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Abstract

This paper gives a full quantun-mechanical analysis of the magnetic
field (first discussed by London) vhich appears spontanecusly when a
sample of superconductor is set into rotation. It shows that, for slow
rotation velocities and using certain approximations, the field B
threading a cavity within a superconductor which rotates at angular
velocity 2, is givenby e B = 2 ( mgy - W/c2 ) co , where -e
is the charge on the electron, m, is the free electron mass, W is
the work—function of the superconductor, and c¢ is the velocity of
light. In this calculation effects which are second-order in the
rotation velocity have been ignored, and the result is only strlctly
valid at the zero of temperature.

The application of this result to experiments using practical,
non-ideal apparatus is then illustrated for a simple geametry.
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T Introduction

When a sample of superconductor is set into rotation, a magnetic
field is generated spontaneously by currents flowing in the surface of
‘the supexconductor. This field is called the London field, and the
following analysis is based upon the work of F. Iondon. (1), (2),
The local canonical momentum of the electron pairs in a superconductor
is related to their velocity u and to the magnetic vector potential A
which they experience:

P = m*u + e*A (1.1)

where m* and e* are the effective mass and charge associated with
an electron pair. ( We shall see that m* cannot be identified with
the band effective mass. )

London showed that the velocity of the electron pairs deep within a
sample of superconductor is just the velocity of the lattice, so that
for a rotating superconductor u = W x r , where W is the rotation
vector and r is the vector from the axis of rotation. The
quantization condition that the line integral of the canonical momentum
around any loop must vanish can now be applied (we do mot consider here
singular situations such as would occur if for example vortices were

present). This condition yields:

(1.2)
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The last of these equations gives the London formula for the
magnetic field B .

This treatment is unsatisfactory in several respects. It is
assumed that the superconductor can be analysed by analogy with the
properties of a pair of electrons. Even if this analogy is accepted, it
is unclear what value should be used for the effective mass m* of the
pair: London's analysis used simply twice the rest mass of the
electron, but it is not clear from this analysis whether lattice
interactions and other effects may modify this mass. ( There was in
fact a stray factor of two in London's original analysis because it was
not realized at the time that pairs rather than single electrons were

involved. We have inserted appropriate factors of two where necessary.)

Experimental measurements upon the London moment in several
different materials and for several different geametries have shown
agreament with the I.éndon value m* = 2 m, , where my is the
rest mass of the electron. (3) Tnis agreement has been verified to of
order 1% . However, experiments have been proposed (4) to use the
London moment in a measurement of the mass of the electron, which is
known at present to 5% significant figures. It is therefore important
to have a full analysis of the value of the quantity m* which enters
into the London moment. The purpose of this analysis is to obtain a

precise value for this mass m* .

Our analysis will refer to the following, ideal apparatus. The
London field B is measured within a cavity which is campletely
enclosed by the superconductor, where the thickness of all walls is much
greater than the magnetic penetration depth in the material. In this
way the field is screened fram the influence of external fields. There
is no apparatus in the cavity which might induce capacitive charges
anyvwhere on the walls of the cavity: such charges would constitute
currents as they rotated with the walls and so would influence the
magnetic field. There is no apparatus within the cavity which might
cause currents to flow in the walls of the cavity: if there were such
currents then the magnef.ic penetration depth of the material would enter
into the formula for the field. ( It can be noted that the current in
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the walls of a cavity within a rotating superconductor is zero unless
some perturbation is applied: this follows fram the observation that
the London field (1.2) is a constant field and so can be set up entirely
by currents flowing at the ocuter surfaces of the superconductor. We
give later a more detailed discussion of this property. )

In section 2 we give an analysis of the value for the effective
mass m* , which is based upon London's assumption that the analogy with
the properties of a pair of electrons is valid. We shall assume that
our pair of electrons is at the Fermi level in the metal. Although this
analysis is not rigorous and is based upon assumptions which cannot
easily be justified, it does show the physical origins behind the
corrections to the effective mass. In section 3 a fuller, quantum
mechanical analysis of the problem is given, which does not require
these assumptions to be made. Section 4 illustrates the way in which
the above restrictions can be relaxed, so that the analysis can be
applied to apparatus in which there may be capacitive chérges inside the
cavity, and in which currents may be induced in the walls of the cavity.
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2 Semi-classical analysis of the London moment

In this section we follow through the consequences of London's
assumption that the London moment can be analysed by analogy with the
properties of a pair of electrons. This analysis will show the physical
basis behind the corrections to London's value for the effective mass

m* , but it should again be emphasized that this section is not
rigorous and that a full and rigorous analysis is given in the next

section.

