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Abstract 
Colour correction is the problem of mapping the sensor 

responses measured by a camera to the display-encoded RGBs 
or to a standard colour space such as CIE XYZ. In regression-
based colour correction, camera RAW RGBs are mapped 
according to a simple formula (e.g. a linear mapping). 
Regression methods include least squares, polynomial and root-
polynomial approaches. More recently, researchers have begun 
to investigate how neural networks can be used to solve the 
colour correction problem.  

In this paper, we investigate the relative performance of 
regression versus a neural network approach. While we find that 
the latter approach performs better than simple least-squares the 
performance is not as good as that delivered by either root-
polynomial or polynomial regression. The root-polynomial 
approach has the advantage that it is also exposure invariant. In 
contrast, the Neural Network approach delivers poor colour 
correction when the exposure changes. 

Introduction 
It is well known that the sensors in cameras sample light 

differently than we do. Indeed, there are pairs of different 
surfaces that look the same to a human observer but induce 
different sensor responses in a camera and vice versa. Colour 
correction algorithms attempt to map the camera responses either 
to the RGBs that drive a display (e.g. the linear sRGB matching 
responses for a display with Rec 709 primaries [1]) or, 
equivalently, to the standard human vision system referenced 
coordinate systems such as CIE XYZ [2]. 

 

 
Figure 1. These images are generated from David Foster’s hyperspectral 
reflectance dataset [3] with Nikon D5100 camera responses and D65 
illumination. While the left image (a) is representing RAW RGBs, the right 
one (b) demonstrates the colour corrected sRGB image.  

The colour correction problem is illustrated in Figure 1. On 
the left is the raw RGB camera response for a scene measured 
with a Nikon D5100 camera and on the right after linear colour 
correction to the sRGB display space [1]. The scene is taken from 
Foster et al. hyperspectral image set [3] and the images are 
calculated using numerical integration. The numerical 
integration results in linear colour values so the sRGB non-

linearity [4] was applied to both images for display (otherwise 
they would appear too dark). 

 

 
Figure 2. Normalised sensitivity functions of Nikon D5100 camera (left) 
and sRGB Sensitivity functions (right). 

According to the sRGB standard [1] the sRGB matching 
curves ‘see’ the RGBs that would correct drive a Rec 709 display 
to reproduce the colours we see (when viewing the scene) 
correctly. We contrast the Nikon and sRGB sensitivities in 
Figures 2a and 2b. If we could find a linear transform of the 
Nikon sensitivities that mapped exactly the sRGB curves then 
the Nikon camera would be able to measure colours that we 
perceive [5] [6]. No such linear transform exists. 

 
Colour correction algorithms – to the extent it is possible – 

attempt to map camera responses to corresponding coordinates 
in a human referenced colour space. While this referenced colour 
space could be sRGB we will, henceforth, consider colour 
correction as the problem of mapping camera responses to XYZ 
tristimuli [2]. The XYZ colour matching functions are a linear 
transform from sRGB – and so the latter are calculable from the 
former. Importantly,  the XYZ responses (called XYZ tristimuli) 
are used directly in the formula that compute perceptual colour 
difference. 

 
The simplest colour correction algorithm finds a 3×3 matrix 

mapping camera responses to XYZs by least squared regression. 
Given a set of camera responses together with their 
corresponding XYZ tristimuli, a 3×3 colour correction matrix M 
is found such that: 

 𝑀𝝆 ≈ 𝒙  (1) 
 

where 𝝆 and 𝒙 denote the 3-component RGB camera response 
vector (RAW RGB value) and XYZ tristimulus respectively, 
both in a linear colour space. Other commonly used methods 
include polynomial [7] and root-polynomial [8] regressions. 
 

Recently, researchers have investigated how neural 
networks (NNs) might be used to solve the colour correction 
problem. Initial results show that NN algorithms support better 
colour correction than a simple linear regression. Here we take 
the MacDonald and Meyer method [9] that has recently been 
developed and compare and contrast its performance with a 
commonly used set of regression methods.  
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Broadly, we confirm the finding that the NN approach is 
significantly better than linear regression but that the polynomial 
[7] and root-polynomial [8] regressions actually deliver 
significantly better colour correction than the NN. Further, we 
also consider the performance of the different approaches when 
exposure changes (i.e. the correction method is trained with 
respect to one level of illuminant but then tested with respect to 
another). Here linear and root-polynomial methods work well 
but, the polynomial regression and the NN approach perform 
poorly. 

