the
Key Part Import command as described in Bond’s paper. From the discovery
of any single key, the values of all of the rest can be calculated. This related key
set was made by generating an unknown data key part and XORing it with 214

different known values (the integers 0 . . . 16383 were used). Any one of the keys

6 Richard Clayton and Mike Bond

could then immediately be used for the second stage of the attack, even though
its actual value would only be discovered later on.

The second stage was to export this single data key under a set of double-
length replicate exporter keys and to use a meet-in-the-middle attack on the
results. Two keys needed to be discovered so that their halves could be swapped
to create a non-replicate exporter key. Once again the same problem arose in
that it would be impossible to tell in advance which two keys would be dis-
covered, and so the valuable key material could not be exported until after the
cracking was complete. Generating a set of related exporter keys again solved
the problem. Discovering just one replicate key now gave access to the entire
set. Thus a double-length exporter with unique halves could be produced prior
to the cracking activity by swapping the halves of any two of the related keys.

Implementation of this second stage of the process revealed an interesting
and well-hidden flaw in the Key Part Import command. Although the concept
of binding flaws had already been identified in the encrypted key tokens, it was
also present in Key Part Import. It was possible to subvert the creation of a
double-length replicate key so as to create a uniquely halved double-length key
by the simple action of XORing in a new part with differing halves. This second
instance of the flaw would have been missed had the theory not actually been
implemented “for real”. From the point of view of the system maintainer, this
demonstrates the well-known principle that when generic weaknesses have been
identified in an API, equally generic solutions should be sought, and patching
individual parts of the transaction set is unlikely to solve all of the problems.

Finally, the new double-length exporter key made from the unknown replicate
key part from stage two was used to export the valuable key material.

Although the attack still has three conceptual stages, there is no dependency
on knowing the actual values of keys during the period of access to the 4758,
so the stages can be run in a single session and the cracking effort done in
retrospect.

5 Optimising the Key Search with an FPGA

5.1 Cracking Performance

Bond’s paper proposed using a home PC for the DES key cracking, reflecting the
resources available to a real-world attacker. However, experimentally cracking a
single key showed that a typical 800 MHz machine would take about 20 days to
crack one key out of a set of 216, this being the maximum number of encrypted
results that it is realistic to consider producing during a “lunch-break-long”
period of access to the CCA software. The cost of getting “no questions asked”
access to multiple PCs in parallel is substantial, so a faster method was desirable
in order to reduce the risk of the bank spotting the unauthorised access to the
4758 before the attack was complete.

DES was designed to work well with the integrated circuits of the mid-1970s
and it has proved to be difficult to create high-speed software implementations

Experience Using a Low-Cost FPGA Design to Crack DES Keys 7

on contemporary processor architectures. Hardware solutions are known to be
many orders of magnitude faster than software crackers running on general pur-
pose PCs. We therefore investigated the capabilities of modern FPGA systems.
High-level hardware design languages such as Verilog allow them to be pro-
grammed by relative amateurs, so this was not stepping outside of the attack
scenario. We became particularly interested in Altera’s “Excalibur” NIOS eval-
uation board [1], which is an off-the-shelf, ready-to-run, no-soldering-required
system that comes complete with all the tools necessary to develop systems such
as a DES cracker. Altera’s generosity meant that we got our board free; other
attackers would be able to purchase it for US$995.

5.2 How the DES Cracker Works

The basic idea of a brute force “DES cracker” is to try all possible keys in turn
and stop when one is found that will correctly decrypt a given value into its
plaintext. Sometimes, the plaintext that is to be matched is known, as in this
case, and sometimes the correct decryption can only be determined statistically
or through an absence of unacceptable values (for example, in the RSA decryp-
tion challenges posed in the late 1990s [16], the decrypted output needed to
resemble English text).

This cracker design actually works the other way round; it takes an initial
plaintext value and encrypts it under incrementing key values until the encrypted
output matches one of the values being sought. The design runs at 33.33 MHz,
testing one key per clock cycle, which is rather slow for cracking DES keys – and
it would take, with average luck, 34.6 years to crack a single key. However, the
attack method allows many keys to be attacked in parallel and because they are
interrelated it does not matter which one is discovered first.

