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Motivation

To understand the quantum-like behaviour
observed in collective phenomena in fluid mechanics

Bouncing droplet on a vibrating bath of silicone oil

Single slit Two-slit Tunnelling Quantised orbits

Y Couder, E Fort ‘Single-Particle Diffraction and Interference at a Macroscopic Scale’ PRL 97 154101 (2006)
A Eddi, E Fort, F Moisi, Y Couder ‘Unpredictable tunneling of a classical wave-particle association’ PRL 102, 240401 (2009)

E Fort et al ‘Path-memory induced quantization of classical orbits’ PNAS 107 41 17515-17520 (2010)
http://www.youtube.com/watch?v=B9AKCJjtKa4
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Agenda

How can a classical fluid system display this quantum-like behaviour?

1 The Bell tests rule out classical models
2 The motion isn’t Lorentz covariant
3 There aren’t corresponding phenomena in fluids in 3 dimensions
4 Classical systems don’t have spin-half symmetry

Single slit Two-slit Tunnelling Quantised orbits
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What do the Bell tests show?

There are two hypotheses about ‘locality’

J. S. Bell. On the Einstein-Podolsky-Rosen paradox
Physics, 1(3):195–200, 1964.

3 No-signalling hypothesis

Signals cannot travel faster than a
maximum speed (eg sound in the air, or
light in relativity)

7 Bell’s hypothesis

“the result of a measurement on one
system be unaffected by operations on a
distant system with which it has interacted
in the past”

3 consistent with experiment
7 falsified by the Bell tests
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Why does this rule out classical fluid models?

“Now we make the hypothesis, and it seems one at least
worth considering..”

J. S. Bell. On the Einstein-Podolsky-Rosen paradox Physics, 1(3):195–200, 1964.

Not considered if it applies in classical fluids

No longer seems worth considering
“I wish to clarify that, on the particular question of whether you
can violate the Bell inequality with a classical local-realist
model – involving fluid dynamics or anything else – I’m 100%
as close-minded as Lubos. Here we’re not talking physics but
math, and simple math at that. Either your model involves
faster-than-light interactions, or you mistake a delocalized
phenomenon (like a scissors closing) for a particle, or you
mangle the statement of the Bell inequality itself, or there’s
some other boring problem ...”

Scott Aaronson, MIT 2013 (with permission)
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Why did Bell think his hypothesis worth considering?

Einstein’s principle of locality

“But on one supposition we should, in my opinion,
absolutely hold fast: the real factual situation of the
system S2 is independent of what is done with the
system S1 which is spatially separated from the former”

cited in J. S. Bell. On the Einstein-Podolsky-Rosen paradox Physics, 1(3):195–200, 1964.

We reaffirm this principle

Is it relevant to collective fluid phenomena?

The fluid motion is correlated over large distances, so
collective phenomena whose centres are far apart might
not be “spatially separated” in the way intended.
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Example - vortex in a compressible fluid

Fluid speed u = C
r

Kinetic energy
E =

∫ 1
2%u2.2πrdr ≈ π%C2 log r

Angular momentum
L =

∫
%ur .2πrdr ≈ π%Cr2

Approximate (Bernoulli terms reduce density at small r )

1. Linear operations
Insert a rod into the eye
Observe forces as rod is moved

2. Rotational operations
Couple to the rotational motion
Large paddles must be used

E and L reside at large distance

correlated out to large distance

Boundary condition: E and L finite
not satisfied at large r

T. E. Faber. Fluid dynamics for physicists. Cambridge University press, Cambridge, UK, 1995.
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Boundary condition - vortices created in pairs

↑ ↓

(schematic)
Most energy is in shaded region

Circulations precisely opposed
No net angular momentum L
Energy E is finite

Fluid velocities reinforce
between the centres
but opposed at large distance

Intertwined whatever the separation
since E and L must be finite

Physical picture:
Vortices are large compared to
the distance between the cores

or from scale-free symmetry of Euler’s equation
If ρ(x, t) is a solution, then so is ρ(ax, at)
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Rotational operations

You can’t affect the rotation of one system without
affecting the other

If you could alter only one system, then E and L
would be unbounded (boundary condition not met)

To couple to the rotation, a fluid mechanic might
imagine inserting a horizontal wall (or using large
paddles) – both systems are affected.