Background 
Let 𝑄!(λ) denote the k-th camera spectral response function 

and 𝑸(λ) denote the vector of these functions as in Figure 2a. 
The camera response to a spectral power distribution 𝐸(λ) 
illuminating the j-th reflectance 𝑆"(λ) is written as: 

 𝝆	 = . 𝑸(λ)𝐸(λ)𝑆"(λ)𝑑λ
	

$
 (2) 

where 𝜔 denotes the visible spectrum (400 to 700 Nanometres) 
and 𝝆 denotes the vector of RGB responses. Similarly, given the 
XYZ colour matching	𝐗(λ), the tristimulus response 𝐱 is written 
as: 

 𝐱	 = . 𝐗(λ)𝐸(λ)𝑆"(λ)𝑑λ
	

$
 (3) 

Suppose, respectively, in 𝑛	 × 	3	matrices P and X record 
(in rows) the camera responses and tristimuli of n surface 
reflectances. To find the M in Equation 1 we minimise: 

 
 arg	min	

%
‖𝑃𝑀 −	𝑋‖& (4) 

Where ‖	. ‖& denoted the L2 norm [10]. We can solve for M in 
closed form using the Moore-Penrose Inverse [11]: 
 

 𝑀 = [𝑃'𝑃]()𝑃'𝑋 (5) 
To extend the regression method we define a basis function 𝑓*+() 
where the subscript e denotes the type of expansion — here e=p 
and e=r respectively denotes polynomial and root-polynomial 
expansions — and the superscript o denotes the order of the 
expansion. As an example, if we are using the 2nd order root-
polynomial expansion [8] then we write: 
 

 𝑓,-(𝝆) = Dr	g	b	F𝑟𝑔	√𝑟𝑏	F𝑏𝑔	K
'

 (6) 

Again we can use Equations 4 and 5 to solve for the regression 
matrix M. Though, M will be non-square (and depend on the 
number of terms in the expansion). For our second order root-
polynomial expansion, the columns of P will be the 6 terms in 
the root-polynomial expansion (P is a 𝑛	 × 	3 matrix) and M will 
be 6	 × 	3. 
 

Optimizing for L2 norm in Equation 4 may be undesirable 
because the Euclidean differences in the XYZ colour space do 
not correspond to the perceived differences in colour. Instead, it 
is more desirable to optimize for the differences in perceptually 
uniform colour spaces, such as CIELAB [2] - or using colour 
difference formulas, such as CIE Delta E 2000 [12]. Let us 
denote the magnitude of the difference vector between a mapped 
camera response vector and its corresponding ground truth 
CIELAB value as: 

 
 ∆%,+,*= ‖𝐶(𝑀'𝑓*+(𝝆),𝒘) − 𝐶(𝒙,𝒘)‖ (7) 

Where C() maps input vectors according to the CIELAB function 
to corresponding Lab triplets and the superscripts e and o are as 
before. The parameter w denotes the XYZ tristimulus of a perfect 
white diffuser and is required to calculate CIELAB values.  To 
find the best regression matrix according to we would need to 
minimize: 

 arg	min	
%

Q∆/
%,+,*

0

/1)

 (8) 

Unfortunately, there is no closed form solution for 
minimising Equation 8. Instead, a search-based strategy such as 
the Nelder-Mead simplex method [13] can be used to find M 
(though there is no guarantee that the global optimum result is 
found, [13] is a local minimiser).  

 
Rather than use regression we could - in line with the ever-

expanding area of machine learning - deploy an Artificial Neural 
Net to solve for colour correction. In the context of this paper, 
we will consider the network proposed by MacDonald and 
Meyer [9], shown in Figure 3. 

 

 
Figure 3. The demonstrative architecture of the neural network. Input and 
output layers consist of 3 nodes which are RGB and XYZ respectively. In 
between, there are 2 hidden layers formed by 79 and 36 nodes. 

A potential problem of the Neural Network shown in Figure 
3 is that colour correction is much more computationally 
expensive. There are 3189 ‘connections’ in the network 
indicating O(3189) multiplications and additions need to be 
carried out as data flows from left to right. The complexity of the 
2nd order root-polynomial correction in contrast has 3 square root 
operations and (when the 6x3 correction matrix is applied) 18 
multiplications and 15 additions i.e. it is 2 orders of magnitude 
quicker to compute.  

Experiments 
For the experiments, we used the Simon Fraser University 

(SFU) reflectance set [14], which is a composite set and 
comprises 1995 spectral surface reflectances including, the 24 
Macbeth colour checker patches, 1269 Munsell chips, 120 
Dupont paint chips, 170 natural objects, as well as another 407 
additional surfaces. 
 

