
Exploiting Synthetically Generated Data with Semi-Supervised
Learning for Small and Imbalanced Datasets
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Rabanales Campus
C2 building 14071

chervas@uco.es

Abstract

Data augmentation is rapidly gaining attention in machine
learning. Synthetic data can be generated by simple transfor-
mations or through the data distribution. In the latter case,
the main challenge is to estimate the label associated to new
synthetic patterns. This paper studies the effect of generat-
ing synthetic data by convex combination of patterns and the
use of these as unsupervised information in a semi-supervised
learning framework with support vector machines, avoiding
thus the need to label synthetic examples. We perform ex-
periments on a total of 53 binary classification datasets. Our
results show that this type of data over-sampling supports
the well-known cluster assumption in semi-supervised learn-
ing, showing outstanding results for small high-dimensional
datasets and imbalanced learning problems.

1 Introduction
One of the current challenges in machine learning is the lack
of sufficient data (Forman and Cohen 2004). In this scenario,
over-fitting becomes hard to avoid, outliers and noise repre-
sent an important issue and the model generally has high
variance. Several approaches have been proposed to deal
with small datasets, although the work in this matter is still
scarce. From all the proposed approaches, synthetic sam-
ple generation or data augmentation techniques (Li and Wen
2014; Wong et al. 2016; Yang et al. 2011) have shown com-
petitive performance, acting as a regulariser (Hongyi Zhang
2018), preventing over-fiting and improving the robustness
of both classifiers and regressors.

The generation of virtual examples is highly nontrivial
and has been studied from different perspectives. Proposed
methods use prior information (Niyogi, Girosi, and Pog-
gio 2002), add noise (Hongyi Zhang 2018), apply simple
transformations (Cireşan et al. 2010; Simard, Steinkraus,
and Platt 2003; Krizhevsky, Sutskever, and Hinton 2012;
Szegedy et al. 2015) or use data over-sampling approaches
(Chawla et al. 2002; Pérez-Ortiz et al. 2016).

The most straightforward over-sampling approach is to
randomly replicate data. However, this can lead to over-
fitting (Galar et al. 2012). Another common approach is to
do over-sampling taking into account the data distribution. A
convex combination of patterns close in the input space has
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been successfully used for that purpose (Chawla et al. 2002;
Hongyi Zhang 2018; Pérez-Ortiz et al. 2016).

In this paper we investigate the benefits and limitations of
this simple data augmentation technique coupled with SSL
support vector machines. The motivations for such an ap-
proach are: i) when performing over-sampling one of the
biggest challenges is how to label synthetic examples (po-
tentially alleviated when using SSL as no label is assumed)
and ii) the hypothesis that over-sampling by convex com-
bination of patterns can support the cluster assumption in
SSL and help to simplify the classification task. The clus-
ter assumption states that high density regions with differ-
ent class labels must be separated by a low density region.
Given this, two patterns are likely to have the same class la-
bel if they can be connected by a path passing through high
density regions. The method proposed here is based on the
synthetic generation of high density regions as an inductive
bias for the classifier. We perform a thorough set of experi-
ments over 27 synthetic and 26 benchmark binary datasets,
showing how this approach helps to mitigate the effect of
small, high-dimensional and imbalanced datasets.

2 Methodology
2.1 Data over-sampling by convex combination
Assume that data forms a finite sample X =
{x1, . . . ,xn} ∼ i.i.d. from a distribution F and that
our aim is to construct a finite-sample function of X .
Resampling approximates the finite-sample distribution of
the function computed over X by the exact distribution of
the function over X∗:

X∗ = {x∗
1, . . . ,x

∗
m} ∼ F ∗(x1, . . . ,xn), (1)

where F ∗ is defined as the resampling distribution and ex-
plicitly depends on the observations in X . Resampling is
commonly used in machine learning for data augmentation.

