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ABSTRACT

Both humans and computational methods struggle to discriminate the depths of objects hidden beneath foliage. However, such
discrimination becomes feasible when we combine computational optical synthetic aperture sensing with the human ability to
fuse stereoscopic images. For object identification tasks, as required in search and rescue, wildlife observation, surveillance,
and early wildfire detection, depth assists in differentiating true from false findings, such as people, animals, or vehicles vs.
sun-heated patches at the ground level or in the tree crowns, or ground fires vs. tree trunks. We used video captured by a drone
above dense woodland to test users’ ability to discriminate depth. We found that this is impossible when viewing monoscopic
video and relying on motion parallax. The same was true with stereoscopic video because of the occlusions caused by
foliage. However, when synthetic aperture sensing was used to reduce occlusions and disparity-scaled stereoscopic video
was presented, whereas computational (stereoscopic matching) methods were unsuccessful, human observers successfully
discriminated depth. This shows the potential of systems which exploit the synergy between computational methods and
human vision to perform tasks that neither can perform alone.

Introduction
Occlusions caused by vegetation can severely hinder aerial operations, such as search and rescue, wildfire detection, wildlife
observation, security, or surveillance. For example, it is almost impossible to detect a standing person in the thermal drone
recording shown in Fig. 1b (in the blue box). One of the most promising solutions to this problem is synthetic aperture
sensing1–17, in which multiple images taken at different positions are computationally combined to simulate an advanced
(virtual) sensor of a wider (synthetic) aperture. An example result of such an integral image is shown in Fig. 1b, in which
a standing person can be much more easily identified (in the blue box). Here we show the result for thermal imaging, but
synthetic aperture sensing is equally applicable to radar18–20, radio telescopes21, 22, interferometric microscopy23, sonar24, 25,
ultrasound26, 27, LiDAR28, 29, and optical imaging30–32.

Figure 1. (a) Optical synthetic aperture sensing principle. Registering and integrating multiple images captured along a
synthetic aperture of size a while computationally focusing on focal plane F at distance h will defocus occluders O at distance
o from F (with a point-spread of b) while focusing targets on F. (b) Conventional thermal aerial image of woodland with an
occluded person on the ground (blue box). (c) The same scene as (b) but with suppressed occlusion by integrating 30 thermal
images captured along a synthetic aperture of a=14 m at h=26 m AGL. (d) An ambiguous example of an integral image in
which true (lying and standing persons in the green box) and false (heated ground patches in red boxes) detections can be made.
They cannot be differentiated by other discriminators, such as shape.



An optical synthetic aperture image is formed by superimposing regular images taken with small-aperture optics so that the
depth of interest (e.g., the ground level) is brought into focus. This is illustrated in Fig. 1, in which a drone captures multiple
images in a fly path over a woodland. The pixels from each camera image are projected onto a hypothetical (virtual) focal plane
at distance h from the synthetic aperture’s plane (i.e., at the altitude of the flight path) — see the cyan lines projecting on the
ground plane in Fig. 1a. Even though the object of interest is occluded in some camera images (dashed lines in Fig. 1a), other
views will reveal the object under the foliage. Aligning the focal plane with the forest floor and repeating this for all of its
locations results in a shallow depth-of-field integral image of the ground surface (cf. Figs. 1c,d). It approximates the signal of a
physically impossible optical lens of the size of the synthetic aperture. The optical signal of out-of-focus occluders, such as the
tree crowns, is suppressed (blurred) — see pink lines projecting on the ground plane in Fig. 1a, while focused targets on or near
the ground are emphasized. Computation of the integral images can be achieved in real-time and is wavelength-independent.
Thus, the method can be applied in the visible range, near-infrared range, or far-infrared range (thermal) to address many
different use cases. It has previously been explored in search and rescue with autonomous drones8, 9, bird census in ornithology5,
and through-foliage tracking for surveillance and wildlife observation12, 14.