In our experiments, this reflectance set is viewed under D65 
illumination. Camera responses - for the Nikon D5100 (see 
Figure 2) and XYZ tristimuli are calculated by numerical 
integration. In Figure 4, in CIE 1931 chromaticity diagram we 
plot the xy chromaticities of the SFU dataset. We also show the 
gamut of colours achievable using Rec 709 primaries (white 
triangle). It is evident that the SFU reflectance set comprises a 
wide range of colours. 
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Figure 4. Gamut of SFU dataset on the CIE 1931 chromaticity diagram. 
The white triangle shows the sRGB gamut. 

We run our experiments according to a 5-fold cross-
validation procedure. Here each data set is randomly split into 5 
folds with ~400 reflectance samples in each fold. Four of the 
folds are then used to train the colour correction algorithms and 
then the fifth fold is used as testing data. We repeat this process 
5 times (each fold is used once as a test set). 

 
We evaluate the following algorithms: 
 
(i) LS: denotes Least Squares Regression (denoted) 
(ii) LS-P: denotes Least Squares Polynomial Regression. 

Here we use the 2nd order expansion which maps each 
3 vector to a 10 vector. 

(iii) LS-RP: Least Squares Root-Polynomial Regression. 
Again a 2nd order expansion is used which for root-
polynomials has 6 terms 

(iv) LS-Lab 
(v) LS-P-Lab 
(vi) LS-RP-Lab 
(vii) NN 
 
Where Lab denotes that we use the CIELAB loss values for 

training with Nelder-Mead simplex method [13] (see Equations 
7 and 8) to solve for the linear (iv), polynomial (v) and root-
polynomial regressions (vi) where CIELAB error is minimised. 
The regressions (i) through (iii) - minimising error in XYZ 
tristimuli space - are found in closed form using the Moore 
Penrose inverse (Equations 5 and 6). 

 
We compare the regression algorithms with the 3x79x36x3 

architecture Neural Network (NN) from [9] illustrated in Figure 
3. As in the original study, we train the network to minimise CIE 
Delta E 2000 [12] using the Adam optimizer with a learning rate 
of 0.001. Since we were working with relatively small datasets, 
we had to increase the number of epochs from 65 (used in the 
original study) to 500 for the neural network to learn a good 
mapping. We also used 20% of the training data for the 
validation set and applied the early stopping technique, which 
means the training finishes automatically if there is no 
improvement in validation loss for a certain number of epochs 

(which is 100 in our model), with a call-back method. We used 
the best model according to the validation loss. Our model used 
a mini-batch gradient descent with a batch size of 8.  
 

In addition to comparing the methods under the constant 
exposure level, we also investigate how they perform when the 
exposure level changes. We take our models trained for a fixed 
intensity of D65 and then change the exposure by multiplying 
the RGB and XYZ values by a scalar (in the range 0.2 to 5). By 
construction, the LS, LS-RP, LS-Lab, and LS-RP-Lab models 
are exposure invariant, so their correction performance is 
unaffected by exposure change. So, we will only evaluate and 
report results for the performance of LS-P, LS-P-Lab and NN 
since they are not exposure invariant. 

 
Finally, we note that the colour correction experiments here 

differ from those reported in the original NN paper [9]. The data 
in [9] is not publicly available. Moreover, because the code that 
implements [9] is also not available, we reimplemented their 
method. 

Results 
We report the CIELAB and CIE Delta E 2000 error results 

for our 7 algorithms for SFU dataset in Table 1 and Table 2, 
respectively. As discussed earlier, we run a 5-fold cross 
validation experiment. This means that there are 5 sets of colour 
correction results and for each of these we calculate the Mean, 
Max, Median and 95% (percentile) errors. The figures in the 
Tables 1 and 2 report these error statistics averaged over the 5 
sets. In bold red we show the best result per statistic. Note that 
since the 3 algorithms trained to minimize CIELAB Delta E (i.e. 
those with the suffice ‘-Lab’) the corresponding algorithms’ 
results in Table 2 (for Delta E 2000) could clearly be improved 
further i.e. if the regression matrices were found that best 
minimized the DE2000 error. 