The design was made capable of cracking up to 16384 keys in parallel (i.e. it
simultaneously checks against the results of encrypting the plaintext with 16384
different DES keys). The particular Excalibur board being used imposed the
16384 limitation; if more memory had been available then the attack could have
proceeded more quickly. The actual comparison was done in parallel by creating
a simple hash of the encrypted values (by XORing together groups of 4 or 5 bits
of the value) and then looking in that memory location to determine if an exact
match had occurred. Clearly, there is a possibility that some of the encrypted
values obtained from the 4758 would need to be stored in identical memory
locations. We just discarded these clashes and collected rather more than 16384
values to ensure that the comparison memory would be reasonably full.

As already indicated, 69.2 years are necessary to try all possible keys and
therefore guarantee a result. However, probabilistic estimates can be made of the
likely running time. These estimates are valid because so many keys are being
searched for, and because DES can be viewed as creating essentially random
encrypted values (approximating a random function being a property of good
crypto algorithms). Over a full search, the average time to find the next key
can be calculated, by simple division, to be about 37 hours. However, it is more
useful to consider the time to find the first key and model the system using a

8 Richard Clayton and Mike Bond

Poisson distribution. The probability that the first r attempts will all fail is e−λr

where λ is the probability any given attempt matches, which if checking against
16384 keys will be: 214/256 = 2−42. At 33.33 MHz with average luck (p = 0.5),
the first key will be found within 25.4 hours. With bad luck (p = 0.001, i.e. all
except one run in a thousand) the first key will be found within 10.5 days.

As already indicated, the attack requires two cracking runs, so one would
hope to complete it in just over 2 days. In practice, the various keys we searched
for were found in runs taking between 5 and 37 hours, which is well in accordance
with prediction.

5.3 Implementation Overview

The DES cracker was implemented on the Altera Excalibur NIOS Develop-
ment board [1]. This board contains an APEX EP20K200EFC484-2X FPGA
chip which contains 8320 Lookup Tables (LUTs) – equivalent to approximately
200,000 logic gates. The FPGA was programmed with a DES cracking design
written in Verilog alongside of which, within the FPGA, was placed a 16-bit
NIOS processor. The NIOS is an Altera developed RISC design which can be
easily integrated with custom circuitry. The NIOS processor runs a simple pro-
gram (written in GNU C and loaded into some local RAM on the FPGA) which
looks after a serial link. The test vectors for the DES crack are loaded into
the comparison memory via the serial link, and when cracking results are ob-
tained they are returned over the same link. Although the NIOS could have been
replaced by a purely hardware design, there was a considerable saving in com-
plexity and development time by being able to use the pre-constructed building
blocks of a processor, a UART and some interfacing PIOs. Fig. 1 shows the
general arrangement:

DES

N
IO

S

APEX 20K200EFC484-2X FPGA

32K x 16bit SRAM 32K x 16bit SRAM

Altera "Excalibur"
 Evaluation Board

Configure

Data

Fig. 1. DES cracker design

Experience Using a Low-Cost FPGA Design to Crack DES Keys 9

A pipelined version of the DES algorithm was used with the same input data
value being encrypted by a succession of key values. At each clock interval, the
intermediate left/right results of each DES stage are clocked into the next set of
registers to act as inputs for the next stage of the encryption. Therefore, after
an initial start-up period of 16 clocks, results appear from the end of pipeline at
the clock rate of 33.33 MHz.

The key value must remain available for use by every stage of the algorithm,
however we avoided the need to provide registers to pipeline its value from stage
to stage. Instead, we used a Linear Feedback Shift Register (LFSR), which has
been extended beyond its 56-bit value so that as it shifts, the extra bits serve to
keep a record of older values of the key. This extended register is then statically
connected, in an appropriate manner, to provide the key for the various pipeline
stages. This space-saving technique was previously used by Hamer and Chow
in their Transmogrifier DES cracker design [8]. The use of the LFSR had the
further benefit of searching key space in a pseudo-random manner, so the 4758
programs were able to use densely packed sets of key values.

A tedious complication was that the Altera board has a limited amount of
RAM as standard, just two 32K × 16-bit SRAMs. These could be arranged to
form a single 32K × 32-bit memory, but it was still necessary for the 64-bit
comparison to be done in two halves. If the first half matches (as will happen
every few seconds) then the pipeline must be suspended for a moment and the
second half of the value checked.

