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A good display design should make the inaccuracies and limitations of a
display technology invisible to the human eye. However, this requires a good
understanding of what is and what is not visible to the human eye. For that
reason, display engineering is tightly linked to the understanding and modeling
of visual perception.

Chapter 4 of this book introduced the basic limitations of visual perception
that are commonly considered in display design. In this chapter we will take
a closer look at selected perceptual models and present a few examples where
they are used in practice.

As visual models operate on physical units of light, we first need to know how
to convert the digital signals driving a display into photometric and colorimetric
units. The display models used for such conversion are discussed in Sec. 1. The
parameters for such display models can be found either by measuring display
characteristics with a colorimeter, or with the help of visual calibration pro-
cedures if no measurmenet instruments are available, with the help of visual
calibration procedures, discussed in Sec. 2. Once a displayed image is repre-
sented in photometric units, it is possible to predict visibility of small contrast
patterns using a contrast sensitivity function (CSF). Sec. 3 explains when the
CSF is the right visual model for the task and what its limitations are. The last
section demonstrates how the CSF can be used to test for and reduce banding
artefacts due to limited color channel bit-depth.

1 Display models

Whenever visual perception needs to be modeled for a display application, it is
necessary to convert the displayed images or video into the right units. While
displays operate in the digital signal domain, with pixels represented as triples
of integers, most visual models expect an image to be represented in physical,
photometric or colorimetric units. This is illustrated in Fig. 1: the display is
driven by digital images to produce light, which is sensed by the human visual
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Figure 1: Forward display model simulates the process of transforming digital
pixel values into physical light on a display. An inverse display model provides
the inverse mapping — it can determine what combination of pixel values is
needed to produce a certain color.

system. To simulate how the display transforms digital images into physical
units of light, we need a forward display model. A forward display model is
often referred as a display model without the word “forward”. To find the
opposite transformation, from physical units into digital values, we need an
inverse display model. This section discusses different variants of display models
and how they account for display processing.

1.1 Gamma and sRGB
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Figure 2: Comparison of gamma function with the sRGB non-linearity. The
intensities are plotted using the linear scale on the left and the logarithmic scale
on the right. The logarithmic scale is often used for plotting luminance as it
better reflects perceived intensity of light.

The simplest forward display model, explaining the relation between digital
and physical units, can be modeled with a so-called gamma correction function
(refer to Section 6.2.7). For color images, the gamma transformation has the
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form:
R = R′

γ
, G = G′

γ
, B = B′

γ
, (1)

where R′ is a red pixel value in the range 0–1, and R is the corresponding red
component in the physical space. The gamma value varies from 1.8 to 2.4 and
its value is usually close to 2.2.

The R, G and B values in Eq. 1 are sometimes referred as linear RGB values
because they are linearly related to colorimetric values and to luminance. This
is to distinguish them from “gamma corrected” R′, G′ and B′, which are the
pixel values driving a display.

The gamma correction function is a reasonable approximation of a display
model, especially for CRT monitors, but it tends to be inaccurate for low dig-
ital signal values. The sRGB standard refines the gamma correction function
to better model a typical monitor’s response and is used for most computer
monitors. The sRGB non-linearity is given by:

R =


R′

12.92 if R′ ≤ 0.04045(
R′+0.055

1.055

)2.4
otherwise

. (2)

The equations for blue and green color components are analogous. Though
the equation for the sRGB non-linearity seems very different from the gamma
correction function in Eq. 1, both functions are in fact quite similar as shown in
Fig. 2. Note that the sRGB follows more closely the shape of gamma 2.2, even
though the sRGB equation contains exponent 2.4. The main difference between
the gamma 2.2 and the sRGB non-linearity is best seen in the plot on the right,
which uses the logarithmic scale for linear intensity: the intensities modeled by
the sRGB non-linearity are larger. The difference between luminance values
0.001 and 0.0001 may seem negligible, however, the human eye can easily detect
such small differences.

The gamma correction (Eq. 1) and sRGB (Eq. 2) functions are known as
transfer functions, or more specifically electro-optical transfer functions (EOTFs).
The name EOTF has historical roots in analog television, where the function
described the relation between electrical signal used to drive a cathode ray tube
(CRT) display and the light intensity produced by screen’s phosphors. The dis-
play technologies used today, such as liquid crystal displays (LCD) or organic
light-emitting diode (OLED) displays, have a different response to electrical
current than CRT displays. Yet, the display driving electronics of LCD or
OLED emulates the behavior of a CRT display not only to remain backward
compatible, but also because the gamma correction function well approximates
the perceived brightness of light; the digital R′, G′ and B′ values result in more
uniform perceived differences between different intensities of color than their
linear counterparts, R, G and B.

