
Multiresolution Mesh Rendering Engine
Practicalities and Performance

Maxwell W. Pettett*
Supervised by: Rafał K. Mantiuk†

Department of Computer Science and Technology
University of Cambridge

United Kingdom

Abstract

A multiresolution mesh is a structure that allows multiple
levels of resolution of a mesh to be sampled in different
regions. They are used to accelerate the construction of
view-dependent Levels of Detail (LODs) for real-time ren-
dering, generally for complex objects that may span large
depths (e.g. terrain). Nanite, introduced in Unreal En-
gine 5, is an example of a full multiresolution pipeline.
We describe our mesh-shader based multiresolution ren-
dering engine in Vulkan, with two implementations to ex-
tract view dependent LODs. The first implementation is
based on the approach established by Nanite. Our alterna-
tive implementation has no intermediate buffers at the cost
of less fine-grained control over regions of the multires-
olution we explore. We finally evaluate the two methods
against each other and traditional LOD chains, emphasis-
ing practicality and performance.

Keywords: Modeling and Geometry processing, Real-
time Graphics, Rendering

1 Introduction

A common desire for higher-fidelity scenes in modern ren-
dering engines has brought higher and higher resolution
meshes to real-time applications. Handheld photogram-
metry applications have made sourcing such meshes sim-
pler and more commonplace. Varying mesh resolution is
typically used in real-time rendering engines to maintain
performance in complex scenes. This is traditionally im-
plemented with a series of coarser and coarser approxima-
tions of the mesh, a Level of Detail (LOD) chain. How-
ever, LOD chains are limited in flexibility. Each object can
only be rendered at a single resolution, despite the possi-
bility that the same object spans large depths (e.g., terrain),
and, therefore, there is no single optimal LOD.

A multiresolution mesh is a data structure that stores
geometry information at multiple levels of resolution. It
is an alternative to, and generalisation of, LOD chains,
with fine-grained control over rendering that can tackle
their disadvantages. However, fidelity improvement may

*mp2015@cam.ac.uk
†rafal.mantiuk@cl.cam.ac.uk

LOD3 LOD2 LOD1 LOD0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 1: View-dependent LOD generated from the Stan-
ford Lucy model (28 million source polygons) [11]. The
statue’s base is visibly lower quality than the top.

Figure 2: Figure 1’s view from the camera. Note that clus-
ter sizes are mostly uniform, excepting those close to the
camera which have reached maximum resolution.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

be deemed too expensive if the cost to calculate the view-
dependent LOD is higher than that of rasterisation at a
higher mesh resolution, so methods to render multireso-
lution meshes must be fast and scalable. Our main point
of comparison as a modern multiresolution pipeline is Un-
real Engine 5’s Nanite, which is embedded in the engine
and so difficult to study or extract.

This work leverages the introduction of mesh shaders on
modern hardware, which operate by emitting small clus-
ters of triangles rather than vertices. This paper opens
with background on multiresolutions, the error functions
required to generate view-dependent LODs, and mesh
shaders. The implementation section then describes two
methods for rendering view-dependent LODs. Our first
implementation, DAG Explore, is based on ideas Nanite’s
persistent threads[7]. In contrast, the second implemen-
tation, Task Select, is developed in this work. It relies
on mesh shading to insert LOD logic into our draw calls,
without a compute pass or intermediate data. We then
evaluate their performance and practicality.

2 Background

Many forms of multiresolution exist with different char-
acteristics and drawbacks. Hoppe introduced progressive
meshes [6] in 1996. A progressive mesh is a multiresolu-
tion mesh encoded as a low-resolution base mesh, and the
vertex splits required to raise resolution. Quick-VDR [12]
expanded on progressive meshes with an initial coarse-
grained selection before vertex local transformations.