In the case of binary classification we also have access
to a labelling Y = (y1, . . . , yn) ∈ {−1, 1}n. When deal-
ing with small or imbalanced datasets, appropriately captur-
ing the joint probability function P (X,Y ) might be unre-
alistic. Because of this, most over-sampling approaches are
rather simple. Usually, synthetic patterns are generated by
convex combination of two seed patterns belonging to the
same class and labelled directly using the same class label



(Chawla et al. 2002). The first seed pattern xi is chosen ran-
domly, and the second one is chosen as one of its k-nearest
neighbours. k is responsible for avoiding label inconsisten-
cies and exploiting the local information of the data, but it
can also significantly limit the diversity of synthetic patterns.

Limitations Figure 1 shows a toy imbalanced dataset
where the classes are not convex (left) and some examples of
synthetic data patterns that could be created for the minor-
ity class in order to balance the class distributions (right).
This shows a representation of the main problem encoun-
tered when using this over-sampling approach, especially
when the parameter of k-nearest neighbour is not properly
optimised: synthetic patterns are created in the region of the
majority class and if we naively label these patterns as mi-
nority class patterns, we introduce what we denote as a label
inconsistency.

Figure 1: Example of an over-sampled imbalanced dataset,
in which naively labelling synthetic data as minority class
patterns might not be suitable.

Effect on the data distribution We study now the effect
of over-sampling by means of a convex combination of pat-
terns. At every step j = 1, . . . ,m we create a synthetic in-
stance x∗j by selecting at random two patterns xi,xh:

x∗j = xi + (xh − xi) · δj = (2)

= δjxh + (1− δj)xi, δj ∈ U [0, 1], x∗j ∼ F ∗,

we restrict xh ∈ k-nn(xi), where k-nn represents a func-
tion that returns the k-nearest neighbours of xi. Note that
when over-sampling within a classification framework xh is
usually also restricted so that yh = yi.

For simplicity, let us first assume X ⊆ R and xi and
xh come from the same Normal distribution xi, xh ∼
N (µ, σ2). The definition of the characteristic function of the
Normal distribution is:

ϕX(it) = E[eitX ] = eiµt−
σ2t2

2 . (3)

The new random variable x∗ = δjxh + (1 − δj)xi will
have the characteristic function:

ϕδjxh+(1−δj)xi(it) = E[eit(δjxh+(1−δj)xi)] =

= E(eitδjxh)E(eit(1−δj)xi) =

= eiµδjt−
σ2δ2j t

2

2 eiµ(1−δj)t−
σ2(1−δj)

2t2

2 =

= eiµt−
σ2(1−2δj+2δ2j )t

2

2 , (4)

meaning that the convex combination of these two patterns
will follow the distribution: x∗j ∼ N (µ, σ2 · (1 − 2δj +

2δ2j )), which for δj ∼ U [0, 1] translates into (1 − 2δj +

2δ2j ) being within [0.5, 1]. This means that the resampled
distribution F ∗ will most probably have a lower variance,
yielding synthetic data more concentrated around the mean.

If seed patterns do not come from the same distribution,
i.e. xi ∼ N (µi, σ

2
i ) and xh ∼ N (µj , σ

2
j ), then x∗j ∼

N (δjµh + (1 − δj)µi, δ
2
jσ

2
h + (1 − δj)

2σ2
i ). We assume,

however, that given that these patterns are neighbours, they
do come from the same distribution.

The density function of X∗ assuming δ ∼ U [0, 1] is:

p̃(x∗) =
∫ 1

0
p(δ) · f(x∗|µ, σ2(1− 2δ + 2δ2))dδ =

=
∫ 1

0
f(x∗|µ, σ2(1− 2δ + 2δ2))dδ =

= 1√
2π

∫ 1

0
1√

σ2(1−2δ+2δ2)
· e

(
− (x∗−µ)2

2σ2(1−2δ+2δ2)

)
dδ, (5)

f being the density function of the Normal distribution and
the density function p(δ) = 1. The variance of X∗ can thus
be evaluated as:

V [X∗] =
∫∞
−∞(x∗ − µ)2 · p̃(x∗) · dx∗ = (6)

=
∫ +∞
−∞

∫ 1

0
(x∗ − µ)2f(x∗|µ, σ2(1− 2δ + 2δ2))dδdx∗

This integral can be numerically evaluated. When doing so
we see that the original variance is always reduced by 0.333.