This section is therefore based upon an analogy with the propert.ies
of a pair of electrons. It is important to know what is the energy of
the pair, and we analyse this first. Since superconductivity is a
phemmemn associated with the electrons within a few millielectronvolts
of the Fermi level in the superconductor (5), we shall assume that our
pair has an energy appropriate to this level. In order to evaluate this
energy, consider an experiment in which an electron is knocked out from
the Fermi level into a large cavity within the metal, so that the
electron’ is at rest in the cavity. The energy required to do this is

W , the work—function of the metal: note that the value of W defined
in this_way depends upon the metal used, but since tﬁer_e can be no
electric fields within the cavity (other than those due to the electron
itself) then the value of W does not depend upon other conditions*
The work-function is therefore a well-defined quantity. The electron
within the cavity behaves exactly like a free electron, and it therefore
has rest mass energy mg 2 (We have chosen an electromagnetic
gauge (8) in which the absolute potential within the cavity is zero,
and so there are no electrostatic contributions to this rest-mass
energy.) By subtraction it will be clear that the energy of a pair of
electrons at the Fermi level is 2 ( my 2 -w) .

The energy of our pair can be split into three terms: the
rest-mass energy, the kinetic energy, and the electrostatlc potentlal
energy. We shall for the sake of concreteness imagine that the
electrons camprising our pair are orbiting around one another with
kinetic energy KE per particle, and that each electron is subjected to
a potential V . The energy of each electron

U 2 +KE-eV = m, c2 -y is of course a constant in space,

* The cavity must be large enough that mirror charges do not significantly

affect the electron's energy.
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although the individual kinetic and potential energy contributions could
well vary rapidly in space. For example, the potential V includes
contributions from all charge distributions in the metal, such as
surface dipoles lining the walls of the cavity, the screening hole
surrounding each electron, and charge inhonogeneities associated with
atamic cores and valence elecrons. In our analysis of the London moment
in this section we shall consider separately the effects of kinetic and
of potential energy terms at each point in space upon the effective mass
of a pair.

Consider first the rest~mass and kinetic energy terms. It is well
known in relativity that the mass of a system with rest mass 2 M

and kinetic energy 2 KE is:

My inetic = 2 (mg + KE/c? ) (2.1)

To be precise, this mass m*yipetic 1S defined so that, if the
whole system is subjected to a Lorentz transformation so that it moves
past an observer with a (low) velocity u , and if there is no
electromagnetic field, then the momentum of the system is increased by

M ) inetic Y - (7) we apply this to the centre-of-mass motion of an
electron pair deep within the material of the s@rconductor, which
moves with the lattice velocity u . If in addition the magnetic vector
potential A is taken into account, then the local momentum of an
electron pair which is deep within the metal of a superconductor whosa

lattice moves at local velocity u , is given by:

= 2 (my+KE/c2 Ju-2eAn (2.2)

o
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. It should be noted that the concept of band effective mass does not
enter into consideration here, since the electron pairs are considered

to remain stationary with respect to the lattice.

The local vector potential A which is defined within the material
of the metal, is however not the quantity of interest to an A
experimenter. We wish to obtain the value of the field which is within
the cavity, Aggternal + This will differ fram the field within the
material of the superconductor because of the presence of the charge
distributions which set up the potential V experienced by the
electrons in our pair: the charges move with the lattice as it rotates
and so constitute currents which create elecﬁrcmagnetic fields. (We
shall show later using a self-consistency argument that these
electromagnetic fields due to the moving charges are not screened by

supercurrents. )

In the following analysis we shall make the approximation that all
the dimensions of the apparatus are large compared to the eleétrostatic
penetration depth in the material. This approximation is of great
camputational convenience, because the velocity of motion of the lattice
as it rotates can be regarded as constant in the region of the wall
where the potential V seen by the electrons is changing rapidly.

Since the electrostatic penetration depth is very small, typically a few
angstroms, this is a good approximation and we consider no further any
carrections on account of the finite penetration depth. We therefore
now consider a small region of the wall of the cavity, which is rotating
with a tangential velocity u = W x r . This velocity u is constant

in this small region, according to our approximation.