Further techniques, such as BDAM [2], or Adaptive
Tetrapuzzles [3], focus more on the coarse-grained selec-
tion, using spatially based partitions for 2D and 3D sur-
faces, respectively. Their partitions contain geometry in
patches that can be substituted, moving further from ver-
tex transformation and decimation techniques. Batched
Multi Triangulation [1] extends geometry patches to a
generic framework for multiresolutions based on a Di-
rected Acyclic Graph (DAG) of patches, the approach our
renderer will be based on. Ponchio’s thesis is an excellent
comparison of the above methods [10].

2.1 The Multiresolution DAG

This section introduces the multiresolution mesh as a DAG
of clusters, uniformly sized patches of triangles, described
in detail in [1]. Figure 1 shows clusters selected from a
multiresolution of a high-resolution mesh. A requirement
of a multiresolution scheme is to ensure that clusters of
neighbouring resolution levels can be interleaved without
seams introduced by mesh simplification. To illustrate the
difficulty of this problem, let us consider a simple scheme:

1. Start from a set of clusters that partition a mesh.

2. Recursively, merge pairs of clusters together and sim-
plify their contents. Edges on the boundary of the
pairs are locked, so are not moved by the simplifier.

Edges X Edges Y Edges Z

Clusters X +Y Interleaving Clusters Y +Z

Figure 3: Example of locked edges forming clusters al-
lowing for interleaving. 3 sets of locked edges (X ,Y,Z)
are merged into 2 sets of clusters (X +Y,Y + Z), which
can be interleaved using their shared locked edges (Y).

This scheme would form a tree of variable resolution
clusters of the mesh. However, in doing this it will lock
some edges from the highest resolution to the lowest, re-
stricting the flexibility of mesh simplification. At the ex-
treme, it will bisect the mesh with a high-resolution ring of
edges, harming the quality of lower resolution clusters. To
avoid this artifact, we need an alternate method that allows
edges to be unlocked.

The multiresolution mesh scheme we use contains two
sets of locked edges at each level of detail, one set for com-
patibility with each of the lower and upper levels. Figure 3
shows two adjacent levels and a selection of clusters from
both, made possible due to their shared set of locked edges.

Such selections can only be made if we can guarantee
they will approximate the original mesh, so containing no
overlaps or holes. We use a DAG to encode relations be-
tween clusters to allow us to make confident selections.
Nodes in the DAG represent clusters in the multiresolu-
tion, from all levels. Edges represent dependence between
clusters, a relation of mutual exclusion, i.e. overlap. This
property is transitive, therefore we only include depen-
dence between adjacent levels on our DAG [1].

Our method of generating DAGs follows the Nanite
Cluster - Group - Simplify - Recluster scheme [7]:

1. Start from a set of clusters that partition a mesh.

2. Partition clusters into groups, collections of around 4
adjacent clusters.

3. Simplify within groups, locking border edges.

4. Partition each group into two new clusters, which be-
come the two parents of the group. Return to 2.

This is a generalisation of the previous method, re-
placing a one-parent-two-children relationship with two-
parents-four-children. A DAG for a small mesh generated
with our program is shown in Figure 4, in which these
structures can be identified. Smaller clusters are more flex-

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 4: A DAG for a multiresolution encoding of a simple sphere mesh. Nodes represent clusters, edges represent
dependencies between clusters. Nodes of the same colour share the same two parents, and so make up a group.

ible, but maintain a worse area to perimeter ratio, result-
ing in more locked edges at each stage and less efficient
simplification; we choose to use clusters of around 300
triangles. There is a chance the new parent clusters do
not overlap with all child clusters, resulting in some false
dependencies in the DAG. However, parents sharing iden-
tical sets of children allows for efficient DAG traversal.

A valid selection of clusters will cover the area of the
mesh, with no clusters overlapping. Ensuring the selec-
tion contains no overlapping clusters requires that no two
clusters in the selection are dependent on each other. To
cover the full mesh area, every path from a root to a leaf
must contain a single selected node. Our DAG structure
guarantees this selection will contain no seams [1].