This can be seen on the logic analyser picture in Fig. 2 below. The regular
signal on the third trace is the clock. The second signal down shows a 32-bit
match is occurring. This causes a STOP of the pipeline (top signal) and access
to an odd numbered address value (bottom signal). The other signals are some
of the data and address lines.

Fig. 2. The DES cracker actually running

10 Richard Clayton and Mike Bond

5.4 Implementation of the DES S-boxes

Although most of the cracker design was straightforward, the implementation of
the DES S-boxes is of some interest. There are eight of these, each taking six
bits of input and providing a 4-bit result. The S-boxes provide the non-linear
component within the DES algorithm and they are defined in FIPS-46 [15] as
tables of values that appear to be completely random.

The simplest way to implement the S-boxes would be as 128 read-only memo-
ries (8 for each of the 16 pipeline stages). Unfortunately, although the particular
Altera FPGA architecture being used can be programmed to provide ROMs,
only 52 were available on the particular chip being used. Therefore, the S-boxes
had to be created from logic components. Hamer and Chow [8] (who used the
same FPGA architecture) observed that one could create the 6-bit LUTs needed
for the S-box bits from six 4-bit LUTs as shown in Fig. 3:

A3 A2 A1 A0A3 A2 A1 A0 A3 A2 A1 A0 A3 A2 A1 A0

A5 A4 A5 A4

Fig. 3. Using six 4-input LUTs to create one DES S-box bit

The final OR of the results is achieved “for free” by the FPGA circuitry. This
gives a LUT count for each S-box of 24, giving an overall usage of 3072 LUTs
for the whole design. This is over a third of the entire chip (8320 LUTs).

Because multi-level logic minimisation is complex, some optimal solutions
may be missed. In order to ensure that the logic synthesis program would use
the Hamer/Chow scheme, we wrote the Verilog for the S-boxes as follows:

wire [5:0] A = {address[5], address[0], address[4:1]};

reg [3:0] row0, row1, row2, row3;

always @(A)

begin

case (A[3:0])

0: begin row0 = 14; row1 = 0; row2 = 4; row3 = 15; end

... etc etc

15: begin row0 = 7; row1 = 8; row2 = 0; row3 = 13; end

endcase

case ({A[5],A[4]})

0: result = row0;

1: result = row1;

2: result = row2;

3: result = row3;

endcase

end

Experience Using a Low-Cost FPGA Design to Crack DES Keys 11

However, when making S-box 4, the logic minimisation process managed to
save a couple of LUTs. This was of considerable interest because the design was
clearly going to be quite a tight fit into the FPGA, so it was investigated further.

As can be seen by inspecting the code, the use of A0. . . A3 in the first stage
and A4. . . A5 in the second stage is essentially arbitrary. The same result is
obtained using another selection of 4 and then 2 bits by suitable alteration of
the A[i] in the case statements. All of the 720 possible arrangements were tried,
for each of the eight S-boxes. The result was that several other S-boxes were
found to exhibit small amounts of non-randomness:

S-box 1 2 3 4 5 6 7 8
LUTs 24 23 23 16 24 24 23 22

Thus at each pipeline stage, 13 LUTs can be saved (almost 7% of the total).
This was not an entirely surprising result, although this is a new way of

finding it. It has long been known that the DES S-boxes do have some internal
structure [9, 17, 3] and in the 1970s this led some people to conclude that there
were back doors into the DES system, especially since the NSA were said to have
been involved in the S-box designs.

5.5 Pipelining vs Looping Designs

Key-cracking machines can be constructed at two extremes of system architec-
ture. The cryptographic primitive can be arranged in a loop with a counter, as
would be usual in a software implementation, or the loop can be “unrolled” to
create a pipelined design. Between these two extremes, one can create hybrids
where a few stages are pipelined and a lower maximum value of loop counter
is used. No matter what the architecture, provided there is room within the
FPGA, it is possible to add further instances of the basic design in parallel so
as to provide a performance increase. It is interesting to consider which of these
architectures is in fact optimal.

Experiments showed that a “loop” architecture duplicated 16 times, along
with the logic to select results from each loop unit in turn, occupied 11,662
LUTs. In contrast, a fully pipelined architecture occupied 8,303 LUTs. Exactly
the same performance might be expected from both designs; there is a start-up
delay of 16 clocks and then they deliver one encrypted value on every subsequent
clock. Therefore, it might seem that the pipeline design is to be preferred.