The main limitation of optical synthetic aperture sensing is that its results can be ambiguous if true targets cannot be
differentiated from false targets on the basis of clear features such as shape. An example of this is illustrated in Fig. 1d
where strong thermal signatures of multiple potential targets near the forest floor are visible. While some of them are the
results of sun-heating, only two are the true thermal signatures of people. With two-dimensional information alone, a clear
distinction is impossible. However, the height differences between people and the forest floor could serve as an additional
cue if it can be preserved in the final image. A computational 3D reconstruction from the sampled multi-view aerial images
or the corresponding integral images is currently impossible with state-of-the-art methods in the case of strong occlusion1,
as shown and explained in the Appendix. Airborne laser scanning, such as LiDAR, has clear advantages over image-based
3D reconstruction when it comes to partially occluded surfaces, but it also has clear limitations1: First, it is not sensitive to
the target’s emitted or reflected wavelengths. Thus, far-infrared (thermal) signals, for instance, cannot be detected. Second,
the point clouds cannot be scanned in high resolution and in real-time due to mechanical laser deflection and high processing
requirements. This makes laser scanning unsuitable for many applications that require instant results and high resolutions.

In this article, we explore the synergy between optical synthetic aperture sensing and the human’s ability to sense depth in
stereoscopic images. We introduce binocular disparity to the optical synthetic aperture images, which then serves as additional
cue and discriminator in identification and classification tasks. This enables tasks that cannot be completed with human or
computer vision alone. To prove that binocular depth perception is possible for thermal optical synthetic aperture images, which
are unnatural for human vision, we test whether human observers can infer depth from such images and complete high-level
tasks.

Let us theoretically analyze under what conditions the visual system can fuse and discriminate depth differences between
small and occluded targets, such as standing humans (up to 2 m) occluded by tall trees (15–20 m), seen from high altitudes
(20–30 m for drones flying above tree level). First, objects that differ much in height (e.g., tree crowns vs. targets on the ground)
and are located closely together in the image will result in large disparity gradients (disparity difference divided by the distance
between two objects). If the disparity gradient exceeds the limit of human visual perception, diplopia33 will result, making
stereoscopic function impossible. Second, if objects are seen from relatively far distances, and their height difference is small,
the disparity difference between them may fall below the stereo acuity limit34–36, which makes depth discrimination impossible.
The latter problem can be addressed by enlarging (scaling) disparities by assuming large viewing baselines (e.g., much larger
than a typical inter-ocular distance of 6.5 cm).

Fig. 2 illustrates these two problems for the unoccluded case. Let us consider the some geometric constraints: For a given
screen distance v, inter-ocular distance e, and object disparity d, the perceived object distance z is given by [37, ch. 9.2.2]

z =
ev

e−d
. (1)

It follows that

d =
e(z− v)

z
. (2)

Applying Eqn. 2 to compute the disparity on the focal plane at distance v f (equals h in Fig. 1a), camera baseline e f on the
synthetic aperture plane, and target distance z f = v f −ht (ht is the target height) from the synthetic aperture plane; and then
scaling the resulting disparity to the display parameters to determine the perceived object distance on the display zd using
Eqn. 1 results in

zd =
edvd

ed −
vd tan(FOVd/2)e f (z f −v f )

v f tan(FOV f /2)z f

, (3)

where ed and vd are the inter-ocular distance and the distance of the display image plane, and FOVd and FOVf are the fields of
view of the display and camera, respectively.
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Figure 2. The increase in perceived target height (PTH) with an increasing stereo baseline for three unoccluded objects of
different heights (solid plots): tree crowns, lying person, and standing person. Stereo acuity sets the just-detectable depth
interval (JDDI) required for perceiving height differences (dashed lines). Both the conservative (0.3 acrmin) and the realistic
(6 arcmin) JDDIs are plotted. Disparities, or rather disparity gradients (numbers next to the markers), limit the maximum length
of the baseline above which objects cannot be fused due to diplopia. Consequently, the grayed region represents the range in
which depth can be perceived (assuming, for example, a disparity gradient limit of 1.0 and a stereo acuity of 6.0 arcmin).
Display disparities are given with respect to the ground level and for 60 arcmin object distances. For this plot we assume the
capturing and display parameters provided in the Methods section.