A dicut is a cut into two subsets such that any cut edges
connecting the two subsets share the same direction. If we
select the leaf nodes of a dicut subset that includes the root,
we have a valid set of clusters. This is due to two factors.
First, the selected clusters will not contain overlapping ge-
ometry, as they satisfy all dependency relations. Second,
we have no holes, as our selected clusters descend from
the (two) roots. The root clusters cover the entire mesh
area, so the sum of all descended clusters (satisfying de-
pendency relations) area must also cover it [1].

The easiest DAG to imagine is a traditional LOD chain.
Each layer’s node is dependent on the next, as they overlap
in area (the entire mesh), and we sample by selecting a leaf
of a dicut set (any single node).

2.2 View-dependent LOD from a DAG

To generate a view-dependent LOD, it is useful to define
an error function on clusters that allows us to estimate
their screen-space errors. We then can compare this error
to a user-defined threshold, , that defines the target mesh
resolution. This screen-space error is projected from an
object-space error δ of a cluster. The exact definition of
the object-space error varies per-implementation, but we
will use the average edge length of a cluster, similar to
batched multi-triangulation [1]. This represents triangle
density within a cluster, and is comparable between clus-
ters as their triangle counts are roughly constant.

To convert error from object-space to screen-space, we
assign each cluster a bounding sphere, with centre c and
radius r, a spherical volume in object-space that bounds
the cluster. We then use a method similar to [2] to project

the object-space error of some cluster i to screen-space,
err(i), for eye position e.

err(i) =
(δi + ri)

2

||ci− e||2
, (1)

An important feature of the error function is that it is
monotonically decreasing down the DAG.1 To ensure the
screen-space area of clusters is monotonic, we assign each
cluster’s bound such that it contains all bounds of their
children, turning the DAG into a nested boundings vol-
ume hierarchy [1]. Object-space error, clusters’ average
edge length, also monotonically decreases as clusters dou-
ble their triangle density at each level.

2.3 Mesh Shaders

This paper references mesh shaders, a concept shared be-
tween modern graphics APIs that readers may not be fa-
miliar with. We will use the Vulkan implementation and
terminology. Mesh shaders attempt to solve some short-
comings of using the traditional graphics pipeline for pro-
cedural geometry. The traditional pipeline includes tes-
sellation, geometry, and vertex stages, that can be used
for procedural geometry, but each with a limited view and
control of parts of the source data.

The common way to program procedural geometry has
shifted away from the graphics pipeline with the wide
adoption of compute shaders, due to their flexibility and
good support. Mesh shaders attempt to bring this flexi-
bility to the graphics pipeline by stripping out everything
other than the fragment stage of the pipeline, and adding
a mesh stage. The mesh stage has all the semantics and
capabilities of a compute shader, with the additional abil-
ity to emit triangles, up to a maximum primitive limit per
workgroup [8]. These will output our clusters, and save
writing to an intermediate index buffer.

Additionally, a similar task stage2 is added, which, in-
stead of emitting triangles, can emit mesh shaders. We will
utilise this to insert LOD logic directly into the draw call.
This grants us a large amount of flexibility for program-
ming procedural geometry, although it is not as powerful
as the ability to generically launch threads on the GPU.3

1Root nodes have the highest error, as they have the least polygons.
2Known as the Amplification stage in DX12.
3See Work Graphs [9], that will allow generic kernel invocation.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

· · · ci · · · c j · · · ck ck+1 ck+2 · · ·

spouse min-child

max-child

Figure 5: A diagram of our cluster structure. Pointers
within the diagram from cluster c j correspond to a clus-
ter c j = [spouse = i, min-child = k, max-child = k+2].

3 Implementation

This section will look at the two approaches described and
examined in this paper. Older view methods sample their
multiresolutions on a separate CPU core, referred to as out
of core [2, 1], however compute and task shaders allow us
to do this work efficiently on a GPU.

Both implementations to render a view dependant LOD
of a mesh are supplied with:

• A cluster buffer, containing the DAG of clusters that
make up the multiresolution (Fig. 5).

• Instance information, containing the model matrix of
the instance of a multiresolution we are drawing.

• Camera information, the view-projection matrix.