1.2 Color transformation

A transfer function, discussed in the previous section, is only the first part of
a display model. The second part, discussed in this section, explains rendering
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of colors in terms of device independent CIE XYZ color values (refer to Section
4.3).

Most display models assume a linear relationship between the linear RGB
values and absolute CIE XYZ trichromatic values:XY

Z

 = Lpeak ·MRGB→XY Z ·

RG
B

 , (3)

where Lpeak is the peak luminance of a display given in cd/m2, andMRGB→XY Z
is a 3×3 color transformation matrix.

To create the color transformation matrix it is enough to know display pri-
maries: CIE XYZ coordinates for pure red, green and blue colors emitted by
a disply. The matrix is constructed by concatenating XYZ values of the dis-
play primaries as columns of that matrix. This way the RGB triplet [1 0 0]
will result in the XYZ triplet corresponding to the red primary, and green and
blue colors will be mapped similarly. For example, any HDTV display should
have its primary colors closely matching ITU-R recommendation BT.709 and
the chromacity coordinates:

Chromaticity Red Green Blue
x 0.6400 0.3000 0.1500
y 0.3300 0.6000 0.0600
Y 0.2126 0.7152 0.0722

The chromacity coordinates can be transformed into XYZ trichromatic values
using the formulas:

X =
x

y
·Y, Z =

1 − x− y

y
·Y (4)

From that, we get that the color transformation matrix for a BT.709-compliant
display is:

MRGB→XY Z =

Xred Xgreen Xblue

Yred Ygreen Yblue
Zred Zgreen Zblue

 =

0.412424 0.357579 0.180464
0.212656 0.715158 0.072186
0.019332 0.119193 0.950444

 .

(5)
The matrix for inverse transformation, MXY Z→RGB , can be obtained by invert-
ing the matrix MRGB→XY Z .

1.3 Gamma-offset-gain model

Both the gamma function and the sRGB non-linearity serve as good inverse
display models (for driving the displays), but are not ideal as forward display
models (for predicting display performance). This is because hardly any display
can achieve intensity values as low as predicted by both models. For example,
for pixel value 0, both sRGB and gamma transfer functions predict intensity 0.
However, most display technologies emit some small amount of light even if the
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pixel values are set to 0. Furthermore, unless a display is viewed in a pitch-dark
room, some ambient light will be reflected from the screen thus elevating the
amount of light that the user senses.

This inaccuracy of both transfer functions is not just an engineering ap-
proximation but it is an intentional part of the design. The primary role of
the transfer functions is to specify how to drive the display given digital input.
When the pixel value is 0, the display should emit the smallest possible amount
of light, regardless of what that smallest amount is for a particular display. If
a transfer function assumed a certain minimum quantity of light, no display
would be allowed to produce deeper black level than specified by the transfer
function.

To predict the light emitted by a display, better accuracy is offered by a
gamma-offset-gain (GOG) display model [4] or one of its variations: GGO (gain,
gamma, offset), or GOGO (gain, offset, gamma, offset) [8]. Those variations
describe the same functional form of a model but using different parameters.
The GOG model for gray-scale images is the relation between luma (gray-scale
pixel) value and emitted luminance, and is modeled as

L = (Lpeak − Lblack)V γ + Lblack + Lrefl , (6)

where L is luminance and V is luma, where luma varies between 0 and 1 (as
opposed to 0–255). For color images, L and V could be replaced by linear R, G
or B component and V by R′, G′, or B′ pixel values. Lpeak is the peak luminance
of a display in a completely dark room, Lblack is the luminance emitted from
black pixels (black level), and Lrefl is the ambient light that is reflected from
the surface of a display, sometimes known as ambient flare. γ is a parameter
that controls non-linearity of a display. For LCD displays Lblack varies in the
range from 0.1 to 1 cd/m2 depending on the display brightness and contrast.
Lrefl depends on the ambient light in an environment and can be approximated
in the case of non-glossy screens with:

Lrefl =
k

π
Eamb , (7)

where Eamb is the ambient illuminance in lux and k is the reflectivity for a
display panel. The reflectivity is below 1% for modern LCD displays and can
be slightly larger for OLEDs.

The inverse of the model takes the form:

V =

[(
L− Lblack − Lrefl
Lpeak − Lblack

) 1
γ

]1
0

, (8)

where the square brackets are used to denote clamping values to the range 0–1
(the values greater than 1 become 1, and less than 0 become 0).