Bell’s hypothesis
“the result of a measurement on one system be
unaffected by operations on a distant system with
which it has interacted in the past”
3 Linear operations (rods)
7 rotational operations (horizontal walls/paddles)

R. Brady and R. Anderson. Violation of Bell’s inequality in fluid mechanics. ArXiv 1305.6822 (2013)
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For philosophers

↑ ↓

schematic

“Your conclusion contradicts Einstein’s principle of locality”

Einstein’s principle is about systems which are spatially separated. The
rotational motion is not spatially separated.

“Special relativity forbids violating Bell’s inequality in a classical system.”

Special relativity is about measuring events. Events do not couple to the
rotational motion because they are too small.

“If you suddenly perturb one system, the other can’t react instantaneously”

Either the perturbation overlaps both systems, or it is too small to affect
the rotational motion significantly.

Robert Brady and Ross Anderson Bell violation Warwick, June 2013 10 / 26



Agenda

How can a classical fluid system display this quantum-like behaviour?

1 The Bell tests rule out classical models
2 The motion isn’t Lorentz covariant
3 There aren’t corresponding phenomena in fluids in 3 dimensions
4 Classical systems don’t have spin-half symmetry

Single slit Two-slit Tunnelling Quantised orbits
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Experimental measurement

A Eddi et al ‘Information stored in
Faraday waves: the origin of a path
memory’ J Fluid Mech. 674 433-463
(2011)

Increase amplitude of vibration A
Droplet bounces higher
Frequency reduces below driving frequency
Velocity v increases v ≈ c′

√
(A− Ao)/A

Rearrange
Approximate period τ ∝

√
A

τ ≈ γτo where γ = 1/
√

1− v2/c′2

Lorentz time dilation

Perturbed in this experiment

Characteristic speed c′ reduced near the
droplet (eg by its mass)
Perturbation evident in the wake
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Explanation
Solutions obey the wave equation to first order

∂2h
∂t2 − c2∇2h = 0 where h is the wave height

Wave equation invariant under Lorentz transformation x → x ′, t → t ′

where x ′ = γ(x − vt), t ′ = γ(t − vx/c2), γ = 1/
√

1− v2/c2

Solutions Lorentz covariant

If h(x , t) is a solution, so is h(x ′, t ′)

Hence observed time dilation

Extended in the field of analogue gravity

‘Acoustic metric’ for irrotational motion of a compressible inviscid fluid is
analogous to the metric in general relativity

Deviations from Lorentz covariance average to zero
(related to d’Alambert’s paradox 1752 – no drag on a solid object if flow
is irrotational)

C. Barceló, S. Liberati, and M. Visser. Analogue gravity. Living Reviews in Relativity, 14(3), 2011.
R. Brady. The irrotational motion of a compressible inviscid fluid. ArXiv 1301.7540, 2013.
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Agenda

How can a classical fluid system display this quantum-like behaviour?

1 The Bell tests rule out classical models
2 The motion isn’t Lorentz covariant
3 There aren’t corresponding phenomena in fluids in 3 dimensions
4 Classical systems don’t have spin-half symmetry

Single slit Two-slit Tunnelling Quantised orbits
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Quasiparticles

Quasiparticles in semiconductors (eg holes) – basis of electronics

Toplogical dynamics
Quasiparticles in an abstract fluid
Research in biology, physics and string theory
In general, wind up tightly due to tension

Lord Kelvin’s vortex atoms 1867

Vortex loops
Pinned to the medium by the
circulation

We will examine

Loops with no circulation
irrotational and Lorentz
covariant

click to watch
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Irrotational vortex (‘eddy’)

J1(r)

Cylindrical Bessel function

+

-

click to watch
Near-field, schematic only

∆ρ = A cos(ωot −mθ) Jm(kr r)

Solution to the wave equation

Sound in a compressible fluid
Euler’s equation

∂u
∂t

+ (u.∇)u = −1
ρ
∇P

Reduces to wave eqn at low amplitude

∂2ρ

∂t2 − c2∇2ρ = 0
(

c2 =
∂P
∂ρ

)
T. E. Faber. Fluid dynamics for physicists. CUP 1995.