• A screen-space error target, τ , the maximum screen-
space error a cluster can have to be drawn.

The first approach, DAG Explore (§3.1), aims to output
all clusters that should be drawn into a buffer, searching
the DAG for suitable clusters recursively from the root.
DAG Explore is similar to Nanite’s Persistent Threads im-
plementation for generating a view dependent resolution.

The second approach, Task Select (§3.2), aims to use
the programmable task stage of the mesh pipeline (§2.3)
to eliminate the need for intermediate memory.

3.1 DAG Explore LOD Generation

A typical instance of a multiresolution in a scene will have
most of its area filled with lower resolution clusters. Se-
lecting a low resolution cluster will instantly invalidate the
many higher resolution clusters that descend from it. Test-
ing these clusters would be wasted time, so we want to
avoid exploring the entire DAG. This method will traverse
the DAG recursively, starting from the roots. As we are
searching for leafs of a dicut subset, this must encounter
all clusters that should be drawn.

Traversing the DAG requires care. It is not a tree, so
there are clusters that share children, but to traverse the
DAG efficiently we should not explore the same cluster
twice. Our DAG is, however, shaped similarly to a tree; it
is formed of pairs of clusters that share identical children;
we say clusters in such a pair are spouses. We can then

Figure 6: A group of clusters whose parents are in separate
groups. Solid lines represent the edges traversed to explore
the DAG as a tree.

view the DAG as a tree by only regarding the children of
one cluster in each of these pairs, illustrated in Figure 6.
In Alg. 1, we only explore the children of the spouse with
the smaller index.

Algorithm 1 DAG Explore, breadth first search
queue← root-nodes
draw-buffer← []
draw-count,head← 0
tail← |root-nodes|
while queue not empty do

i← queue[head]
head← head+1
clusteri← clusters[i]
if err(i)< τ then ▷ Cluster should be drawn

draw-buffer[draw-count]← cluster
draw-count← draw-count+1

else if i < clusteri→ spouse then ▷ DAG as tree
for c in clusteri→ children do

queue[tail]← c
tail← tail+1

end for
end if

end while

3.1.1 Multiqueue

Algorithm 1 does not appear GPU-friendly, as it leverages
a single shared queue. We must allow multiple invocations
synchronised access to the queue to maintain parallelism.
Atomic buffer operations are too slow for this use case.

Our solution relies on subgroup4 arithmetic (introduced
in Vulkan 1.1) to synchronise queue access. In Vulkan ter-
minology, a subgroup is a set of invocations executing in
lockstep on the GPU. Subgroups will always be part of the
same workgroup, a set of invocations with shared memory,
but a workgroup may maintain multiple subgroups. Invo-
cations in a subgroup may be active or inactive depending
on factors such as dynamic branching, and an inactive in-
vocation will not contribute to subgroup arithmetic results.

Subgroup arithmetic allows invocations to communi-
cate via reductive operations, with each invocation sub-
mitting data. The most straightforward subgroup opera-
tion we use is subgroupAdd(1), which will return the

4the Vulkan term; in AMD these are waves, in Nvidia, warps.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

1 − 1 1 1

+

4 − 4 4 4

1 − 1 1 1

+
+

0 − 1 2 3

Figure 7: The subgroup operations subgroupAdd(1)
(left) and subgroupExclusiveAdd(1) (right). Each
block is a invocation within a single subgroup, with reduc-
tion operations linking inputs to results.

number of active invocations, as shown in Fig. 7 (left).
To implement DAG Explore, we limit the size of our

workgroups to ensure they only contain one subgroup,
which is generally 32 or 64 invocations, ensuring we can
rely on subgroup arithmetic. This is the main source of
difference from Nanite; persistent threads share work be-
tween workgroups, which relies on undefined GPU for-
ward progression scheduling behaviour [7], while ours is
limited to a single workgroup per instance. This will limit
our latency of rendering a scene to processing the largest
mesh, however, we assume scenes are highly populated
and so parallelizable.