Fig. 3 shows some examples of displays modeled by Eq. 6. Note that ambient
light can strongly reduce the effective dynamic range of the display (top-left
plot). The gamma parameter has no impact on the effective dynamic range,
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Figure 3: The relation between pixel values (luma — V ) and emitted light
(luminance — L) for several displays, as predicted by the GOG model from
Eq. 6. The corresponding plots show the variation in ambient light, gamma,
black level and peak luminance in the row-by-row order. The DR value in
parenthesis is the display dynamic range as log-10 contrast ratio (equal to
log10(Lmax/Lmin)). The parameters not listed in the legend are as follows:
Lpeak=200 cd/m2, Lblack=0.5 cd/m2, γ=2.2, Eamb = 50 lux, k = 1%.

but higher γ values will increase image contrast and make the image appear
darker (top-right plot). Lowering the black level increases effective dynamic
range to a certain level, then has no effect (bottom-left). This is because the
black in most situations will be “polluted” by ambient light reflected from the
screen. Brighter display can offer higher dynamic range, provided that the black
level of a display remains the same (bottom-right).

1.4 Other display models

GOG is a relatively simple display model, which was found to be adequate for
CRT displays [27]. It can be classified as a physical model because it models the
physical process of transforming a digital signal (or voltage) into light emitted
from a CRT display [6]. The GOG model is also a good approximation for
LCDs, as most LCDs try to emulate CRT displays. However, for some LCDs
the GOG model introduces inaccuracy due to color channel interactions [27,33],
known as cross-talk. Cross-talk is caused by the driving signal of one channel
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affecting the other color channel as the electrical charge is applied.
Several display models address the issue of cross-talk between color channels

in LCDs. One of them is known as a masking model [27]. The model relies
on additivity of colors in the CIE XYZ color space. The method requires that
a look-up table (LUT), mapping from digital values to XYZ, is stored for red,
green, blue, cyan, magenta, yellow and white colors. The idea behind the model
is best demonstrated in an example. Let us consider a mapping of an RGB
triplet value [1 0.5 0.1] to CIE XYZ color values. First, the gray contribution of
the color is extracted by looking up [0.1 0.1 0.1] value in the white LUT. Second,
the yellow contribution is estimated by computing the difference in XYZ colors
between pixel values [0.5 0.5 0] (yellow table) and [0.1 0.1 0.1] (white table).
Then, the red contribution is computed as a difference between [1 0 0] (red
table) and [0.5 0.5 0] (yellow table) XYZ values. Finally the gray, yellow and
red contributions are added together in the XYZ space, resulting in the XYZ
coordinates for the RGB pixel [1 0.5 0.1]. Although the procedure is relatively
straightforward for the forward display model, it is much more difficult to apply
in an inverse model as each step is conditional on the input RGB pixel values.

The physical display models, such as GOG or a masking model, need to
make certain assumptions and thus are restricted to “well-behaved” displays,
which adhere to those assumptions. If a display violates those assumption,
it can be still modelled a 3D look-up table, mapping from RGB pixel values
to CIE XYZ color values. This approach, however, requires large amounts of
measurements and memory. For example, a relatively sparse grid of 10×10×10
points, requires 1000 measurements. The accuracy of 3D LUT approach will
depend on the interpolation method. For example, the accuracy is usually higher
if the interpolation is performed in a uniform color space, such as CIE Lab [6].
The inverse display model usually requires a separate LUT, which cannot be
directly measured with a photospectrometer or colorimeter. Such an inverse 3D
LUT, from CIE XYZ to digital values, is usually obtained by extracting data
from the forward display model.

If the cost of storing 3D LUT in memory is too high, the mapping can be
approximated an analytic function. Such function may take a form of a poly-
nomial [33], or a linear combination of radial basis functions [6]. Such represen-
tations are more compact than a 3D look-up table, offers higher flexibility than
physical models, such as GOG, but can be more computationally demanding
than the other two approaches.

The display models discussed so far can be used for a basic colorimetric or
photometric calibration, however, they do not account for many other factors
that affect the colors of displayed images. For example, the black level of a
display is elevated by the luminance of neighboring pixels due to internal glare.
Also, some display technologies (e.g. plasma displays, some HDR displays) need
to manage a limited power budget and vary peak brightness with image content.
In that case, a small white patch shown on a dark background can have much
higher luminance than the same patch shown on a large bright-gray background.
The models discussed above, however, account for most effects and are relatively
accurate for modern LCD displays, which is the dominant display technology
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at the moment.