Table 1: CIELAB Delta E statistics  

 Mean Max Med 95% 
LS 1.62 15.47 0.93 5.32 
LS-P 1.29 11 0.78 4.01 
LS-RP 1.19 13.97 0.7 3.62 
LS-Lab 1.48 10.62 0.9 4.63 
LS-P-Lab 1.17 8.47 0.77 3.62 
LS-RP-Lab 1.10 7.36 0.72 3.39 
NN 1.40 12.26 0.93 4.06 

 

Table 2: CIE Delta E 2000 statistics  

 Mean Max Med 95% 
LS 0.94 7.71 0.7 2.62 
LS-P 0.79 4.63 0.59 2.18 
LS-RP 0.72 7.13 0.49 2.14 
LS-Lab 0.91 5.52 0.67 2.45 
LS-P-Lab 0.75 4.25 0.54 2.08 
LS-RP-Lab 0.69 3.81 0.52 1.96 
NN 0.85 4.18 0.66 2.15 
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We see that, although the neural network algorithm returns 
significantly better results compared with the standard Least 
Squares Regression model, it delivers poorer colour correction 
compared with the other regression methods. The Polynomial 
and Root-Polynomial deliver low error, and both can be 
improved using the differences in the CIELAB space as a loss 
function. The -Lab variants of the regression algorithms have 
significantly lower maximum errors. The reader might be 
interested if we train the neural network with the CIELAB loss 
function or use CIE Delta E 2000 on the classical methods, we 
found that these do not change the rank ordering of the results. 

 
In Figure 5 and Figure 6, we plot the CIELAB and CIE 

Delta E 2000 error distributions as violin plots for 4 of our 
algorithms. Inside each ‘violin’, the white dot, the horizontal 
line, the black bar and the black line indicate respectively the 
median, mean, interquartile range and 1.5 interquartile range. 
The tails of the violin plots are long because of the large 
maximum values (outliers).  The width of the violin captures the 
probability density of the error distribution [15]. Again, the 
distributions show that the Root-Polynomial Regression with the 
CIE Lab loss shows the best performance. 

 

 
Figure 5. A comparison of CIELAB error distribution of 4 methods on SFU 
Dataset. 

 
Figure 6. A comparison of CIE Delta E 2000 error distribution of 4 
methods on SFU Dataset. 

We performed the sign test [16] to establish if there is a 
statistically significant difference between the NN and LS-RP-
Lab results. Both the p-values for CIELAB and CIE Delta E 2000 
are less than 0.0001 in the 99% confidence level. The difference 
in algorithm performance is statistically significant. 

 
Now we calculate the mean CIELAB Delta E (again in the 

5-fold cross validation way) for LS-P, LS-P-Lab and NN when 
exposure changes. Since these algorithms (but not the other four) 
are known not to be invariant to exposure. To test for colour 
correction as exposure changes, we ‘train’ the 3 algorithms with 
an exposure of 1 and then test given the exposures shown (see 
the exposure factors in the first column of Table 3). That is, in 
testing, we multiply the camera response RGBs and target XYZs 
by the exposure factors. For comparison, we also demonstrate 
LS-RP-Lab results as an exposure invariant solution in Table 3. 

Table 3: Mean Delta E statistics in different exposure levels.  
Meth. 
 

Expo. LS-P 
LS-P-

Lab NN 
LS-RP-

Lab 
0.2 1.69 1.46 2.6 1.10 
0.5 1.47 1.30 1.57 1.10 
1 1.29 1.17 1.40 1.10 
2 1.91 1.75 1.92 1.10 
5 7.55 8.98 3.77 1.10 

 
In Table 3, we report the mean cross validated CIELAB 

Delta E errors as exposure changes. Clearly, as the testing 
exposure departs from 1 (the exposure level where we trained the 
regressions and the Neural Network) there is markedly worse 
colour correction performance except for LS-RP-Lab which is 
an example of exposure invariant methods. The Neural Network 
at an exposure of 5, returns very poor colour correction 
performance.  

Conclusion 
In this article, we compared the performance of a recently 

introduced neural network model with 3 regression methods: 
Least Squares, Polynomial and Root-Polynomial. Although the 
results showed that the neural network works better than the 
Least Squares Regression, it delivers poorer colour correction 
than either the polynomial or root-polynomial regressions. 
Further, consistent with prior art research, we found that the 
regression methods could be improved by a search-based 
optimisation targeted toward minimizing Delta E error. 

 
Another benefit of using the Least Squares or the Root-

Polynomial Regression models is that they are intrinsically 
exposure invariant. When we solve for the regression with 
respect to one light level, the resulting regression matrix (that 
delivers colour correction) works equally well when the light 
level changes. In contrast, the Neural Network model does not 
generalise to different exposure conditions. Indeed, as the light 
level changes the NN we tested delivers poor colour correction 
performance. 
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