Algorithm 2 Synchronised Queue Pop
int idx = gl_LocalInvocationID.x;
int cluster = queue[head + idx];
head += subgroupAdd(1);

Algorithm 2 uses subgroup arithmetic to synchronize
invocations each taking a cluster from the queue. To pop
a unique item for each invocation, we can offset the queue
head pointer by each of their local invocation IDs, their
indices starting from 0 within the workgroup. This, how-
ever, leaves us with conflicting information about the true
head of the queue across invocations. The queue may con-
tain a number of clusters fewer than the size of our sub-
group, which will result in some number of invocations
being inactive. We solve this by incrementing the head
pointer by the number of active invocations using sub-
group arithmetic, ensuring the data is synchronized.

The more complex operation is appending children to
the queue. We do not know how many children each
node has, so we cannot simply offset by our local in-
vocation ID when pushing. We know the number of
items each invocation will add onto the queue, so we
can allocate blocks in the queue upfront. To allocate
blocks, we can use a more advanced subgroup command,
subgroupExclusiveAdd (see Fig. 7 (right)), which
will perform an exclusive addition across all active threads
in one call. The return value for this will be an allo-
cated index for each invocation to write to, used in Algo-
rithm 3. We synchronize the queue afterwards by taking

· · · · · · · · · · · ·

Head Tail

· · · · · · · · · · · ·

Head+0
Head+1

Head+k−1 Tail

· · · · · · · · · · · ·

Head Tail

k-invocations

Figure 8: The positions of head and tail indices through
Algorithm 2. After adding idx, each head points to a
unique cell, then adding subgroupAdd(1) (= k), the
head returns to being synced.

subgroupMax(tail).

Algorithm 3 Synchronized Queue Push with Subgroup
Arithmetic
cluster_t c = clusters[i];
int children = c.max_child_index

- c.min_child_index + 1;
tail += subgroupExclusiveAdd(children);
for (int child_i = c.min_child_index;

child_i <= c.max_child_index;
child_i++) {

queue[tail] = child_i;
tail += 1;

}
tail = subgroupMax(tail);

3.1.2 Emitting clusters

Clusters with sufficiently low error must be emitted to be
drawn. We push them to a draw buffer similarly to Alg. 3,
but with a maximum of 1 cluster pushed. In our implemen-
tation, the draw lists for DAG Explore has enough space
for the worst case (full resolution) of every instance. As
future work, this size could likely be optimised, as we do
not expect the worst-case full draw for every instance.

A task shader will then then emit mesh shaders for each
cluster in the draw buffer. The number of clusters DAG
Explore has emitted at this point is only recorded on the
GPU, but must be communicated to our draw call to ren-
der, as invoking a task for each item in the buffer when
many are empty would be wasteful. Indirect Dispatch is
a common technique to allow some parameters of com-
mands to be supplied by the contents of a buffer in the
GPU, which mesh shaders support. This saves possible
wasted bandwidth and latency sending the same counter

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

back and forth from the GPU. After filling our draw buffer,
we set the group count parameter of DrawMeshTasks in
our indirect buffer to the exact number of clusters to draw.

Extending this to drawing many instances is not com-
plex. Using atomics, we can assign each instance’s emitted
clusters a space in a shared draw buffer. Each instance’s
draw call can then be instructed to read clusters from that
range. DrawMeshTasks also supports the multidraw
extension, which allows us to store the indirect arguments
for multiple draw calls in a single buffer. A single buffer
for draw data means we can additionally invoke the com-
pute stages of all instances in a scene in a single command.

3.2 Task Select LOD Generation

DAG Explore does a lot of work and requires shared mem-
ory in picking which clusters to draw, queuing no further
clusters once the boundary of the cut has been found. We
present an alternative method that does not require shared
memory and is simpler to implement.

The task shader allows us to integrate computations
within the graphics pipeline. Integrated computation al-
lows us to select view-dependent LOD without intermedi-
ate buffers, a method we will call Task Select LOD. This
method invokes a task invocation on the GPU for every
cluster and emits geometry to draw if the cluster has an er-
ror below the threshold, but parents with errors too great,
with additional care to ensure the result has no holes.