2 Visual display calibration

Displays are normally calibrated by collecting sample colors using color measur-
ing instruments, such as colorimeters or photospectrometers, and then fitting
the collected data to one of the display models. A detailed description of display
characterization procedures can be found in a freely available standard [26]1. If,
however, a measuring instrument is not available, there are several visual pro-
cedures that can help estimate the parameters of a display. Such procedures are
discussed in this section.

2.1 Gamma calibration

Figure 4: A chart that can be used to visually estimate the gamma exponent
of a monitor. The task is to match the brightness of the patterned background
to one of the uniform color patches with numbers. The numbers indicate the
corresponding gamma values. The match is easier to make when a chart is seen
from a large distance or when vision is not in focus (e.g. when looking on the
thumb in front of a display plane instead of a display). Note that the chart
needs to be enlarged so that the pixels in the pattern match the pixels on the
screen, otherwise aliasing artefacts could make the match impossible.

A simple way to visually assess the value of a display gamma exponent is to
match the brightness of a black and white pattern, containing the same amount
of white and black pixels, with a uniform gray level. An example of a gamma
chart for such matching is shown in Fig. 4. Gamma matching charts can be often
found in software, in the display calibration settings of an operating system or a
graphics card driver, but very few users know how to use those charts effectively.
The goal is to see a blend of the white and black pattern so that it is possible
to make a match with a uniform gray level. If the pattern appears sharp, most
users are not able to make a brightness match. Therefore, it is advisable to look
at those charts with defocused vision — without glasses, from a long distance,
or by focusing the eye on a point in the front of a display instead of the display
plane.

1The standard documents and the test patterns can be downloaded from http://www.

icdm-sid.org/.
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When the white and black pattern is blended in the eye, it produces the
luminance that is arithmetic mean of the luminance of black and white pixels.
From the GOG display model (Sec. 1.3) we have that the luminance of a white
pixel is:

L(1) = Lpeak + Lrefl , (9)

and the luminance of a black pixel is:

L(0) = Lblack + Lrefl . (10)

Now, we need to make the average luminance for the mixture of while and black
lines equal to the luminance of the matching gray-level pixel value Vmatch, so
that:

L(0) + L(1)

2
= L(Vmatch)

1

2
(Lpeak + Lblack) + Lrefl = (Lpeak − Lblack)V γmatch + Lblack + Lrefl

γ =
log(0.5)

log(Vmatch)
.

(11)

Therefore, having the pixel gray-value Vmatch that matches in brightness al-
ternating white and bright lines let us easily estimate the value of the display
gamma, even if we do not know anything else about the display, including black
level, peak luminance and environment in which it is seen.

Figure 5: Half-tone patterns that could be used to recover the shape of a display
transfer function. R is the ratio of “on” pixels to all pixels in a pattern. Row
a) shows the pattern design and row b) shows how the pattern appears on a
screen. The same pattern can be produced for red, green and blue primaries to
recover individual transfer functions.

The same procedure may be used not only to find a single gamma parameter,
but also to determine an arbitrary complex shape of a transfer function [25,34]
if it is substantially different from the GOG model. The matching must be done
for 8–10 half-tone patterns, each containing different ratio of on and off pixels.
An example of such half-tone patterns from [34] is shown in Fig. 5. If the ratio
of “on” pixels to the total number of pixels is R, the perceived luminance of
the pattern is R times the display peak luminance. The actual transfer function
can be recovered by fitting a parametric display model [34], or by solving an
optimization problem with a smoothness regularization term [25].
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2.2 Color calibration

Figure 6: A single step from a unique-hue selection task, used to color-calibrate
a display without measuring instruments. The task for the user is to select
one color that has the least amount of yellow or blue tint. A sequence of such
selections will indicate the unique red color.

The previous section explained how the first part of a physical display model,
the transfer function, can be visually measured. This section explains the proce-
dure for measured the second part of the model, a color transformation matrix.

Most human observers can adjust a color patch so it appears neither red nor
green, or neither yellow nor blue. This ability to find unique hues can be used
to color-calibrate the display without a measuring device [15].

A schematics of an experiment that could be used to find unique hues is
shown in Fig. 6. The user is given a task to indicate a colored circle that
has the least amount of blue or yellow tint. The colors are sampled from the
HSV (hue-saturation-value) color space by varying hue component and keeping
saturation and value fixed. The selection procedure can be repeated several
times for the same color, each time narrowing the variation in hue to improve
accuracy. The same procedure is run for red, green, blue and yellow colors, and
also for the neutral gray point.