If the local charge density in the metal is f , then the rotating
superconductor has a current density on account of the moving charge,
whose magnitude is f u = j . We shall assume for the maoment that
the fields generated by these moving charges are not screened by
supercurrents. ( We shall later demonstrate the sel f-consistency of
this assumption ). Maxwell's equations for the magnetic vector
potential A can now be applied:



(2.3)

where we have used the equation Mo € c2 =1 . This
equation can now be integrated across the wall of the cavity. If the
field within the cavity is Aggternal ¢ Close to the wall, then the
field within the material of the superconductor just across the wall,

A, is given by:

A = BAexternal t (W/c2 ) v (2.4)

where we have used the fact that we have chosen a gauge where the
absolute potential V inside the cavity is zero. This equation can now
be inserted into (2.2):

p = 2(m + KB/ - eV/c®)u - 2eAcxternal

(2.5)

2(%‘ - W/c2)u - 2eBextermal
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It will be clear by camparison with equation (1.1), that the value
of the effective mass of our pair, m* , is simply

m* = ?(mo - W/c2) (2.6)

This value for m* is the principal result in this section. It
was obtained assuming that the magnetic fields due to the moving charge
densities in the metal are not screened by supercurrents; we now show
that this assumption was indeed justified, using a sel f-consistency

argument.

Consider our small section of the wall of the cavity, using for
simplicity a gauge where the canonical momentum of the electron pairs
just inside the material of the superconductor is zero; that is, in
equation (2.5) p = 0 . Using equation (2.5), we deduce that the
value of the magnetic vector potential just inside the cavity is given
by Acxternal = (mg — W/ c? ) u/ e . In this situation, consider
- the part of the wavefunction of our electron pair, which extends beyond
the metal and a short distance into the cavity itself. Using a
semi-classical analysis, one notes that the part of the pair in this
region has no potential energy, V = 0, and it has negative kinetic
energy, KE = -W . Equation (2.5) can be applied to this part of the
system,' and it can be seen that the canonical momentum associated with
the part of the electron pair's wavefunction which extends into the
cavity is zero, P = 0 . By a similar argument, it is easy to see
that p = 0 holds everywhere in the region of wall under
consideration. If ﬁowever supercurrents were to flow so as to screen
out the magnetic fields on account of the moving charges, this condition
would no longer hold and the quantization of momentum (1.2) would no
longer be valid for electron pairs in different parts of the region of
the wall under consideration. It can therefore be concluded that there
is a self-consistent solution to the equations in which the fields of

the rotating charges are not screened by supercurrents.
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"To summarize this section, we have assumed that the London moment
can be analysed by analogy with the properties of a pair of electrons,
each of which has the Fermi energy in the superconductor. We have used
the approximation that the electrostatic penetration depth is very short
campared to the dimensions of our experiment. We have ignored
centrifugal effects, and the influence of any excitations in the
superconductor which may be mobile (so that we are restricted to the
case where T << T, , where there are few excitations). The
principal result is that the effective mass m* entering into London's
formula (1.2) is m* = 2 (my - W / c? ), where W is the
work—-function of the superconductor. '

Though plausible, the first assumption made above cannot easily be
justified. In the next section we give a full and rigorous
quantum-mechanical analysis of the situation which does not require the

first assumption made above.
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3 Quantum analysis of the London mament

In his derivation of the effect which now bears his name, Josephson

(8) emphasized the importance of the phase © of the order parameters

in a superconductor. We shall follow some of Josephson's discussion of
phase, and apply same of the results derived there to our own prcoblem.
In particular we note that © must be continuous and single-valued, so
that the integral of the rate of change of phase with position, taken
around any closed loop, must vanish. (As before, we do not consider
singular behaviour such as would occur if flux lines were to thread the

superconductor.) In other words, for any closed loop:

f Ve.dl

il
o

(3.1)

This equation (3.1) is the basic equation behind our derivation in
this section. We shall see that it is closely related to London's
condition, that the line integral of the canonical momentum of an

electron pair taken around any closed loop must vanish, i.e.
§ p.d = 0.

Before it is possible to interpret (3.1) in terms of velocities and
magnetic fields, it is necessary to investigate some of the properties
of the phase © . Firstly, consider a sample of superconductor which is
stationary, which is not rotating, and which has no magnetic field
threading it. Eguation (3.1) holds in this situation, so therefore it
is possible to choose a gauge in which the phase © does not vary in
space, ¥ © =0 everywhere. We shall use this gauge in all our
following analysis. (Of course, if the conditions affecting the sample
are changed, by for example the application of a magnetic field or
setting the sample into rotation, we would not change our frame of
reference in our description of the system, and so it would no longer
necessarily hold that Ve =0 .)
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‘ In our nonrotating sample, therefore, the phase © is invariant
with spatial position. In order to camplete our description of the
phase, it is necessary to know the time dependence of this parameter.
In appendix 1 we reproduce an analysis of this which is originally due
to Josephson (8) . although the notation has been changed samewhat and
the result has been put into the gauge of our analysis, where the
absolute electrostatic potential inside a cavity within the
superconductor is zero. The result is that the phase © varies w1th

space and time according to:

Koo /eot, Yol = [ -2mec?wW)/c, 0] (3.2)

where my is the rest mass of the electron, ¢ is the velocity of
light, and W is the work-function of the superconductor used,

according to the definition given in the previous section.