3.2.1 Local Cut Selection

DAG Explore explores the DAG recursively, aiming to find
the cut, made up of clusters whose error is just low enough
to pass the threshold value τ . However, to enable the most
parallelism, it is preferable to be able to test if a cluster
should be included in the cut based on only itself and lo-
cal neighbours. This is possible as our DAG has a sin-
gle unique cut, as the screen-space error we compare de-
creases monotonically through clusters.

Algorithm 4 Local Cut
parent-err←min(err(ci→ parent0), err(ci→ parent1))
this-err←min(err(i), err(ci→ spouse))
draw← (this-err≤ τ)∧ (parent-err > τ)

Each cluster’s task invocation must make the decision
of what fills its group’s area; the group, or the two parents
(if either), and draw the cluster if appropriate. This should
be agreed by each cluster in the area implicitly, with no
communication. This is done by assigning each cluster
the error and bounding volume of the group as a whole,
similarly to the bounding volume hierarchy of [2].

Algorithm 4 determines if a cluster is on the edge of the
cut, and so should be drawn, based on the relation of its
parent’s errors to its own. The two parents are likely mem-
bers of different groups, so likely have differing screen-
space error. To compensate, Alg. 4 takes the minimum

of the two. Comparing this against the error of this clus-
ter would then leave a hole if err(ci → parent0) > τ >
err(ci → parent1), as only one of the two parents would
be drawn. To resolve this, Alg. 4 takes this-error to the
minimum of the cluster’s own error and that of the spouse.
This fills the hole described above, as the previously miss-
ing parent will now draw based on its spouse’s lower error.

Finally, some nodes in the DAG have no children or no
parents, being the leaves and the roots. In these cases, we
assume the error of the root’s parent is ∞, and the error of
the leaves children are−∞. This ensures that for any finite
value of τ , we will select a complete cut.

3.2.2 Task Shader Indirect Dispatch

A major issue with this approach would be wasted work
in clusters that are too high resolution to be drawn. Such
high-resolution clusters will make up the majority of most
instances. For example, drawing a mesh at the first level
of simplification in DAG Explore will, on average, only
check half of a multiresolution’s clusters, as the source
mesh represents 50% of total triangles.

This method uses the same indirect dispatch draw call as
§3.1.2. Task shaders can write to buffers just as compute
shaders can, so, if we bind our indirect arguments buffer
to the task shader, we allow ourselves to alter the number
of tasks we invoke on the next dispatch.

We arrange our cluster buffer such that lower indices
represent clusters at lower resolutions, meaning dispatch-
ing fewer tasks than there are clusters will cap the max-
imum resolution view that can be selected. Because we
are able to control our dispatch count inside the shader, we
can then cap this resolution dynamically depending on the
current view of the instance. It is clear then that dispatch-
ing tasks for indices above the maximum that is selected
is futile, so this maximum index is the value we wish to
estimate, and set the indirect dispatch count to.

We say the maximum requested index for a cluster,
based on the error values calculated in Alg. 4, is:

max-idx(i) =

max-parent(i) if parent-err < τ

max-child(i) if this-err > τ

i else
(2)

Intuitively, bringing an instance closer to view yields a
greater error for clusters, which may require replacing a
cluster with its children, so we increase max-idx and the
tasks invoked for the instance. Inversely, moving an in-
stance away from view will reduce its tasks invoked. A
cluster only views local data, so does not request drawing
clusters beyond the scope of its parents or children, so we
set our next dispatch count to the maximum requested in-
dices of all clusters. This brings with it a single frame of
latency to apply the requested index if it increases, so we
need some small additional logic when selecting clusters
in case the resolution we wish to draw at is not available.
Simply, if our cluster has too high an error to draw, but our

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

children are out of range of current workgroups (and so are
not being processed), we should draw ourselves anyway.

Once we have determined a cluster should be drawn,
the task shader code is identical to the previous method;
see §3.1.2.