However, if one’s FPGA is not large enough to hold the design (and it appears
to be a fundamental rule of systems design that one inevitably runs out of gates
or pins) then the pipelined architecture will not be implementable since it is “all
or nothing”. In contrast one can remove loop units to produce a cut-down design
that delivers, for example, 10 results per 16 clocks. The saving is approximately
540 LUTs per loop unit (logic minimisation effects mean that the exact saving
can vary). This might make the loop architecture preferable.

Historically, designs were always of the loop variety [5, 4] because until rela-
tively recently it was an achievement to get the whole of a single loop unit into

12 Richard Clayton and Mike Bond

a chip. By 1993, chips were larger and Wiener [18] proposed a pipelined design.
However, although he used an LFSR to avoid the difficulty of a “ripple carry”
across a 56-bit counter, he did not use the Hamer/Chow insight into how this
could be used to avoid pipelining the key values. Kaps and Paar investigated
several different FPGA designs [14], though their interest was in determining
how pipelining or partial loop unrolling affected maximum clock speed. In the
current work, the limiting speed was the external SRAM, so there was no benefit
in making the cracker design run faster since all of the designs generated results
faster than they could be compared against the set of encrypted values.

Speed and size are not the only constraints. The first machine to be actu-
ally constructed, the Electronic Freedom Foundation’s (EFF) design [6], used a
multiple loop unit design. A pipelined scheme was considered, but was rejected
as being more complex and hence more risky for a project that needed to work
first time [7].

One must conclude that there is no easy solution here. The optimal design
approach seems to be to try the pipelined design first. If that does not fit into a
particular chip then it will be necessary to discard the work done thus far and
create a design that crams in as many loop units as possible.

6 Results

Although many paper designs for DES cracking machines were proposed in the
1970s [5], 1980s [4] and 1990s [18], no publicly known machines were actually con-
structed until the Electronic Freedom Foundation built Deep Crack in 1998 [6].
This was an ASIC gate-array design, since this was the cheapest way of building
it. Other work has been done before and since on FPGA based cracker designs
such as [14, 8] and most of these designs appear to have been synthesised and
tested. However, the current work appears to be the first FPGA DES cracker
design in the open literature (and only the second actual system after the EFF
machine) that has actually found a key “in anger”. Of course this achievement
could only be done so quickly and for such a low cost because of the “meet-in-
the-middle” nature of the problem we tackled.

The full attack described in this paper was run on two occasions in 2001 at
the full rate of 33.33 MHz (approx. 225 keys/second). In both cases the expected
running time of 50.8 hours (based on average luck in locating a key) was comfort-
ably beaten and so it would have been possible to start using the PIN derivation
keys well before unauthorised access to the 4758 would have been detected.

Date Start Finish Duration Key value found

Aug 31 19:35 17:47 22 h 12 min #3E0C7010C60C9EE8
Sep 1 18:11 23:08 4 h 57 min #5E6696F6B4F28A3A

Oct 9 17:01 11:13 19 h 12 min #3EEA4C4CC78A460E
Oct 10 18:17 06:54 12 h 37 min #B357466EDF7C1C0B

Experience Using a Low-Cost FPGA Design to Crack DES Keys 13

We communicated our results to IBM. In early November 2001 they issued a
warning to CCA users [11] cautioning them against enabling various functionality
that the attacks depended upon. In February 2002 they issued a new version of
the CCA software [12] with some substantial amendments that addressed all the
issues raised by our attacks and those discussed by Bond in his earlier paper.

7 Conclusions

We have shown that the practical implementation of a theoretical attack is a
worthwhile activity. Our research revealed aspects of both the system attacked
and the attack method itself that would have been difficult to spot in any other
way.

At the hardware design level we showed that pipelined implementations of
DES could be made considerably smaller than designs using multiple looping
units. We also found a new way of demonstrating that the DES S-boxes are not
as random as they might at first appear.

At the conceptual level, we discovered a second specific instance of the generic
key-binding flaw discussed in Bond’s original paper. This highlights the risks of
patching individual parts of a system to deal with security problems. Generic
solutions must be sought for generic problems.

The specification-level faults that have been exploited in this attack have
turned out to be just part of the story. Although we devoted some of our effort
into reducing the effective strength of the CCA’s 3DES implementation to that
of single DES, IBM’s analysis of our attack uncovered an implementation-level
fault that made this whole stage unnecessary [13]. The CCA code was failing
to prevent export of a double-length key under a double-length replicate key,
despite the specifications stating that this would not be allowed.