Robert Brady and Ross Anderson Bell violation Warwick, June 2013 16 / 26

http://www.cl.cam.ac.uk/~rmb4/sonons/eddy-animation.gif


Irrotational vortex (‘eddy’)

J1(r)

Cylindrical Bessel function

+

-

click to watch
Near-field, schematic only

∆ρ = A cos(ωot −mθ) Jm(kr r)

Solution to the wave equation

Sound in a compressible fluid
Euler’s equation

∂u
∂t

+ (u.∇)u = −1
ρ
∇P

Reduces to wave eqn at low amplitude

∂2ρ

∂t2 − c2∇2ρ = 0
(

c2 =
∂P
∂ρ

)
T. E. Faber. Fluid dynamics for physicists. CUP 1995.

Robert Brady and Ross Anderson Bell violation Warwick, June 2013 16 / 26

http://www.cl.cam.ac.uk/~rmb4/sonons/eddy-animation.gif


Boundary condition – similar to vortices

-

-

+

↑ ↓

J1(r + π)− J1(r − π)

Eddies are created in opposed pairs
No angular momentum

Waves opposed at large distance
Boundary condition
E bounded in the plane

4 eddies
E also bounded on mirror plane due to
cancellation at large distance

More eddies (if needed)
Bragg mirror boundary condition
‘Outgoing waves reflected back’
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Irrotational quasiparticles – similar to dolphin air rings

R
10

click to watch

Curve eddy into a
ring

add a twist
(chiral quasiparticle)

R
11

click to watch

Chiral quasiparticles created in pairs with no angular momentum
ρ↑ ρ↓

↑ ↓
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For mathematicians

More formal description than bending the z axis of the eddy

A cylindrical Bessel function is a sum of spherical Bessel functions

s σ

θ
r

J1(r) cylindrical Bessel function
j1(r) spherical Bessel function

∆ρ = A cos(ωot + θ) J1(kr r)

= A′
∫∞
−∞ cos(ωot + θ) j1(krσ)ds

Integrand (at fixed s) obeys wave equation
So does the integral

ϕ'

θ'
σz

Ro

ξ
mn

(x,t)

Path of integration

Quasiparticle – integrate on a circular path

∆ρmn = A
∫

cos(ωot + θ′ − nφ′) jm(krσ) Rodφ′

n = +1 (ρ↑) – angular momentum in +z direction
n = −1 (ρ↓) – angular momentum in −z direction
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Agenda

How can a classical fluid system display this quantum-like behaviour?

1 The Bell tests rule out classical models
2 The motion isn’t Lorentz covariant
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Two-valued degree of freedom

Ordinary propagating waves can be superposed
Linear terms don’t interact

Quadratic interactions
average to zero
(unless resonantly coupled)

h1 = A1 cos(ω1t − k1x)
h2 = A2 cos(ω2t − k2x)
E ∝

∫
(h1 + h2)2dx3

E ∝ A2
1 + A2

2

Quasiparticle solutions can be superposed

R
11

Two-valued degree of freedom
rotating in ↑ and ↓ directions

∆ρ = A1ρ↑ + A2ρ↓
E ∝ A2

1 + A2
2

Continuum of degenerate states of constant energy parametrised by ϑ

∆ρ = (cosϑ)ρ↑ + (sinϑ)ρ↓ E constant since cos2 ϑ+ sin2 ϑ = 1

Robert Brady and Ross Anderson Bell violation Warwick, June 2013 21 / 26



Two-valued degree of freedom

Ordinary propagating waves can be superposed
Linear terms don’t interact

Quadratic interactions
average to zero
(unless resonantly coupled)

h1 = A1 cos(ω1t − k1x)
h2 = A2 cos(ω2t − k2x)
E ∝

∫
(h1 + h2)2dx3

E ∝ A2
1 + A2

2

Quasiparticle solutions can be superposed

R
11

Two-valued degree of freedom
rotating in ↑ and ↓ directions

∆ρ = A1ρ↑ + A2ρ↓
E ∝ A2

1 + A2
2

Continuum of degenerate states of constant energy parametrised by ϑ

∆ρ = (cosϑ)ρ↑ + (sinϑ)ρ↓ E constant since cos2 ϑ+ sin2 ϑ = 1

Robert Brady and Ross Anderson Bell violation Warwick, June 2013 21 / 26



Two-valued degree of freedom

Ordinary propagating waves can be superposed
Linear terms don’t interact

Quadratic interactions
average to zero
(unless resonantly coupled)

h1 = A1 cos(ω1t − k1x)
h2 = A2 cos(ω2t − k2x)
E ∝

∫
(h1 + h2)2dx3

E ∝ A2
1 + A2

2

Quasiparticle solutions can be superposed

R
11

Two-valued degree of freedom
rotating in ↑ and ↓ directions

∆ρ = A1ρ↑ + A2ρ↓
E ∝ A2

1 + A2
2

Continuum of degenerate states of constant energy parametrised by ϑ

∆ρ = (cosϑ)ρ↑ + (sinϑ)ρ↓ E constant since cos2 ϑ+ sin2 ϑ = 1
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Rotational symmetry