Given that over-sampling is applied independently per di-
mension, we have: p̃(x∗) =

∏d
i=1 p̃i(x

∗
(i)), where x(i) is the

i-th dimension of x.
Let us now analyse the multivariate case where X ⊆ Rd,

d > 1 and x ∼ N (µ,Σx). For that let us first assume a
matrix P for changing the basis such that z = Px. If we
choose P to be a basis formed by the unit eigenvectors of Σx

then it is easy to show that Σz (i.e. the covariance matrix of
z) is a diagonal matrix formed by the eigenvalues associated
to Σx, i.e. the i-th diagonal value λi is the variance of x
along the i-the eigenvector pi of P. In the rotated axis Eq. 2
can be rewritten as:

z∗
j ≡ Px∗

j = δjPxh + (1− δj)Pxi, (7)

since P is a linear operator. Convex combinations of pat-
terns are thus invariant to rotations of the co-ordinate axis.
In this axis, the data coming from our transformed resam-
pling distribution z∗ ∼ N (µ, Σ̃z∗) will have the diagonal
covariance matrix:

Σ̃z∗ =

λ1(1− 2δj + 2δ2j ) . . . 0
0 . . . 0
0 . . . λd(1− 2δj + 2δ2j )

 (8)

It follows that when over-sampling through convex combi-
nations of patterns using the uniform distribution the mean
of the data will remain unchanged and so will the eigenvec-
tors of the covariance matrix, but the eigenvalues will shrink.

Figure 2 shows the result of over-sampling two Normal
distributions, where Xi represents the data associated to
class Ci in our classification problem. It can be seen that by
performing convex combinations of patterns we change the
data distribution. We use this to induce high-density regions
that are later used by the SSL algorithm.
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Figure 2: Normal distributions and class dependent over-
sampled distributions (dotted line).

2.2 Semi-supervised learning (SSL)

In semi-supervised learning (SSL), we not only have access
to n labelled data L = (xi, yi)

n
i=1 drawn i.i.d. according

to P (X,Y ), but also to m additional unlabelled data U =
{xui }mi=1 drawn i.i.d. according to P (X).

Up to this date, theoretical analysis of SSL fails to pro-
vide solid evidence for the benefits of using unlabelled pat-
terns in a supervised learning task (Ben-David, Lu, and Pl
2008). Generally, the consensus reached in the literature is
that unlabelled data: (i) should be used with care because
it has been seen to degrade classifier performance in some
cases (e.g. when we assume incorrect data models (Cozman,
Cohen, and Cirelo 2003) or there are outliers or samples of
unknown classes (Shahshahani and Landgrebe 1994); (ii) is
mostly beneficial in the presence of a few labelled samples
(Singh, Nowak, and Zhu 2008; Shahshahani and Landgrebe
1994; Cozman, Cohen, and Cirelo 2003); (iii) can help to
mitigate the effect of the Hughes phenomenon (i.e. the curse
of dimensionality) (Shahshahani and Landgrebe 1994); (iv)
can help only if there exists a link between the marginal data
distribution and the target function to be learnt and both la-
belled and unlabelled data are generated from the same data
distribution (Huang et al. 2006); and finally (v) can improve
on the performance of supervised learning when density sets
are discernable from unlabelled but not from labelled data
(Singh, Nowak, and Zhu 2008).

SSL algorithms can be classified using the following tax-
onomy (Chapelle, Schölkopf, and Zien 2010): i) Generative
models which estimate the conditional density P (X|Y ); ii)
low density separators that maximise the class margin; iii)
graph-based models which propagate information through
a graph; and finally, iv) algorithms based on a change of
representation. The most widely used SSL algorithms be-
long to the low density separators or the graph-based mod-
els groups. Generative approaches are said to solve a more
complex problem than discriminative ones and require more
data and the algorithms based on a change of representation
do not use all the potential of unlabelled data. Because of
this, we focus on low density separators.

