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Abstract
Contrast sensitivity functions (CSFs) characterize the sen-

sitivity of the human visual system at different spatial frequen-
cies. However, little is known about CSFs at luminances above
1000 cd/m2, especially for color. Here, we measured con-
trast sensitivities at background luminances from 0.02 cd/m2

to 7000 cd/m2 and for three color directions (black-white or
achromatic, red-green, and yellow-violet). Stimuli were Gabor
patches of various spatial frequencies (0.125 to 6 cpd), displayed
on a custom-built high dynamic range display (peak luminance:
15,000 cd/m2). We found that achromatic contrast sensitivity has
an inverted U-shape as a function of background luminance, with
peak sensitivity at 200 cd/m2, while red-green and yellow-violet
contrast sensitivities were monotonic functions of background lu-
minance, saturating at 200 cd/m2. Based on these measurements,
we developed a model that predicts contrast sensitivity for the av-
erage observer. This model is intended for applications in high
dynamic range imaging.

Introduction
Spatial vision refers to the ability to see variations of im-

age intensity across space; it is one of the basic elements in our
understanding of human vision. Existing work has largely fo-
cused on stimulus visibility as a function of spatial frequency
[4, 18, 7, 14, 16, 13, 3]. A typical experiment measures the
minimum contrast required to detect a target stimulus (contrast
threshold), which indicates the sensitivity of the visual system
to that spatial frequency (contrast sensitivity); the value of con-
trast sensitivity as a function of spatial frequency is known as
the contrast sensitivity function (CSF). See [20] for a model and
comprehensive review of achromatic contrast detection.

However, little is known about contrast sensitivity at very
high and very low luminance levels. For achromatic con-
trast, measurements exist for luminance up to approximately
1000 cd/m2 [19, 12]; no measurements exist for color contrast
at such extreme levels.

Here, we describe contrast sensitivity over a wide range of
frequencies, colors, and luminances. We also present a compu-
tational model of contrast sensitivity for an average (standard)
observer. As such, our data and model together inform how the
visual system operates at the very high and low luminance lev-
els that high dynamic range (HDR) displays can reach. See [22]
for a more detailed description of our work, including additional
experiments.

Contrast Detection Experiment
We measured contrast thresholds for target stimuli with

in three color directions and at luminances ranging from
0.02 cd/m2 (low mesopic) to 7000 cd/m2 (high photopic).

Stimuli
The stimuli were Gabor patches created by multiplying a

Gaussian envelope with a sinusoidal grating centered at the peak

of the Gaussian (Fig. 1). The gratings were of spatial frequen-
cies f = 0.5, 1, 2, 4, or 6 cycles per degree of visual angle (cpd),
and the width of the Gaussian envelope was σ = 0.5 f−1 vi-
sual degrees; thus, all stimuli showed the same number of cycles
(‘fixed-cycles’), but varied in size as a function of f . Such stim-
uli allowed us to treat the visible number of cycles, and therefore
stimulus size, as an additional parameter for modeling.

The Gabors were modulated around a neutral grey (white)
that was metameric with D65 (CIE 1931 x, y = 0.3127,
0.3290). Color modulations were defined in Derrington-
Krauskopf-Lennie (DKL) space [6], whose cardinal directions
correspond to combinations of cone responses: achromatic (L+
M), red-green (L−M), and yellow-violet (S− (L+M)). DKL
space allows a device-independent definition of the chromatic
stimulus modulations, and thus, comparisons with CSF measure-
ments in literature.
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Figure 1: Fixed-cycles stimuli. Width of the Gaussian envelope
was half of the wavelength, σ = 0.5 f−1 (deg).

Apparatus
Stimuli were displayed on two custom-built HDR displays,

identical except for peak luminance (Liverpool: 4,000 cd/m2;
Cambridge: 15,000 cd/m2). Each display consisted of an LCD
panel (9.7”, 2048×1536 px iPad 3/4 retina display; product code:
LG LP097QX1) and a DLP projector (Optoma X600 in Cam-
bridge, Acer P1276 in Liverpool; both 1024×768 px). We re-
placed the backlight of the LCD with the DLP [17]; see Fig. 2.
We removed the color wheel of the DLP, tripling its maximum
brightness, and introduced a Fresnel lens (focal length: 32 cm)
behind the LCD to direct light towards the observer. The maxi-
mum contrast of the display was 1,000,000:1.

The display was calibrated and driven by custom software
and Psychtoolbox [9]. For geometric calibration, we found ho-
mographic and mesh-based transformations that best mapped be-
tween DLP and LCD pixel coordinates. We used software com-
pensation to handle spatial non-uniformity.