3.3 Cluster Culling

An engine based around instances and LOD chains may
utilize instance culling to save time in rasterisation. This
can be improved; instance culling has some of the same
flaws as LOD chains, being based on arbitrary-sized ob-
jects. If we instead focus on culling clusters, we end up do-
ing work on much more uniformly sized items5, which re-
sults in finer-grained culling [5]. This technique was used
in industry before cluster based multiresolutions, as the
GPU friendliness of clusters makes them ideal for GPU-
driven rendering systems.

A simple culling technique we apply is frustum culling,
not drawing a cluster if it is outside the camera frus-
tum. The frustum can be represented by six planes, which
we extract from the model-view-projection matrix as de-
scribed by [4]. These planes will then exist in object-
space, and, from error calculations, each cluster contains a
bounding sphere in object-space. We then cull clusters if
their bounds are on the negative side of any plane.

This requires testing every cluster that may be drawn;
DAG explore can be optimised further. The DAG is a
nested bounding hierarchy, so a bound of a cluster con-
tains the bounds of all children. A successful cull check
on a cluster’s bound would then rule out the entire hierar-
chy of clusters descending from it. DAG Explore can then
stop exploration early if a cluster can be culled, as we then
know no child may be rendered, culling as early as pos-
sible. At the coarsest grain, a successful cull on the root
cluster is equivalent to instance culling.

4 Evaluation

We evaluate on two benchmarks on a GTX 1660 and r5
3600. The first has almost optimal conditions for LOD
chains (LOD efficient), and the next demonstrates their pri-
mary limitation (LOD deficient).

Our LOD efficient benchmark moves a camera back
from the scene origin, revealing a large 2D grid of in-
stances. The benchmark uses the Stanford Dragon model
[11], which contains 1 million source triangles, meaning
our scene of 1000 instances contains 1 billion triangles.
These instances will occupy a narrow slice of depth on
the screen, so are suitable for traditional LOD rendering.
Frame times are plotted in Figure 9.

5Uniformly sized in screen-space if done after LOD generation, mak-
ing this take time proportional to target error.

Figure 9: LOD efficient: Results combining benchmarks
for 500 up to 2500 instances in the scene.

Instance Count 500 1000 1500 2000 2500
LOD Chain 2.58 3.49 3.85 4.01 4.10
Task Select 1.41 1.88 2.09 2.21 2.27

DAG Explore 1.39 1.89 2.13 2.27 2.37
% Change 1.42 -0.53 -1.93 -2.79 -4.40

Table 1: LOD efficient: Mean frame times (ms) for the
different methods across instance counts. Our CPU based
LOD chain uses an error function equivalent to the mul-
tiresolutions.

Task select achieves very similar performance across the
board to DAG Explore while saving intermediate memory.
For context, the full resolution 2000 instance scene takes
a median of 472ms to render. The 2500 instance scene
uses 38.82MB of GPU memory to store the draw buffer for
DAG Explore, but just 29.31KB of intermediate memory
for Task Select’s indirect dispatch parameter buffer.

At relative camera distances of less than 0.4, the
benchmark’s screen is filled with instances, with varying
amounts of culling. In these ranges, we can see in Figure
9 that task select is a bit slower per instance. This is due
to its more fine-grained culling doing more work to cull an
entire instance, while the variable-grained culler DAG Ex-
plore culls as early as possible while searching the DAG,
and has an almost negligible slowdown per instance.

The cost per instance of a CPU cull check and draw

Method GPU
Time (ms)

Profiler samples (% + ms)
Task Mesh/Vert Frag

Task Select 1.28 66% 29% 5%
0.85 0.37 0.064

LOD Chain 9.15 97.5% 2.5%
8.92 0.23

Table 2: LOD deficient: Frame time analysis of a single
frame for the viewpoint from Fig. 2, Lucy, using NVIDIA
Nsight. Fragment stages for both methods are identical.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

call is clearly visible for our traditional LOD chain in Ta-
ble 1, so we would expect improvements from a GPU im-
plementation. In contrast, Table 2 shows a large efficiency
gain from Task Select over the LOD chain that results from
their limitations; the instance is both close and far from the
camera, but the LOD chain renders at full resolution.