Figure 3: Over-sampling in the banana dataset. Left figure
shows the original dataset, where colours indicate the class.
The figures in the middle show the dataset where data is
missing at random (MCAR) for one of the classes with per-
centages of missing patterns of 50% and 90%. The figures
on the right show the over-sampled datasets.

2.3 Exploiting the cluster assumption
Labelling synthetically generated patterns without knowl-
edge about P (X,Y ) is a highly nontrivial problem. Instead,
we approach this by using SSL, assuming that every syn-
thetic pattern belongs to the set of unlabelled data, x∗j ∈ U .

We exploit the cluster assumption by artificially connect-
ing labelled patterns xi and xh belonging to the same class
(yi = yj) through unlabelled samples. Two patterns xi and
xh are said to be connected if there exist a sequence of rel-
atively dense patterns such that the marginal density P (X)
varies smoothly along the sequence of patterns between xi
and xh (Singh, Nowak, and Zhu 2008). We have shown in
Section 2.1 that over-sampling two patterns xh and xi by
convex combination makes the density function more com-
pact in the region that connects them. This property is main-
tained for all random variables that are a linear combination
of two patterns xh and xi that come from the same distri-
bution (independently on whether their distribution has the
reproductive property). The cluster assumption is the basis
for different low-density semi-supervised learners. This as-
sumption implies that if two patterns are linked by a path of
high density (e.g., if they belong to the same cluster), then
their outputs are likely to be similar (Chapelle, Schölkopf,
and Zien 2010). Our proposal of using X∗ as unlabelled
samples can thus be seen as synthetically generating high
density regions for each class as an inductive bias for the
classifier. An example of over-sampling can be found in Fig-
ure 3 where over-sampled patterns are plotted in black.

Our objective is thus to seek a classifier g and a labelling
y∗ = {y∗1 , . . . , y∗m} ∈ {−1,+1}m by minimising:

arg min
g,y∗

λ

n

n∑
i=1

L(yi · g(xi)) +
λ∗

m

m∑
j=1

L∗(y∗j · g(x∗j )). (9)

where L,L∗ : R → R are loss functions and λ and λ∗

are real-valued parameters which reflect confidence in labels
and the cluster assumption respectively. The labels of syn-
thetic data are treated as additional optimisation variables,



as it is common in SSL (Sindhwani, Keerthi, and Chapelle
2006; Sindhwani and Keerthi 2006). An effective loss func-
tion L∗ over an unlabelled pattern x∗j is L∗(g(x∗j )) =
min{L(g(x∗j )), L(−g(x∗j ))}, which corresponds to making
the optimal choice for unknown label y∗j and promotes deci-
sion boundaries that pass through low-density regions.

Choice of low density separator The most common ap-
proach for constructing a SSL low density separator is to
use a maximum margin approach (e.g. using Support Vector
Machines, SVMs). However, the formulation in Eq. 9 re-
sults in a hard optimisation problem when unlabelled data is
abundant. In the semi-supervised SVM classification setting
(S3VM), this minimisation problem is solved over both the
hyperplane parameters (w, b) and the label vector y∗,

arg min
(w,b),y∗

1

2
||w||2+λ

n∑
i=1

V (yi, oi)+λ
∗
m∑
j=1

V (y∗i , o
∗
j ), (10)

where oi = wTxi+b and V is a loss function. This problem
is solved under the class balancing constraint:

1

m

m∑
i=1

max(y∗i , 0) = r, (11)

where r is a user-specified ratio of unlabelled data to be as-
signed to the positive class. Unlike SVMs, this S3VM for-
mulation leads to a non-convex optimization problem, which
is solved either by combinatorial or continuous optimisation
(Chapelle, Sindhwani, and Keerthi 2008).