For color calibration, we converted the spectral emissions
of the display (Fig. 2) to L-, M-, and S-cone responses [5]. For
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Figure 2: Top. Schematic diagram of the general HDR display
design. Lower left. Emission spectra of the displays. Lower
right. Photograph of the HDR display.

the LCD, we fitted the responses to a gain-offset-gamma display
model [2]; for the DLP, we used a 1-dimensional look-up table.

Using spatio-temporal dithering on the LCD and bit-
stealing on the DLP extended the bit-depth of the display to 10
bits per color channel. The target image was factorized into DLP
and LCD components such that their product formed the desired
image [17]. The display driver was written in the OpenGL shad-
ing language (GLSL) to factorize and render images in real-time.

Observers
Twenty-one color-normal observers with normal or

corrected-to-normal visual acuity participated in the experi-
ment (mean age = 30.0). All provided informed consent, in
accordance with respective University Ethics Committees.

Procedure
The experiment was grouped into sessions by mean lumi-

nance, l = 0.02, 0.2, 2, 20, 200, 2000, 7000 cd/m2. For sessions
at 0.02 and 0.2 cd/m2, observers adapted to a darkened room for
5 to 10 minutes prior to starting, and remained in the room until
the end of the session. Within a session, spatial frequencies and
color directions were interleaved in a random order.

Observers were seated 91 cm from the HDR display, which
subtended 12.5◦× 9.4◦. Head position was stabilized with a chin
rest, but observers were allowed to move their eyes in order to
examine stimuli. All viewing was binocular.

Measurements were made using a 4-alternative-forced-
choice procedure, in which observers indicated the quadrant of
the display that contained a Gabor patch. The stimulus was posi-
tioned at 3.77◦ eccentricity, and the contrast was determined us-
ing a QUEST procedure [21]. The stimulus was displayed until
response; between trials, a noise mask was presented for 500 ms.

Results
Figure 3 shows the results. At luminances of 2 cd/m2 and

higher, the contrast sensitivities showed a classic band-pass re-
sponse, with peak response at 1 to 2 cpd. The gradual change
from a low-pass shape at 0.02 cd/m2 and 0.2 cd/m2 to the typical
band-pass shape above 0.2 cd/m2 is similar to the results of [19].
It is likely that measuring frequencies below 0.5 cpd would have
revealed a band-pass shape at all luminances.

Figure 4 recasts the data as a function of background lu-
minance. For achromatic stimuli, contrast sensitivity followed

an inverted U-shape, with the lowest sensitivity at 0.02 cd/m2, a
peak at 20-200 cd/m2, and low sensitivity at luminances above
200 cd/m2. Indeed, the decrease at high photopic levels indicates
a previously unreported failure of Weber’s law; this is likely be-
cause other authors [19] only measured up to 1,000 cd/m2.

This luminance dependence interacted with spatial fre-
quency, such that maximum sensitivity occurred between 20-
200 cd/m2 for 1-2 cpd where observers could reliably detect a
Gabor patch of 2-3% contrast. For red-green and yellow-violet
modulations, contrast sensitivity rose as a function of luminance,
reaching a maximum at around 200 cd/m2. A decrease in peak
sensitivity was only observed at the lowest frequency.

Spatiochromatic Model

Achromatic CSF
We modeled the achromatic CSF as a log-parabola [1, 15,

20, 8]

log10S( f ;Smax, fmax,b) (1a)

= log10 Smax−
(

log10 f − log10 fmax

0.5·2b

)2
(1b)

where Smax was the peak sensitivity, expressed as the inverse of
cone contrast, and fmax was the peak frequency in cpd. b was
the bandwidth in dB, defined as the full-width at half-maximum.
Smax and fmax were themselves modeled as functions of lumi-
nance:

log10 Smax(l) = 1.705 exp

[
−
(

log10 l−1.867
4.444

)2
]

(2a)

fmax(l) = 1.663 exp

[
−
(

log10 l−3.045
4.008

)2
]

(2b)

We set b = 1.036, the median across individuals fits to each
luminance level. The fits are shown in Fig. 5.