We now have a camplete description of the spatial and temporal
dependence of the phase of the superconducting order parameter © in
our stationary, nonrotating sample of superconductor. It is now
possible to generate a description of the space~-time dependence of the
phase in a sample identical to the one described above, but which has

been set into motion with uniform velocity u .

Equation (3.2) is written in a special form. The phase -9 is a
scalar, whilst the derivative [ 9/cot , ¢ ] is a Lorentz
four-vector. (7) The left hand side of (3.2) is therefore a Iorentz
four-vector, and it transforms according to the usual relativistic
transformation laws. ( Of course, this would not be true if we had
omitted any terms fram (3.2). Note the importance of the rest mass
energy term in (3.2). ) In particular, one needs simply to apply the
ILorentz transformation laws to (3.2) in order to generate a description
of a sample which has been set in motion with velocity u . This
yields:
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K96 /cot,vel = (me?2 -w) [ -2¢/c, 29u ] (3.3)

vhere ¥ "2 =1 - u?2 /2 . It should be noted that this takes
into account all effects, including for example the effect upon the
phase of 6 of the magnetic fields due to the charge densities within
the metal which are moving with velocity u . (As a matter of fact, the
fields of the moving charge densities are confined to within the
material of the superconductor, at least in the simple case where the

sample is uncharged and in a region of zero electric field.)

In future analysis we shall make the approximation that all
velocities of motion of the lattice are small compared to that of light.
We shall therefore take ¥ = 1 to hold.

In apendix 1 there is also a discussion of the effect of the
application of a constant magnetic vector potential Agyternal UPOnN
the phase in a sample of superconductor. Using the results of that
appendix, the phase gradient of a sample of superconductor which moves
with velocity u and vwhich is also subjected to a constant magnetic
vector potential Agyxternpal ¢+ 1S

Kve = 2(m - Wec?) U - 2ehextermal (3.4)

Equation (3.4) is an equation written in local form. To within
certain approximations which we shall discuss later, the state of a
rotating superconductor is locally the same as that of an equivalent
translating superconductor. In the case of rotation, the local velocity
of motion of the lattice is simply u = Wxr . Applying condition
(3.1) to this, one deduces that:



2- 1y

§ 2(mg/ c2) u.dl = §2 e Aexternal-dl
(mg-W/c?) curl u = e aurl Agyxternal (3.5)

2(nb—W/02)cg = eB

The last of these equations gives the London field B which is in
the cavity of a superconductor which rotates at angular velocity @ .
It is of interest to compare this derivation with that given in section
1 ( equations (1.1) and (1.2) ). The quantity % V © replaces the
canonical momentum p of section 1 , but otherwise the derivations

follow closely similar lines.

There are however a number of approximations which have to be made
before it is valid to apply equation (3.4) to the case of a rotating
sample of superconductor, as shown above. Firstly, the effects of
‘.centrifugal fields have been ignored: such fields could for example
distort the lattice and cause the value of the work-function of the
superconductor to change in some region, thereby affecting the magnitude
of the Lordon field. Secondly, the effect of excitations in the
syperconductor has not been be taken into account: excitations moving
radially inwards or outwards will experience Coriolis and magnetic
forces which will cause some motion of charges relative to the lattice.
Although on average one might expect the net current on account of this
to be zero, there may be second-order effects. ( As a matter of fact,
the Coriolis and magnetic forces have already been taken into account as
far as they affect the order parameters of the ground-state
wavefunction, since we have matched the boundary conditions for the
order parameters in our rotating sample. See reference (9) for further
discussion. ) The third approximation results from the fact that the
tangential velocity of rotation is not truly a constant, but \;'aries with

the radius from the axis of rotation. It was noted earlier that the
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transfomation leading to equation (3.4) takes into account the magnetic
field due to the charge densities in the metal, which are all assumed to
be moving with the same, uniform velocity u . In the case of rotation,
however, these charge densities could well be at some different radius
and so they need not necessarily move at the same velocity as the
element under consideration. The magnitude of the resulting correction
will depend upon the typical distance over which the potential V
changes, i.e. the electrostatic penetration depth. ( It is easy to
show that the magnetic flux enclosed by the outer of two concentric,
corotating, nonconducting long cylinders of charge with radii r and

r - A and which support a constant voltage between them, is
proportional to 1 - A/ r +to firstorder in A/ r . The correction
to the London mament would therefore be expected to depend in a similar
fashion upon the electrostatic penetration depth A and the radius of |
the experiment r . ) Since the electrostatic penetration depth is
typically a few angstrams, much shorter than the dimensions of any
reasonable-sized experimental apparatus, then it is a good approximation

to neglect the electrostatic penetration depth.