The experiment gives the RGB pixel values for four unique hues and the
color of neutral gray. Those can be used to find a color transformation matrix
from the measured display to another display, for which unique hues are already
known [15]. The difficulty here is that the experiment reveals only the position
of the unique hue planes but it does not indicate what was saturation or value
(brightness) of the selected colors. Because of that, additional regularization
terms and constraints are needed to find the transformation matrix.
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Figure 7: Gabor patches of different spatial frequency, typically used in detection
experiments.
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Figure 8: Contrast Sensitivity Function (CSF) plotted as the function of fre-
quency (left) and luminance (right). Different line colors denote different back-
ground luminance (Lf ), or spatial frequency (ρ). The plots are based on the
model from [18] and data from [16].

3 Contrast sensitivity

The previous sections explained how to map digital pixel values into physical
quantities of light, which can be used in visual models. This section will explain
in more detail one particular visual model — a Contrast Sensitivity Function
(CSF), which was briefly introduced in Section 4.2.4.

Contrast sensitivity explains how well a human observer can detect patterns
of certain frequency on a uniform background. Such patterns could be for
example sinusoidal waves modulated by a Gaussian envelope, so called Gabor
patches, shown in Fig. 7. The sensitivity S is defined as the inverse of the
detection threshold:

S =

(
∆L

L

)−1
=

L

∆L
, (12)

where L is the luminance of the background, and ∆L is the amplitude of the
pattern (the difference between the maximum and mean luminance). The sen-
sitivity predicted by the CSF, depends on the number of parameters, such as
spatial frequency, temporal frequency, luminance of the background, orientation
of the pattern, size of the pattern, and distance from the fovea. In this section
we focus on the two parameters that influence sensitivity the most: spatial
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frequency ρ and the luminance of the background L: S = CSF (ρ, L).
The plot of the CSF as the function of those two parameters is shown in

Fig. 8. The plot reveals that we are not very sensitive to low and high frequency
patterns, and we are most sensitive to spatial frequencies between 1 and 5 cycles
per visual degree (cpd) for high luminance. The peak sensitivity gradually shifts
to about 1 cpd for low luminance. The CSF shows that the drop of sensitivity
with luminance is more rapid for high frequencies. Indeed, small high frequency
details become invisible at night when the visual system needs to rely on rod
vision.

A large number of CSF measurements and models can be found in the lit-
erature [2, 3, 16, 24,29, 30]. Most of the historical data was collected in order to
gain insights into the visual system rather than provide practical models. Such
data was often collected for artificial stimuli and conditions: monochromatic
light (single wavelength) [30], corrected for aberrations [24], artificial pupils and
monocular viewing. Consequently, such data may not explain how we perceive
spatial patterns on actual displays seen in natural conditions. Therefore, it is
important to ensure that the CSF models and data represent similar stimuli
to those used in a particular application. For example, the data from [29] was
collected for a white broadband light and the data from [16] was measured us-
ing side-by-side rather than sequential presentation of patterns, which is more
relevant for the applications involing static images.

Barten derived a physically plausible model of the CSF [2], which is one
of the most comprehensive works in this area, shown to well predict numerous
sensitivity datasets. The original work was limited to photopic (daylight) vi-
sion but it was later extended to much lower luminance levels in [3]. Another
comprehensive CSF model can be found in [7]. Those models were created by
fitting analytical formulas to multiple datasets. In contrast to those, the model
from [18] relies on a single dataset [16], measured using side-by-side comparisons.

It is important to recognize that the actual shape of the CSF can vary sub-
stantially between different models and measurements. This is due to multiple
factors, such as differences in experimental procedures, stimuli and its presen-
tation. Therefore, CSF should not be regarded as a rigid ground-truth model
of the visual system sensitivity, but rather as a relative characteristic that often
needs to adapted to a particular application. The simplest form of such adap-
tation is a global change of sensitivity. The CSF curves, shown in Fig. 8 can be
shifted along the vertical axis to account for different detection tasks. For exam-
ple, detecting banding artefacts on a display can be more difficult and result in
lower sensitivity than detecting Gabor patches in a well-controlled experiment.
The peak sensitivity values varies between 300 and 500 for well controlled ex-
periments, which correspond to the smallest detectable contrast between 0.2%
and 0.33%. In most practical applications a suitable sensitivity is closer to 100
or less, which translates into detection contrast of 1% or higher.
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Figure 9: The spatial contrast appearance chart. For very low contrast in
the top rows, the perceived magnitude of contrast varies with spatial frequency.
But the perceived contrast magnitude remains mostly the same for bottom rows
containing large contrast.