Chromatic CSFs
We modeled the chromatic CSF as a truncated log-parabola

to describe the low-pass behaviour of chromatic contrast sensi-
tivity measurements (Fig. 3):

S′( f ;Smax, fmax,b)=

{
Smax if f < fmax

S( f ) otherwise
(3a)

where S( f ) was the log-parabola (Eq. 1). For the red-green CSF,

log10 Smax(l) = 2.715 exp

[
−
(

log10 l−2.663
4.757

)2
]

(4a)

fmax(l) = 0.06069log10 l +0.3394 (4b)

and b = 1.085. For the yellow-violet CSF,

log10 Smax(l) = 1.843 exp

[
−
(

log10 l−2.696
3.688

)2
]

(5)

fmax = 0.4095 and b = 1.097.
The fits were good at low spatial frequencies, but at 4 and 6

cpd, the measured sensitivities were higher than those predicted
by Eqs. 3, 4 and 5 (Fig. 5). As a purely chromatic mechanism
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Figure 3: Contrast sensitivity measurements as a function of frequency.
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Figure 4: Contrast sensitivity measurements as a function of luminance.

is unlikely to detect contrast at spatial frequencies greater than
2 cpd [11], contrast sensitivity at 4 and 6 cpd likely indicated
intrusion by the achromatic mechanism. This is likely because
the stimuli were designed to be isoluminant for the average ob-
server, not for each observer. See [22] for a model extension that
accounts for luminance intrusion.

Spatial Summation

Spatial patterns are easier to detect when they are larger on
the retina. To account for this effect, we adapted the model of
spatial summation from [16], which describes contrast sensitivity
as a saturating function of area:

SA( f ,a;Smax, fmax,b,a0, f0)

= S( f ;Smax, fmax,b)

√
a f 2

a0 +a f0 +a f 2 ,
(6)

where S( f ;Smax, fmax,b) was our CSF (Eq. 1, 3), f was the spa-
tial frequency in cpd and a was the stimulus area in deg2. As
our stimuli did not have sharply defined boundaries, we approx-
imated a with πσ2, where σ was the standard deviation of the
Gaussian envelope. a0 and f0 were free parameters that con-
trolled the rate of saturation.

To validate the model, we measured contrast sensitivities
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Figure 5: Contrast sensitivity predictions as a function of background luminance. Red-green and yellow-violet CSFs include additional
data at f = 0.125,0.25◦ for l = 0.02,20,7000 cd/m2 from [22].

at 20 cd/m2 for Gabor patches with envelopes σ = 0.25 f−1,
0.5 f−1, 1 f−1, and 2 f−1. We set a0 = 114 and f0 = 0.65 for the
achromatic CSF, and a0 = 40 and f0 = 0.65 for both chromatic
CSFs [16]. The model fits were good for achromatic contrast
sensitivities, as well as for chromatic sensitivities at f ≤ 2 cpd,
though predictions were less accurate for chromatic channels at
4 and 6 cpd due to luminance intrusion (Fig. 6).

To extend the spatial summation model to other luminances,
we assumed little interaction between the effects of luminance
and stimulus size [10]. We modeled the effect of luminance as
the ratio between the sensitivity at the desired luminance l (Eq.
1) and the sensitivity at 20 cd/m2 (for which we fitted the spatial
summation model, Fig. 6):

SAL( f , l,a) = γ SA( f ,a) =
SL( f , l)

SL( f ,20)
·SA( f ,a) . (7)

SA was the area-dependent CSF (Eq. 6), and γ was the gain
parameter. The parameters of SL( f ,20) were Smax = 447.5,
fmax = 1.105, b = 0.6764 for the achromatic CSF, Smax = 2780,
fmax = 0.1321, b = 1.832 for the red-green CSF, and Smax =
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Figure 6: Contrast sensitivity predictions at fixed stimulus sizes.

555.7, fmax = 0.04399, b = 2.397 for the yellow-violet CSF.

Preliminary results show that the spatio-chromatic model
with spatial summation is promising. With only one additional
gain parameter, Equation 7 made reasonable predictions of data
from [23] (Fig. 7). As [23] used different stimulus and exper-
iment design from our experiment, it is encouraging that the
model makes reasonably good predictions. See [22] for details
of predicting other datasets.

Conclusions
We measured contrast sensitivities over a wide range of fre-

quencies, colors, and luminances. For achromatic contrast, we
replicated known findings, such as the Weber law at photopic lev-
els. However, we also discovered a failure of Weber law: contrast
sensitivity decreased at luminances above 200 cd/m2. Chromatic
contrast, on the other hand, increased monotocally with back-
ground luminance, asymptoting at 200 cd/m2. We do not have a
mechanistic explanation for this difference at the moment. Re-
gardless, our dataset provides an important resource for future
work on HDR displays.

We developed a model to account for our data, and proposed
an extension to account for spatial summation. While the there
is still work to be done, preliminary results are promising.
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