It is here that lie the most serious problems with our calculation
of the Iondon field. The corrections on account of the centrifugal
field and on account of excitations in the superconductor could well be
of consequence to the experimentalist. It is unlikely that the
correction due to electrostatic penetration depth could be measured
experimentally, on account of the very small size of the effect, though
the effect throws up a number of interesting theoretical points which
have not been analysed. In particular, it may be possible to treat more
exactly the effect of the finite electrostatic penetration depth through
the use of angular transformations rather than the linear ones used in
this paper. Some discussion of these transformations is given in

chqp{'e'r 1.

To summarize this section, we have made the approximations that the
velocity of rotation of a sample of superconductor is small, and that
the centrifugal effects are therefore negligible; that the
electrostatic penetration depth in the superconductor is very short
coampared to the dimensions of the sample; and that the effects of
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excitations in the superfluid can be neglected. The result of this
section is that the mass m* entering London's equation for the London
field has value m* = 2 ( mg - W / c2 ), where W is the
work-function of the superconductor, defined as the energy required to
knock an electron out fram the Fermi level in the metal, into a large

cavity within the metal.
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4 Practical apparatus

In the previous sections we have analysed the ILondon field of a
rotating superconductor, without consideration of the practical problems
of measuring such a field. For éxample, suppose that the field within
the cavity of our rot_:ating sample is to be measured using a
superconducting loop and superconducting ammeter (SQUID): if the loop
itself rotates then it too will have a London field which will perturb
the measurement; if the loop is made of some metal which has a
work-function different from the work-function of the superconductor
under investigation, there could be electric fields set up within the
cavity to maintain the difference in work-functions, and the charges
which maintain these fields would in turn create magnetic fields as they
rotate with the apparatus, thus affecting the measurement; similarly,
any voltages applied to the system could affect the measurament through
the magnetic fields of the Coulanb charges set up as they rotate with
the apparatus. In this section we illustrate how to analyse the
corrections which result fram these effects, using a cylindrical

geanetry in which the mathematics takes on a particularly simple form.

See figure 1 , which shows a cross—section of the apparatus which
will be investigated in depth in this section. A long cylinder with
inner radius r, 1is made fram a sample of superconductor with
uniform work-function W, and with magnetic penetration depth

A o -+ This cylinder can be rotated about its axis with angular
velocity W, . Inside this is a second long cylinder, which is made
from a superconductor with uniform work-function W; , and magnetic
penetration depth A i + The outer radius of this cylinder is

ri . and it can be rotated about its axis with rotation velocity

w, .

A voltage V can be applied between the two cylinders. Ry the
quantity V is meant the voltage which would be measured using a
voltmeter attached between the two cylinders: that is, V =DM/ e
wvhere Dp is the difference in electrochemical potential between the
electrons in the two cylinders. It can be noted that V is related to

the difference in work-functions DW and to the electrostatic voltage
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between the cylinders Vg = f E dl , through the equation:

\Y = Vgg+ DW/e (4.1)

The current flowing around the inner cylinder can be measured using
a SQUID which is inserted into the cylinder. For example, there could
be a slit extending the length of the cylinder, and the SQUID could be
comnected across the slit. In the following analysis we shall not ‘
consider the properties of the SQUID, assuming that it has small
inductance so that it does not interrupt the flow of current around the
loop, and assuming that it is physically small so that any London-like
effects occurring within the SQUID itself as it rotates with the inner

loop can be neglected. Later, we relax these assumptions.

Ifl order to simplify the equétions which occur in this section, we

shall use the notation ry,' = rg; + Ao, and
ri' = ry - Aj . These primed quantities are of use in

considering the screening effect of one cylinder upon magnetic fields
éenerated by the other: for example, suppose that currents in the outer
cylinder cause a magnetic field B to appear in the space between the
cylinders. The flux enclosed within a line taken around the loop with
radius ry' is, after allowance has been made for the screening
effect of the inner cylinder, ¢ =m ( ro'2 - ri'2 ) B. In
other words, the cylinders behave as though they had the primed radii as

far as screening of fields is concerned.