3.1 Contrast constancy

The CSF plotted as a function of frequency, such as the one on the left in
Fig. 8, may resemble a modulation transfer function (MTF). An MTF is often
used to describe the loss of resolution in optical systems as the function of spatial
frequency. If we were to create a simplistic visual model, we could be tempted
to use the CSF as a linear filter and weight each spatial frequency band in an
input image by the values from the CSF to simulate a “perceived” image. This,
however, would produce false results because the CSF is not a linear filter and
it is valid only for very small, barely visible contrast.

The pattern shown in Fig. 9 demonstrates the CSF (also shown in Figure
4.4) but also its limitations. The perceived magnitude of contrast in the top
rows varies with the frequency. This produces an illusory boundary between
visible and invisible contrast, which defines the shape of the CSF. However, the
perceived magnitude of contrast remains the same for the bottom rows, in which
the physical contrast magnitude is much larger. Those rows do not contain the
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same variation in perceived contrast as the top rows. This demonstrates con-
trast constancy, which is the ability of the visual system to perceive the same
magnitude of contrast regardless of spatial frequency [12]. If the visual system
could be explained by a linear filter, we would be able to see the same reduc-
tion of perceived contrast magnitude in top and bottom rows. An important
consequence of contrast constancy is that CSF is applicable only to patterns of
very low contrast, close to the detection thresholds, or close to the illusory CSF
line in Fig. 9. If the contrast magnitude is much different from the detection
contrast, the CSF should not be used to predict how perceived contrast changes.

Since the CSF only applies to a barely visible contrast, its usefulness may
seem limited. In practice, however, many visual distortions found in display
applications consists of contrast of low amplitudes, for which the CSF predic-
tion are valid. Some examples of those distortions are display non-uniformity
or banding due to quantization, discussed in Sec. 4. The CSF is also an im-
portant component of many supra-threshold2 contrast perception models, such
as models of contrast masking [17], or perceived contrast across the luminance
range [31]. Therefore, CSF is a fundamental building block for modeling human
vision.

3.2 Thresholds across the luminance range

Many visual artifacts, such as banding due to quantization discussed in the
next section, can reveal themselves across a range of spatial frequencies, so it
is impossible to select a single frequency that would be suitable for all cases.
Instead, it is better to rely on a conservative estimate of the detection threshold
T by selecting the peak of the CSF at a given background luminance L:

T (L) =
L

maxρ CSF (ρ, L)
. (13)

The function T (L) predicts the smallest detectable contrast at luminance L and
it is plotted in Fig. 10. The contrast that is less than the function T (L) (below
the dashed line) is assumed to be invisible to the human eye. The plot shows
that it is more difficult to see small contrast differences at low luminance levels.

The function T (L) gives a conservative estimate, which means that actual
visibility thresholds in images could be higher than predicted by the function. In
rare cases they could be also lower because of the contrast masking phenomenon
known as facilitation [17].

4 Quantization and bit-depth

The display models presented in Sec. 1 were missing an important processing
step present in any digital display — quantization due to limited bit-depth. If
the number of bits representing color is insufficient, a displayed image can reveal

2Supra-threshold refers to the stimuli whose contrast is much above the detection threshold.
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Figure 10: The smallest detectable difference in luminance across the luminance
range. The plot is based on the data from [16].

Figure 11: The effect of quantization on a gradient of pixel values. Each column
contains an image of different bit-depth, from 3 to 8 bits. The lower part of the
gradient was generated using dithering to simulate higher bit-depth.

banding artifacts, such as those shown in Fig. 11. Such artifacts can be masked
at lower bit-depths by introducing dithering — the use of patterns that are the
mixture of two consecutive pixel values, which give an illusion of intermediate
intensity levels. And example of banding artifacts that has been masked by
dithering is shown in the bottom of Fig. 11.

Dithering is so effective that many displays employ it to deliver smooth
gradation of gray levels on low-bit-depth panels. For example, a display could
be driven by a 8-bit signal from a PC but have only a 6-bit liquid crystal (LC)
panel. In this case, the display control board converts input into a 6-bit driving
signal for the LC panel and uses the remaining least significant bits to introduce
dithering. The dithering can be added in both spatial and temporal domains.
Temporal domain dithering is introduced by rapidly switching between pixel
values in consecutive frames.