The method chosen in this paper is S3VMlight, which
has shown promising performance and is robust to changes
in the hyperparameters (Chapelle, Sindhwani, and Keerthi
2008). This technique is based on a local combinatorial
search guided by a label switching procedure. The vector y∗

is initialised as the labelling given by a SVM trained only on
the labelled set. This labelling is restricted to maintain the
class ratios previously defined by r. Subsequent steps of the
algorithm comprise of switching the labels of two unlabelled
patterns x∗j and x∗z (in order to maintain class proportions)
that satisfy the following condition:

y∗j = 1, y∗z = −1

V (1, o∗j ) + V (−1, o∗z) > V (−1, o∗j ) + V (1, o∗z), (12)

i.e. the loss after switching these labels is lower.
Concerning the computational complexity of our pro-

posal, the main bottleneck is the SSL part as the complexity
of over-sampling is linear. The complexity of S3VMlight is
of the same order as that of a standard SVM. However, it
will be trained with more data (i.e. real plus synthetic).

Ensemble of synthetic hypotheses Since the estimation
of the resampling distribution F ∗ is a stochastic process, we
also consider the use of different resampling distributions in
an ensemble framework. The application is straightforward:
each member of the ensemble is formed by a resampling
distribution F ∗ and a S3VM model (w, b). Final labels are
computed by majority voting.

Table 1: Characteristics for the 26 benchmark datasets.
Dataset N d Dataset N d
haberman (HA) 306 3 hepatitis (HE) 155 19
listeria (LI) 539 4 bands (BA) 365 19
mammog. (MA) 830 5 heart-c (HC) 302 22
monk-2 (MO) 432 6 labor (LA) 57 29
appendicitis (AP) 106 7 pima (PI) 768 8
glassG2 (GL) 163 9 credit-a (CR) 690 43
saheart (SA) 462 9 specfth. (SP) 267 44
breast-w (BW) 699 9 card (CA) 690 51
heartY (HY) 270 13 sonar (SO) 156 60
breast (BR) 286 15 colic (CO) 368 60
housevot. (HO) 232 16 credit-g (CG) 1000 61
banana 5300 2 ionosphere 351 34
liver 583 10 wisconsin 569 32
All nominal variables are transformed into binary ones

3 Experimental results
In our experiments we try to answer the following questions:

1. What are the largest contributing factors to the degrada-
tion in performance when dealing with small datasets?

2. Does over-sampling prevent the need for collecting fur-
ther data in small and imbalanced scenarios?

3. How does our approach of using SSL and not labelling
data compares to other approaches in the literature?

4. In the context of classification, is it class dependent over-
sampling better than class-independent?
To answer the first question, we do a first experiment us-

ing 27 synthetically generated datasets. To answer questions
2-4, we perform two additional experiments, in which we
test a wide range of approaches with 26 real-world bench-
mark datasets, changing the percentage of missing patterns
to study the influence of the data sample size (second experi-
ment) and imbalanced class distributions (third experiment).

All the methodologies have been tested considering the
paradigm of Support Vector Machines (SVM) (Cortes and
Vapnik 1995). The 26 benchmark datasets are extracted from
the UCI repository (Lichman 2013) (characteristics shown
in Table 1). These datasets are not originally imbalanced or
extremely small. Instead, these characteristics are generated
synthetically by removing a percentage of patterns at ran-
dom, so that the performance can be compared against the
one with the original full dataset.

Because of space restrictions, we only show mean test re-
sults and rankings, but all results can be accessed online1.

3.1 Methodologies tested
In order to address the difference between using real vs. syn-
thetic data, we compare standard supervised SVMs (with
no over-sampling or data missing) to different approaches
with data Missing Completely At Random (MCAR). Note
that this comparison is not strictly fair, but it provides a
useful baseline performance to evaluate our over-sampling
approaches. Thus, our objective is not to surpass the per-
formance achieved with real data by the use of synthetic