To begin our analysis of the current flowing through the SQUID
shown in the figure, .we shall take the simple case where there is no
electrostatic voltage between the two cylinders: that is, in equation
(4.1), Vgg = 0 . In this case there are no net Coulamb charges
anywhere in the system, and so we can neglect the effect of such
charges. Suppose now that the outer cylinder is caused to rotate at
angular velocity @ o , whilst the inner cylinder remains stationary.
Consider a line taken around the cylinder at radius ry' . From

equation (3.5) ( or, alternatively, frcm equations (1.2) and (2.6) ),
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one deduces that the flux enclosed ¢ = _§ A.dl  is:

e @ = 2(mg - W/c2 ) rqry'2 Wy (4.2)

It now follows, using simple magnetic formulae for long cylinders,
and using the remark made above about the screening effect of the inner
cylinder, that the current flowing in the SQUID is:

1,
- Wy 2 e,
N, Q, I - 2 (‘Mo 2 } 1;,'1 - 'f:l (4-3)

A similar analysis can be made for the case where the inner
cylinder is made to rotate at angular velocity @ i ¢ whilst the outer
cylinder is kept in an inertial frame (i.e. not rotating). The flux
within a line taken around the cylinder at radius rj' is given by
equation (3.5), whilst the flux within the line taken around the
cylinder at radius r,' must be zero. The result of this
calculation, when added to the result (4.3), gives the current flowing
through the ammeter as a function of the work-functions, the radii and
the angular velocities of the two cylinders; it is thus far restricted
to the case vhere the electrostatic voltage between the cylinders is

ZEexro:

(4.4)

"

}Aaez [(Mo’?—fv)wo - (Wio- _\A{.‘ )0(9‘]
c
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We next consider the effect of the application of an electrostatic
voltage between the cylinders. If such a voltage is applied, then the
Coulanb charges appear within t',he electrostatic penetration depth of the
surfaces of the cylinders; we shall make the approximation that this
depth is very short, so that the charges appear at radii ro, and

rj - The question now arises: does the appearance of these charges
alter the magnetic penetration depth in the superconductor by altering
the number of available charge carriers within this depth ? Simple
order-of-magnitude calculations show that the number of charge carriers
within the magnetic penetration depth exceeds by many orders of
magnitude the number of carriers which could be added or subtracted by
electric fields of even several kilovolts per millimetre (the breakdown
field of liquid helium), ard so we shall not consider this effect.

The capacitance between the cylinders per unit length is given by
the formula C = 2/7€, / logg (ry /ry ). If the outer
cylirder rotates at angular velocity W/ o Whilst there is an
electrostatic voltage Vgg ., then the motion of the charges
constitutes a current (we consider later how this is screened by -

supercurrents) of magnitude I per unit length of cylinder, where:

I = (CVgs/ 2R15 ) 15 W,
(4.5)

= €, VggW, / loge(ry/r;)

This current is screened by supercurrents which we imagine to flow
at radii rgy' and ry' ; the effect of this upon the current
through the ammeter can be calculated in a similar way to the
calculations above, and the effect of the electrostatic voltage is ‘to

cause a current to flow in the ammeter:
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,Jc e L (4.6)

In a similar fashion the extra current due to an applied voltage
can be calculated for the case where the inner cylinder is caused to
rotate. The sum total of this effect, and of the effects described by
equations (4.6) and (4.3) is: |

u W 27"
MoeI = [(mo— 5w = (- :{)wi] O
(4.7)
e Ves R S )

Fx 3
¢ che_ (o/7;) 1 = 77 T =~ 1;

where we have used the equation o €o 2= 1 to simplify
the equation.

This equation (4.7) is the principal result of this section. In
order to see some of the consequences of this equation, we shall apply
it to the simple case where the inner and outer cylinder are made of the
same material, so that the work functions are identical, A

Wo =W; =W, and the magnetic penetration depths are also the
same, Ao =Aj=A. We shall work in units where the mean radius
of the cylinders is unity, (rg+r; ) /2 = 1, and we shall
define the semi--distance between the cylinders to be d , that is,

(ro~-1r;) /2 = da. In this notation and in these units, (4.7)

takes on a simpler form:
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W (edsa) PRy
pee T = (= X) [ o wtjh

(4.8)

eV

¢ (2A+)) (20 (2d) "O‘ie (‘;{‘i( )

(2t +2) o — udWc]

This equation suggests a method of making a measurement of the
magnetic penetration depth A  in the superconductor. There is a term
in the equation which is proportional to

V(IA(2+2d+A)W, - 4dwW; ), and by canparison of the current
I for various values of the voltage and rotation rates, and knowing

the value of the parameter 4 , then the magnetic penetration depth
might be inferred.

In order to see further the significance of this equation, we shall
make the approximation that the magnetic penetration depth is small and
so can be neglected (or, if necessary, corrected for), and we shall

expand only to first order in the semi-distance between the plates 4 .
The result is:

2dpoeI = 2 (mp-W/c2 ) [Wy-w; 101+ 24]

(4.9)
+ ev/2 I w; ]

This form of the equation suggests a method of making a device
which is sensitive to its angular velocity of rotation in space. A
current is caused to flow through the ammeter which is proportional to
the voltage, and which depends upon the angular velocity of rotation of
the whole instrument. A fuller analysis and experimental results on



'2_.'2.3

this application are given in chapter 3.