Bit-stealing is another technique for improving bit-depth resolution [28]. The
technique involves a small adjustment between the three color components so
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that intermediate luminance levels are produced at the cost of a small error
in color. For example, a pixel color [11 10 10] (using 0–255 range) results in
luminance that is higher than for pixel [10 10 10], but lower than for pixel
[11 11 11]. As the red component contributes about 21% to luminance, the
pixel [11 10 10] with elevated red component produces about 0.21 fractional
step in luminance between [10 10 10] and [11 11 11]. In practice, an optimum
pixel combinations can be found for every intermediate luminance level so that
the distortion in chroma is minimized. The technique works well, especially for
gray-scale images, because the visual system is more sensitive to luminance than
to chroma variations.

Although both techniques can help extend the perceived bit-depth of a dis-
play, the display still requires an input signal of sufficient accuracy to generate
dithering patterns or to jitter pixel values for bit-stealing. This raises the ques-
tion of what bit-depth is sufficient to represent digital images so that no banding
artifacts are visible.

4.1 Quantization errors

In this section we combine the display models introduced in Sec. 1 and the
visibility threshold function from Sec. 3.2 to analyze the visibility of banding
artefacts.

Fig. 12 shows the maximum quantization errors for a relatively bright display
with the peak luminance of 500 cd/m2 and the black level of 0.1 cd/m2. The
maximum quantization errors are computed as:

Qe(L) =
1

L
·
(
D

(
D−1(L) +

0.5

2b − 1

)
− L

)
, (14)

where D is the transfer function transforming luma (0–1) into luminance (in
cd/m2), and D−1 is the inverse transfer function transforming luminance into
luma. The formula computes the difference between luminance affected by max-
imum quantization error (0.5 in the luma domain), and accurate luminance, L.
The multiplication by 1

L brings the values into the same relative contrast units
as used for the visibility thresholds in Fig. 10.

Fig. 12 compares four transfer functions: linear scaling into the 0–1 range (ef-
fectively no transfer function), the logarithmic function, the gamma 2.2 power
function and the sRGB non-linearity. All transfer functions result in visible
quantization errors for 8-bit encoding (plot on the left) and only logarithmic
encoding brings errors below the visibility thresholds when 10-bit encoding is
used (plot on the right). This result is consistent with everyday experience,
where quantization errors are easily noticeable on regular 8-bit displays. The
plots show that gamma and sRGB are well-aligned with the visibility thresh-
olds for darker colors but they waste bits when encoding brighter colors. The
logarithmic curve results in the opposite behavior — it allocates too many bits
for darker colors. The lack of any transfer function (Linear label in Fig. 12) is
the worst choice, with the most visible quantization errors.
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Quantization errors are even more visible on a high dynamic range display,
producing luminance in the range from 0.005 cd/m2 to 10 000 cd/m2, as shown
in Fig. 13. 10-bit logarithmic encoding results in banding at higher luminance
levels and 2.2 gamma is clearly inadequate for all except the brightest pixels.
The floating point encoding (black line) results in very small quantization errors
but at the cost of high bit-depth.

 0.01   0.1     1    10   100  1000
 0.001

  0.01

   0.1

     1

    10

Luminance [cd/m
2
]

Q
u

a
n

ti
z
a

ti
o

n
 e

rr
o

r 
(∆

L
/L

)

 

 

Visibility threshold

Linear (8bit)

Logarithmic (8bit)

Gamma 2.2 (8 bit)

sRGB (8 bit)

 0.01   0.1     1    10   100  1000
0.0001

 0.001

  0.01

   0.1

     1

    10

Luminance [cd/m
2
]

Q
u

a
n

ti
z
a

ti
o

n
 e

rr
o

r 
(∆

L
/L

)
 

 

Visibility threshold

Linear (10bit)

Logarithmic (10bit)

Gamma 2.2 (10 bit)

sRGB (10 bit)

Figure 12: Quantization errors on low dynamic range display (Lpeak=500 cd/m2,
Lblack=0.1 cd/m2) for selected transfer functions. The errors are shown for 8-bit
encoding in the plot on the left and for 10-bit encoding in the plot on the right.
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Figure 13: Quantization errors on high dynamic range display
(Lpeak=10 000 cd/m2, Lblack=0.005 cd/m2) for selected transfer functions
and 10-bit encoding.