In the future we must expect to see attacks that combine exploitation of both
specification mistakes and faults in implementing the specification. It is hard to
see how existing analysis practices at either the specification or the implemen-
tation level can hope to spot this type of hybrid. Making serious attempts to
actually implement otherwise theoretical attacks may be our only handle on this
problem.

Acknowledgements

We would like to acknowledge the generosity of Altera in providing the FPGA
board used in this project for free. We’d also like to thank Ross Anderson and
Simon Moore for their helpful comments and encouragement throughout. Mike
Bond was able to conduct the research thanks to the funding received from the
UK Engineering and Physical Research Council (EPSRC) and Marconi plc.

References

1. Altera Inc.: Excalibur Development Kit, featuring NIOS. http://www.altera.

com/products/devkits/altera/kit-nios.html

14 Richard Clayton and Mike Bond

2. M. Bond: Attacks on Cryptoprocessor Transaction Sets. Proc. Workshop Crypto-
graphic Hardware and Embedded Systems (CHES 2001), LNCS 2162, Springer-
Verlag, pp 220–234 (2001)

3. E. F. Brickell, J. H. Moore and M. R. Purtill: Structure in the S-boxes of the
DES (extended abstract). In A. M. Odlyzko (ed.), Advances in Cryptology –
CRYPTO’86, LNCS 263, Springer-Verlag, pp 3–8 (1987)

4. M. Davio, Y. Desmedt, J. Goubert, F. Hoornaert and J. Quisquater: Efficient
hardware and software implementations for the DES. In G. R. Blakley and D.
Chaum (ed.), Advances in Cryptology – CRYPTO’84, LNCS 196, Springer-Verlag,
pp 144–146 (1985)

5. W. Diffie and M. E. Hellman: Exhaustive Cryptanalysis of the NBS Data Encryp-
tion Standard. IEEE Computer 10(6), pp 74–84 (1977)

6. Electronic Frontier Foundation: Cracking DES : Secrets of Encryption Research,
Wiretap Politics & Chip Design. O’Reilly. (May 1998)

7. J. Gilmore: Personal communication. (17 Nov 2001)
8. I. Hamer and P. Chow: DES Cracking on the Transmogrifier 2a. Cryptographic

Hardware and Embedded Systems, LNCS 1717, Springer-Verlag, pp 13–24 (1999)
9. M. E. Hellman, R. Merkle, R. Schroppel, L. Washington, W. Diffie, S. Pohlig and P.

Schweitzer: Results of an Initial Attempt to Cryptanalyze the NBS Data Encryp-
tion Standard. Information Systems Laboratory SEL 76-042, Stanford University
(Sep 9 1976)

10. IBM Inc.: IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Reference
and Guide for the IBM 4758-001, Release 1.31. IBM, Armonk, N.Y. (1999) ftp:

//www6.software.ibm.com/software/cryptocards/bscsvc02.pdf

11. IBM Inc.: Update on CCA DES Key-Management. (Nov 2001) http://www-3.

ibm.com/security/cryptocards/html/ccaupdate.shtml

12. IBM Inc.: CCA Version 2.41. (5 Feb 2002) http://www-3.ibm.com/security/

cryptocards/html/release241.shtml

13. IBM Inc.: Version history of CCA Version 2.41, IBM 4758 PCI Cryptographic
Coprocessor CCA Basic Services Reference and Guide for the IBM 4758-002. IBM,
pg xv (Feb 2002)

14. J. Kaps and C. Paar: Fast DES Implementation for FPGAs and its Application
to a Universal Key-Search Machine. Selected Areas in Cryptography, pp 234–247
(1998)

15. National Bureau of Standards: Data Encryption Standard. Federal Information
Processing Standard (FIPS), Publication 46, US Department of Commerce (Jan
1977)

16. RSA Security Inc.: Cryptographic Challenges. http://www.rsasecurity.com/

rsalabs/challenges/index.html

17. A. Shamir: On the security of DES. In Hugh C. Williams (ed.), Advances in Cryp-
tology – CRYPTO’85, LNCS 218, Springer-Verlag, pp 280–281 (1986)

18. M. Wiener: Efficient DES Key Search. TR-244, School of Computer Science, Car-
leton University (May 1994)