This form of the equation also suggests a method of measuring the
mass of the electron. By camparison of the current through the ammeter
- with and without an applied voltage, whilst, say, the inner cylinder
only is caused to rotate, the ratio ( my - W/c2 )/(eV) can be

measured. This application will also be discussed in appendix 2.

Finally, we return to the assumption made earlier that the ammeter
has low inductance and so does not significantly affect the current
flowing around the inner cylinder. Provided that the apparatus has
sufficient symmetry that the inductance of the inner loop does not
change as the apparatus rotates, then the current I in the above
equations is reduced by a factor L / ( L + Lgyyrp ) Provided that
the SQUID inductance is well-defined, then this is a constant factor
which does not affect the results for the mass of the electron or for

the magnetic penetration depth.
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Appendix 1 Time dependence of the phase

In this appendix we follow Josephson's argument to derive the time
dependence of the phase © of the order parameter of a superconducting

wavefunction (8) .

The superconducting state is associated with the appearance of a

wavefunction containing an indefinite nuwber of particles (9),

¢ ) ZN T (A1.1)

where each part Yy contains exactly N particles. The order
parameter, which has macroscopic expectation value, may be written in

the usual second quantization notation:

A (£) vir) < g0 o >

(A1.2)

Aexp( i6)

We shall follow Josephson and assume that there exists an operator
S which has eigenvalue s = exp ( 1 8 ) for a superconducting
wavefunction with phase © . Muiltiplication of the wavefunction by the
operator exp ( 1 N© ) ( N is the number operator ) multiplies s by
exp (2i6 ), (since the operator in (Al.2) annihilates two particles) so
exp (-iN 8) S exp (iN©) = exp (2i ©) S . Differentiating with
respect to © and putting © = 0 , one obtains:



2.29

s, N] = 2S (A1.3)

Writing the Hamiltonian for the superconductor:

H = H, + Mn | (A1.4)

where H, 1is some constant and fﬂ is the electrochemical
potential of the superelectrons, one can deduce from (Al.3) and (Al.4)
that:

S = So e“zj-[‘*t/ " (A1.5)

In his analysis of the tunneling effects between superconductors
which followed this, Josephson used an arbitrary origin of energy for
}~ - In our analysis, we have chosen a particular gauge ( namely, that
the electrostatic potential V inside a cavity within the
superconductor is zero ), and in this gauge the origin of energy for /1/\
is well defined.

Consider a single electron which is within the large cavity in the
superconductor. The electron behaves exactly like an ordinary free
electron (provided that the cavity is large emough), and in particular
it posesses rest mass energy m, c2 . The energy required to knock
this electron fram the superconductor into the cavity is W, the
work-function of the metal; therefore it is clear by subtraction that
the electrochemical potential of the electrons in the material of the

superconducter is:



Mmo= mo c? -~ W (A1.6)

Finally, cambining (Al.6) with (Al.5), the phase of the order

parameter of a superconductor progresses with time according to:

~-¥e /ot 2(mg c2 - W)

(A1.7)

This is the principal result of this appendix.

In this appendix, we have also set up the machinery to understand
the effect of a transformation of gauge so that a constant magnetic
vector potential Agyternal 1S added to whatever fields are present

in the superconductor.

Since each part ¥y of ¥ is associated with charge - N e ,
then application of a gauge transformation (6) o a frame with an
extra magnetic vector potential Agyternal @ has the effect of
multiplying each part Wy by a phase factor appropriate to the charge

in the wavefunction:

By = gy eNMeax/ (A1.8)
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The order parameter A is therefore multiplied by the phase
factor:

A ' = A e2ien. x/h (A1L.9)

In other words, the application of a gauge transformation to a
frame with an additional vector potential Agyternal ( Or.
altermatively, the external application of such a vector potential with
no change of gauge ) causes the gradient of phase of the order parameter
to increase by 2 e Agyternal / ¥ - This result is used in the main

part of the text of section 3.
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Appendix 2 Accurate measurements of the London moment

Experiments are at present under way at Stanford
university towards an accurate measurement of the London‘monent(lo).
At the present stage an accuracy of better than 17 has been
achieved. In this appendix we describe this experiment in outline.
We then compare an alternative method based upon the voltage

dependent effect discussed in section 4.

The Stanford experiments are performed within a region
of space which has an' exceedingly low ambient magnetic field,
less than 10_12 Tesla. This is achieved using the 'expandable

(11)

lead balloon' technique . In this way unwanted noise currents
caused by mechanical motion such as vibration or thermal expansion

can be virtually eliminated.