1https://doi.org/10.17863/CAM.32312



one, but rather to reach a similar performance. We also com-
pare our proposed approach to: 1) previous over-sampling
approaches that use naive labelling (Chawla et al. 2002;
Pérez-Ortiz et al. 2016) and 2) transductive graph-based
SSL, as another alternative for labelling synthetic data.
Within our proposed methods we have different approaches:
class-dependent and independent over-sampling (i.e. over-
sampling classes separately or not) and an ensemble of 51
S3VM models using unlabelled synthetically generated pat-
terns. Note that the optimisation procedure of SVM and
S3VM is different, which may influence the results (S3VM
is said to be more prone to reach local optima). Because
of this, we include another approach as a baseline: S3VM
model that reintroduces the real data removed at random in
the unsupervised set. The main purpose here is to compare
over-sampled vs. real data within the S3VM framework.

Figure 4: Mean test performance across all benchmark
datasets for S-MCAR. In the left plot patterns are removed
from both classes, whereas in the right plot patterns are re-
moved only for the minority class.

Figure 5: Examples of synthetic datasets generated. For the
plot on the right only the first three dimensions are shown.

3.2 Experimental setup
A stratified 10-fold technique has been performed to divide
all datasets. Each experiment is repeated 3 times in order
to obtain robust results (except for deterministic methods).
The results are taken as mean and standard deviation of the
selected measures. The same seed is used for random num-
ber generation, meaning that the same patterns are removed
from the dataset and created by over-sampling. The cost pa-
rameter of SVM-based methods was selected within the val-
ues {10−1, 100, 101} by means of a nested 3-fold method
with the training set. The kernel parameter has been cross-
validated within the values {10−1, 100, 101} for the SVM

based methods. For all the methods using large-scale semi-
supervised SVMs (Sindhwani and Keerthi 2006), the reg-
ularisation parameters w and u were optimised within the
values {10−1, 100, 101} (also by means of a nested 3-fold
cross-validation). For easing the comparisons, the number of
synthetically generated patterns is set to the same removed
initially from the dataset. k = 5 nearest neighbours were
evaluated to generate synthetic samples. The Euclidean dis-
tance has been used for all the distance computations.

The parameter used for the over-sampling method in
(Pérez-Ortiz et al. 2016) to control the dimensionality of
the feature space has been cross-validated within the values
{0.25, 0.5, 0.75}. The kernel width parameter associated to
transductive methods (to construct the graph) has been set to
the same value of the SVM kernel used. The rest of parame-
ters have been set to default values.

There are several minor modifications of these algorithms
when using them for either small or imbalanced datasets. As
stated before, in the case of imbalanced data, we introduce a
new parameter for S3VM methods, which controls the ratio
of patterns assigned to the minority class. This class balanc-
ing parameter has been fixed to the initial class distribution
(in the first and second experiments where the data is bal-
anced) and cross-validated within the values {0.5,0.7,0.9}
for the imbalanced datasets (where all the synthetically gen-
erated patterns are supposed to belong to the minority class,
but where we need to allow a certain amount of errors, to fix
label inconsistencies). Moreover, for the case of graph-based
algorithms, several issues have been noticed in imbalanced
domains (Zheng and Skillicorn 2016). To prevent this, we
also use a class mass normalisation procedure to adjust the
class distribution so that it matches the priors (Zhu, Ghahra-
mani, and Lafferty 2003).

3.3 Evaluation metrics
The results have been reported in terms of two metrics:

1. Accuracy (Acc). However, given that for imbalanced
cases this metric is not be the best option, we use the mean
of the sensitivities per class (referred to as MAcc).

2. The Geometric Mean of the sensitivities (GM =√
Sp · Sn) (Kubat and Matwin 1997), where Sp is the

sensitivity for the positive class (ratio of correctly clas-
sified patterns considering only this class), and Sn is the
sensitivity for the negative one.

The measure for the parameter selection was GM given its
robustness (Kubat and Matwin 1997).

3.4 Results
Firstly, we test the influence of the number of patterns re-
moved at random. Figure 4 shows the mean degradation in
test performance for S-MCAR when changing the number
of patterns removed from the benchmark datasets. As can be
seen, all metrics experience a relatively large degradation.