4.2 Perceptual transfer functions

To make the best use of available bit-rate, the transfer function should be aligned
with the visibility threshold function T (L). This idea is widely used in med-
ical imaging where certified medical clinical displays have a transfer function
scaled in just-noticeable-differences, so called DICOM gray-scale standard dis-
play function [1]. Such perceptual transfer function was later extended to high
dynamic range (HDR) color images and used for video compression [19, 20]. A
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modified version of such encoding, derived from Barten’s CSF model [3] and
known as Perceptual Quantizer (PQ), was proposed as a transfer function for
HDR content with a convenient analytical formula [23].

Perceptual transfer functions are straghtfoward to derive from the visibility
threshold function T (L). The goal is to find a function mapping luminance into
an abstract response so that the increase in the response by 1 corresponds to
the increase of luminance by the just-noticeable-difference ∆L. This condition
is met when the derivative of the unknown response function R is specified as:

dR

dL
(L) =

1

∆L(L)
. (15)

Note that the detection threshold ∆L(L) is the function of luminance L. From
Eq. 13 we get that ∆L(L) = T (L)·L and hence the response function is:

R(Lx) =

∫ Lx

Lmin

1

T (L)L
dL , (16)

where Lmin is the lowest luminance encoded, mapped to the response value
0. The detailed derivation can be found in [21, sec. 2.4]. The resulting trasfer
function is shown in Fig. 14 and also in Figure 4.5 in Chapter 4.

Fig. 13 includes the quantization errors for the PQ perceptual transfer func-
tion [23]. Although different psychophysical data was used to derive the PQ
function and to plot the dashed visibility threshold curve, both curves are rela-
tively similar to each other. The study in [5] showed a slight advantage of the
PQ over other perceptual transfer functions in terms of uniformity of banding
artifacts across the luminance range.

0.001 0.1 1 10 100 1000

0

500

1000

1500

2000

Luminance [cd/m
2
]

L
u
m

a

 

 
Perceptual transfer function

Brightness function (L
1/3

)

Figure 14: Perceptual transfer function compared with the brightness function
(Stevens’ law for brightness).
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Fig. 14 shows an interesting property of the perceptual transfer function.
The shape of the transfer function is relatively close to the relation between
luminance and perceived brightness (Steven’s law). This demonstrates, that the
perceptual transfer function not only reduces visibility of quantization errors,
but it also improves perceptual uniformity of the resulting luma values. Note
that Steven’s power brightness function was demonstrated to hold only for lower
luminance levels [13, p.101] and therefore the brightness function is plotted up
to 100 cd/m2.

5 Summary

The quality of any display technology is ultimately judged by the human eye.
Therefore, it is essential that visual perception is considered in any display-
related application. This chapter introduced models and methods that help to
characterize a display and its performance in perceptual terms.

First, we showed how most displays can be modelled using a gain-offset-
gamma model (Sec. 1). A display model provides a link between digital signal
driving a display and light emitted from the screen, which is eventually per-
ceived by the display user. Selected parameters of such display model can be
found using visual calibration procedures, discussed in Sec. 2. The contrast sen-
sitivity function (CSF) is one of the most commonly used visual models when
investigating perceptual aspects of a display design. Such function, however, is
applicable only to very small contrast distortions, as discussed in Sec. 3. One
successful application of CSF is testing for the visibility of banding artefacts,
caused by limited bit-depth of the pixels (Sec. 4). The same visual characteristic
can be also used to drive a perceptual transfer function, which minimizes the
visibility of banding artefacts for a given bit-depth.

This chapter provided insight into a small portion of the wider field of per-
ceptual display design and calibration. A general overview of perceptual con-
siderations in display design can be found in Chapter 4 of this book and also
in the survey paper [22]. The visibility of more complex spatial distortion,
such as display non-uniformity, can be tested using perceptual image difference
metrics, such as VDP [7] or HDR-VDP [18]. The code for the latter metric is
freely available.3 When considering video, it is important to account for spatio-
temporal contrast sensitivity of the visual system [32] and the temporal aspects
of a display [14]. If assessment of color artefacts is important, some level of per-
ceptual scaling can be achieved using uniform color spaces or color appearance
models [10,11]. Testing for distortions in binocular stereo displays may require
disparity difference metrics [9]. This diversity of visual models, specialized in
different aspects of vision, demonstrates the challenge of visual modeling. While
specialized visual models, focused on a particular kind of distortion, have been
successful used in many areas, there is no single general visual model, which
could account for all aspects of vision and could be applicable to a wide range
of problems.

3HDR-VDP-2 can be downloaded from http://hdrvdp.sourceforge.net/
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