Our method optimises more effectively given more in-
stances, as more instances give us more fine-grained con-
trol over the indirectly dispatched clusters. This is, how-
ever, slightly contrary to the original problem, the ren-
dering of small numbers of massive meshes. We expect
DAG explore to perform better in these cases. However,
our method is still competitive due to its low reliance on
memory bandwidth; massive multiresolutions would re-
quire more working space for the queue than is commonly
available as workgroup shared memory.

5 Conclusions

Cluster-based rendering engines already give way to GPU-
driven pipelines that excel at high-fidelity scenes. In such a
pipeline, the practicality of multiresolutions is clear. They
are generated automatically, sampled based on concrete
metrics, and can be integrated into existing workflows.

The methods demonstrated in this paper are all limited
by the rate of rasterisation, which is held roughly constant
within a scene. This means multiresolutions are likely to
fit into the frame budget of a high-fidelity renderer. This
is a key goal of the method; a good error function should
keep the screen-space triangle density roughly constant.
In doing so, we grant complete flexibility on the source
resolutions of any mesh in any scene, a major advantage
for renderers targeting photorealism.

This renderer still relies on having enough VRAM to
store a massive multiresolution, something that cannot be
taken for granted within a large engine. As such, future
work includes data streaming, which would load segments
of the multiresolution into memory only on demand [7].

Nanite is a monolithic pipeline, making the methods
used for generating and rendering multiresolutions hard
to extract for general use. This paper has instead pre-
sented viable generic algorithms for rendering in this new
paradigm. In future, we hope to see these help push mul-
tiresolutions as a standard tool in contemporary engines.

References

[1] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,
F. Ponchio, and R. Scopigno. Batched multi trian-
gulation. VIS 05. IEEE Visualization, 2005., 2005.

[2] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti,
Fabio Marton, Federico Ponchio, and Roberto
Scopigno. Bdam—batched dynamic adaptive
meshes for high performance terrain visualization. In

Computer Graphics Forum, volume 22, pages 505–
514. Wiley Online Library, 2003.

[3] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti,
Fabio Marton, Federico Ponchio, and Roberto
Scopigno. Adaptive tetrapuzzles: efficient out-of-
core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Transactions on
Graphics (TOG), 23(3):796–803, 2004.

[4] Gil Gribb and Klaus Hartmann. Fast extraction
of viewing frustum planes from the world-view-
projection matrix. Online document, 2001.

[5] Ulrich Haar and Sebastian Aaltonen. Gpu-driven
rendering pipelines. SIGGRAPH, 2015. URL
https://advances.realtimerendering.
com/s2015/index.html.

[6] Hugues Hoppe. Progressive meshes. In Proceedings
of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’96. As-
sociation for Computing Machinery, 1996.

[7] Brian Karis, Rune Stubbe, and Graham
Wihlida. A deep dive into nanite virtual-
ized geometry. SIGGRAPH, 2021. URL
https://advances.realtimerendering.
com/s2021/index.html.

[8] Christoph Kubisch. Mesh shading for
vulkan. Khronos Blog, 2022. URL
https://www.khronos.org/blog/
mesh-shading-for-vulkan.

[9] Amar Patel and Tex Riddell. D3d12 work graphs
preview. DirectX Developer Blog, 2023.

[10] Federico Ponchio. Multiresolution structures for
interactive visualization of very large 3d datasets.
2009.

[11] The Stanford 3D Scanning Repository. URL
http://graphics.stanford.edu/data/
3Dscanrep/.

[12] Sung-Eui Yoon, Brian Salomon, Russell Gayle, and
Dinesh Manocha. Quick-vdr: Interactive view-
dependent rendering of massive models. In ACM
SIGGRAPH 2004 Sketches, page 22. 2004.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