First experiment: Synthetically generated datasets 27
synthetic datasets generated with (Sánchez-Monedero et al.
2013) are used. All of these datasets represent binary and
perfectly balanced classification tasks, in which the data has



Figure 6: Box-plot of the mean test accuracy performance across different factors for the synthetic datasets (first experiment).

been generated using a Normal distribution changing dif-
ferent parameters: 1) dimensionality of the input space (d,
which is set to 2, 10 and 100 dimensions), 2) the number of
patterns (N, set to 50, 100 and 1000) and 3) the variance of
the data (V, controlling the overlapping between the classes
and set to 0.167, 0.25 and 0.5). All combinations of these
parameters have been explored. All the classes have been
designed to be bi-modal. Figure 5 shows two examples of
the synthetic datasets generated. We test three ratios of pat-
terns removed at random (MCAR): 0.2, 0.5 and 0.8.

For this experiment, we use four approaches: SVM (with
the original dataset), S-MCAR (MCAR, no over-sampling),
S3VM with real unlabelled data (S3VM-Real, for which
the data that we remove is included again as unlabelled in
the model) and our proposal using class-dependent over-
sampling (S3VM-OvS). Note that the comparison against
SVM and S3VM-Real is only for comparison purposes and
not strictly fair, since the classifier has access to all the real
data, which is not the case for S-MCAR and S3VM-OvS.

From this experiment, we had results for 27 datasets with
different characteristics for three different MCAR levels and
four methods (a total of 324 individual results). To analyse
these properly, we summarised these results independently

per factor in Figure 6 using box-plots. Some conclusions
can be drawn: Firstly, the overlapping of the classes (vari-
ance factor) is the main factor contributing to performance
degradation. If the data does not overlap (small variance), a
high performance can be achieved even if we remove data
(compare method (1) to (2)). The same is applicable when
data dimensionality is low, e.g. for d=2 and d=10 removing
data is not problematic (again, compare method (1) to (2)).
However, an important degradation is seen when d=100. The
removal of data especially affects small datasets (N=50 and
N=100) but not when N=1000. Concerning the proposed ap-
proach (S3VM-OvS), similar results can be achieved using
real unlabelled data (S3VM-Real), which is a positive out-
come. Both results are also close to the performance us-
ing the complete dataset (compare approaches (3) and (4)
to (1)), which means that over-sampled data can replace
real one, even when real data is labelled. In some cases,
such as in high-dimensional datasets, the performance even
surpasses the one obtained by the original data. The pro-
posal not only helps with small datasets, but also with rel-
atively large ones (N=1000), perhaps because in this sce-
nario the amount of data helps simplify the over-sampling
task by exploiting better the local information. Thus, we can



Table 2: Mean ranking results for all the methods considered in the small sample size experiment (second experiment).
MCAR (0.2) MCAR (0.5) MCAR (0.8)

Ranking MAcc GM MAcc GM MAcc GM
SVM 4.62 4.46 4.12 4.12 2.96 3.31

S-MCAR 8.00 8.04 6.81 6.77 6.81 6.62
SVM+OvS 6.27 6.62 5.85 5.92 5.85 5.69

SVM+kOvS 7.06 7.02 7.19 7.08 6.54 6.73
Transductive graph-based approaches

Real unlab. data 9.52 9.61 10.04 10.00 9.98 9.94
Class dep. OvS 8.67 8.85 9.27 9.35 9.60 9.60

Class indep. OvS 8.37 8.35 9.35 9.69 9.69 9.88
S3VM approaches (proposed)

Real unlab. data 3.47 3.35 3 .15 3 .15 3 .23 3.04
Class dep. OvS 3 .21 3 .27 3.54 3.42 4.19 4.27

Class indep. OvS 3.58 3.38 4.00 3.81 3.88 3.77
Ensemble 3.15 3.06 2.69 2.69 3.27 3 .15

conclude that the proposed methodology helps specially for
high dimensional datasets independently of their size and
class overlapping, and that its performance is stable with re-
spect to the percentage of data that we removed (last factor).