Degenerate states of constant E parametrised by ϑ

∆ρ = (cosϑ)ρ↑ + (sinϑ)ρ↓ R
11

ϑ ∆ρ Net angular momentum in z direction
0 ρ↑ ↑
π/4 (ρ↑ + ρ↓)/

√
2 –

π/2 ρ↓ ↓
3π/4 (−ρ↑ + ρ↓)/

√
2 –

π −ρ↑ ↑

One period of the angular momentum – ρ reverses sign
Spin-half formalism is very convenient for describing this
(completely classical) system
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Rotational symmetry

Degenerate states of constant E parametrised by 1
2θ

∆ρ = (cos 1
2θ)ρ↑ + (sin 1

2θ)ρ↓ R
11

1
2θ ∆ρ Net angular momentum in z direction
0 ρ↑ ↑
π/4 (ρ↑ + ρ↓)/

√
2 –

π/2 ρ↓ ↓
3π/4 (−ρ↑ + ρ↓)/

√
2 –

π −ρ↑ ↑

One period of the angular momentum – ρ reverses sign
Spin-half formalism is very convenient for describing this
(completely classical) system

1
2θ convention used in Bloch formalism
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For mathematicians (1)

Continue the excess density ∆ρ into the complex plane

∆ρmn = <(ξmn) where < means real part
ξmn = A

∫
e−i(ωo t+mθ′−nφ′) jm(krσ) Rodφ′

ξ = α1ξ↑ + α2ξ↓

αi – complex number. |αi | is amplitude of component, arg(αi) its phase

Write the superposition as a vector

(α1, α2) = ei(s− 1
2φ)(cos 1

2θ,e
iφ sin 1

2θ)

The normalised net angular momentum in the z direction is
σz = α∗. σ̂zα

α∗.α = cos2 1
2θ − sin2 1

2θ = cos θ
where σ̂z is the Pauli matrix.

Axis-independent description
Extend to σ̂y and σ̂x in the usual way.
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For mathematicians (2)

α

α'

z-             z+ z-              z+

ξ
αα'

z-            z+ z-             z+z-            z+

z-             z+

A

B

x

y

αα′ is a sum of components

↑↓ couples as drawn, ↓↑ in opposite horizontal direction
Time required to form the resonance increases with the separation
Can’t get cross-coupling
Directions are opposed, irrespective of make-up of αα′

Extend to arbitrary axes using spin-1
2 formalism (see paper for detail)

If directions are a and b, correlation −a.b
R. Brady and R. Anderson. Violation of Bell’s inequality in fluid mechanics. ArXiv 1305.6822 (2013)

Robert Brady and Ross Anderson Bell violation Warwick, June 2013 25 / 26



For mathematicians (2)

α

α'

z-             z+ z-              z+

ξ
αα'

z-            z+ z-             z+z-            z+

z-             z+

A

B

x

y

αα′ is a sum of components

↑↓ couples as drawn, ↓↑ in opposite horizontal direction
Time required to form the resonance increases with the separation
Can’t get cross-coupling
Directions are opposed, irrespective of make-up of αα′

Extend to arbitrary axes using spin-1
2 formalism (see paper for detail)

If directions are a and b, correlation −a.b
R. Brady and R. Anderson. Violation of Bell’s inequality in fluid mechanics. ArXiv 1305.6822 (2013)

Robert Brady and Ross Anderson Bell violation Warwick, June 2013 25 / 26



Agenda

How can a classical fluid system display this quantum-like behaviour?

1 The Bell tests rule out classical models
2 The motion isn’t Lorentz covariant
3 There aren’t corresponding phenomena in fluids in 3 dimensions
4 Classical systems don’t have spin-half symmetry

Single slit Two-slit Tunnelling Quantised orbits
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