A quartz cylinder with accurately measured radius r
has superconductor evaporated onto its outer surface. The thickness
of the evaporation is much less than the magnetic pénetration
depth in the superconductor, so that the radius at which supercurrents
flow is accurately defined. The magnetic field in the region
of space within the cylinder can be measured using a SQUID
system. The cylinder itself can be set into rotation, and provision
is made to be able to heat the cylinder to allow flux quanta

to enter it,

In the simplest method of operation which we shall
now describe, the SQUID reading is taken first with the cylinder
statiouary. A flux quantum is then allowed to enter the cylinder,
and the rotation velocity ¢ necessary to return the SQUID to

its original reading is measured.

If the effective mass associated with the superconducting
order parameter is m* then the cylinder obeys the quantization

condition that
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¢ " .ol alh (A2.1)

I

where u 1is the velocity of motion of the superelectrons and
the integral is taken around the cylinder. Suppose that n
is increased by one (when a flux quantum enters the cylinder)
and the tangential velocity wu 1is increased by r ¢ (by the
rotation at angular velocity ¢«@). One can verify by direct
substitution that the quantization condition is unaffected

provided that the following condition holds:

(A2.2
m 1w

"
=t

This equation therefore relates the the mass m*

to the radius r and the angular velocity measured in the experiment

w

There are several corrections to be taken into account.
These include the effects of any fixed charges on the quartz
or the evaporated superconductor, which charges would generate
magnetic fields as they rotated. The radius r and the angular

velocity @ must be measured with high accuracy.

It may be difficult to write down a comprehensive theory
to describe how the measured mass m* is related to the free
electron mass m in this experiment. In bulk superconductor
they are related through the work function, as described in
the main part of this chapter. However in thin films as used
here the analysis is more complicated. For example, the work
function of a thin film may differ from that in the bulk, and
surface effects may become important as the surface to volume
ratio increases. Stresses in the film may affect the kinetic
energy levels in the metal, and interactions with the quartz

may alsc affect the result.

An alternative method of measuring the London moment

involves the apparatus shown in figure 1. The theo}y of the



230

effect and the method of using the apparafus to measure the
London moment is discussed in detail in section 4. Here we
concentrate on two questions: are the effects large enough to

be measured accurately; and what corrections to the theoretical
result m* = 2 ( m - W/c2 ) might there be? We do not discuss
here the experimental problems in realizing the apparatus.

Such discussions are probably best left until experience has
been gained in both the Stanford experiment and in the operation
of the superconducting gyroscope. The superconducting gyroscope
is similar in conceptoto the expérimént suggested here, and

it is discussed in chapter 3. The preliminary nature of these

calculations should therefore be stressed.

We concentrate first on the question of sensitivity:
are the effects large enough to be measured accurately? We
shall consider an apparatus built as shown in figure 1 with
radii r 2 . o
used as the insulator a field of 10 Vm could be applied.

= 10cm, r, = 15cm and height 10cm. If vacuum is

We shall assume that a SQUID with energy sensitivity dE/dA = 10.-30

J Hz_1 is coupled into the system.

If such a system were used simply as a gyroscope then
its sensitivity would be given by equation (3.4) of chapter 3.
The reader is referred to that chapter for detailed discussion
of the calculation. The sensitivity derived there depends upon
a number of experimental problems being overcome, particularly
mechanical deformation (vibration, thermal contractimEtc.)
in the ambient magnetic field, and the problem of leakage
of current through the dielectric. Substituting the above

parameters of the apparatus into the equation, one obtains a

sensitivity to rotation velocity

d o 3. 10 ‘f“ﬁ“““lS (A2.3)

The magnitude of the effect therefore appears to be
large enough to be able to measure a rotation velocity of 3
6

radians per second, to an accuracy of one part in 10 . At

least in principle, the effects are large enough to be measured
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with good accuracy. It should again be stressed that these
preliminary calculations do not take into account the experimental

problems which there might be in realizing this apparatus.,

We now consider the question: what corrections to the
theoretical result m* = 2 ( m - W/c2 ) might there be?
Since bulk superconductor is involved, surface effects would
have little effect. (although dirty surfaces might affect the
magnetic penetration depth and lead to inaccuracies). Since a
superconductor contracts upon cooling then the energy levels
of the electrons will be affected by cooling. In particular
the kinetic energies of the electron levels will be affected.
One would therefore expect that the work function will depend
upon temperature, and the value approPriéte to the correct
temperature should be used. If pure metal is used then there
should not be significant strains set ﬁp upon codling. However
if mixtures of metals (such as solder) are used there may be

significant corrections on account of strains.
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Figure 1 - The apparatus discussed in section 4 and appendix 2