Second experiment: Small sample size For this exper-
iment, we artificially reduce the size of the benchmark
datasets (again testing a proportion of 0.2, 0.5 and 0.8 re-
duction). Because of the amount of results we only pro-
vide the test mean ranking (the lower the better) in Table
2. It can be seen that the test rejects the null-hypothesis that
all of the algorithms perform similarly in mean ranking for
all cases. As mentioned before, here, we also include two
over-sampling approaches from the literature: SVM+OvS
(Chawla et al. 2002) and SVM+kOvS (Pérez-Ortiz et al.
2016) and test transductive approaches to label synthetic
data. Again, we compare several strategies: class-dependent
and independent over-sampling, the introduction of real un-
labelled data in the S3VM model for comparison purposes
and an ensemble. Note that both SVM and methods based
on real unlab. data are unrealistic and only used as a base-
line. Several conclusions can be drawn: Comparing all over-
sampling approaches and S-MCAR it can be seen that a con-
vex combination of patterns can be successfully used to gen-
erate synthetic data. The use of part of the real data as un-
labelled also improves the result to a reasonable extent: it is
better than standard data over-sampling and if the number of
data is not extremely low even better than use the original
dataset, which may indicate that there might be some noise
in the labels. The combination of over-sampling and semi-
supervised learning approaches is promising and can be ap-
plied within each class or using all data independently of
their labels, reaching in most cases the baseline performance
of the use of the entire dataset. Observing individual results
we noticed that for the smallest datasets it is better to use
all patterns for over-sampling, while for bigger datasets the
best approach is to do over-sampling dependent on the class.
In general, transductive graph-based approaches do not re-
port acceptable results, maybe because they highly depend
on the design of a graph or because these techniques precise
a larger amount of data. Finally, the introduction of diversity

in an ensemble by the use of a stochastic convex combina-
tion of patterns is very promising, improving in most cases
the results achieved with the original complete dataset.

Table 3: Mean test ranking results for all the methods con-
sidered in the imbalanced experiment (third experiment).

MCAR (0.5) MCAR (0.8)
Ranking MAcc GM MAcc GM

SVM 3 .27 3 .17 2.50 2 .65
S-MCAR 6.50 6.69 6.92 6.96

SVM+OvS 4.08 4.08 4.56 4.46
SVM+kOvS 3.88 3.61 3.54 3.62

Transductive graph-based approaches
Class dep. OvS 4.00 4.02 4.15 4.27

Proposed S3VM approaches
Class dep. OvS 2.69 2.88 2 .67 2.38

Class indep. OvS 3.58 3.54 3.67 3.65

Third experiment: Imbalanced samples We also study
the effect of our proposal in imbalanced classification se-
tups. For this, we artificially induce this imbalance in our
data by removing a percentage of patterns for the minor-
ity class. In this case, we test a subset of the methods that
we used in the previous experiment (results shown in Ta-
ble 3). Again, we can see that SMOTE (SVM+OvS) can
be improved, either by optimising the patterns to generate
(SVM+kOvS) or the labels of the synthetic patterns (pro-
posed approaches). It can also be seen that it is better to
over-sample only the minority class (i.e. class dependent).

4 Conclusions
We explored the idea of introducing synthetic data as un-
supervised information in semi-supervised support vector
machines, where labels of synthetic data are treated as ad-
ditional optimisation variables. Our experimental study has
shown that: 1) synthetic patterns help when data is scarce
with respect to the data dimensionality and can be used in
a variety of cases as an alternative to collecting more data;
2) convex combination of input training data can be used for



generating those synthetic samples, but these do not have
to be necessarily labelled; and 3) the introduction of syn-
thetic data as unsupervised knowledge can help to improve
the classification in small, high-dimensional or imbalanced
scenarios by acting as an inductive bias for the classifier.

Future work comprises testing such approach in a re-
gression setting and with other semi-supervised learning ap-
proaches (e.g. the use of synthetic imaging data with autoen-
coders or deep belief networks).
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