Consequently, the perceived target height is
PT H = vd − zd . (4)

The just-detectable depth interval is given by38, 39

JDDI =
dγ v2

d
ced + vd

, (5)

where dγ is the stereo acuity (in arcmin) and c = 3437.75 (1 radian in arcmin).
Now, considering Fig. 2 and the above geometric constraints, it can be seen that the perceived target height (PTH, y-axis)

increases with an increased stereo baseline (x-axis). The solid lines show the increase in perceived target height for three
different object types: tree crowns at 21 m (green), a lying person at 0.3 m (blue), and a standing person at 1.8 m above the
surface (orange). The numbers above the markers indicate the corresponding display disparities and disparity gradients for
a given stereoscopic display (assuming minimal object distances of 60 arcmin or 1 deg). The just-detectable depth interval
(JDDI) threshold (dashed lines) varies between individuals. With poorer stereo acuity, larger depth intervals are required for
perceiving height differences. Under these conditions and assuming an inter-ocular distance of 6.5 cm (the leftmost point in
Fig. 2), the height differences between target objects on the ground are unlikely to be detected — even if excellent stereo acuity
is assumed. Larger baselines improve the ability to discriminate depth, but they also increase the disparity gradients. If the
disparity gradient is excessively large (e.g., 133 - 340, outside the gray box in Fig. 2), the stereo images cannot be fused.

The third problem is that view-dependent occlusion in the stereo pairs causes binocular rivalry. The rivalry appears when
radically different images are presented to each eye, and when it is too strong, it prevents stereoscopic fusion41, 42. Examples
are illustrated in Fig. 3. It has been found that, if partially occluded object fragments are horizontally aligned and match a
continuous surface, our visual system tends to extrapolate a coherent surface at an incorrect depth43. Horizontally aligned
continuous object surfaces, however, are usually not present under realistic occlusion conditions such as ours. Although depth
cannot be reconstructed computationally, we show that surface continuity can be reconstructed computationally, which enables
human depth perception.

In this approach, we suppress occlusion by means of optical synthetic aperture sensing, as explained above and illustrated
in Fig. 1. This also implies that we can compute stereoscopic integral images with suppressed occlusions for a given synthetic
aperture of size a and for two different viewing positions within a and separated by a given baseline d. While for the monoscopic
case, the center of the synthetic aperture is used as the reference perspective of the resulting integral image, the two baseline-
shifted viewing positions are applied for the stereoscopic case. This results in two integral images that reveal a parallax for all
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Figure 3. Stereoscopic thermal aerial recordings (left- and right-eye image pairs) of a sparsely occluded, person standing with
arms outstretched to the sides (blue box) in woodland. View-dependent partial (a) or full (b) occlusion in stereo pairs cause
binocular rivalry and prevent stereo fusion and consequently depth perception.

objects not located on the focal plane. With a large d (larger than inter-ocular distance), we upscale disparities so they do not
fall below the limits of stereo acuity. The larger a, the more occlusion is suppressed, and binocular rivalry and extreme disparity
gradients caused by tree crowns can consequently be reduced. However, a wide synthetic aperture also leads to a shallow depth
of field and thus to defocus blur and lower contrast. The reduction in contrast and the loss of high spatial frequencies result in
degradation of stereo acuity44. This is illustrated in Fig. 4.

Figure 4. Integral stereo pairs of the scenario shown in Fig. 3, where the synthetic aperture a applied is smaller (a) or wider
(b). The larger a, the more shallow the depth of field. This leads to a reduction in sharpness and contrast.

With the results presented below, we make three main findings: First, occlusion removal in stereoscopic images is of
fundamental importance for object identification tasks. Stereoscopic perception alone leads to no significant improvement
in the presence of occlusions. In fact, in all test cases with occlusions, observers’ performance for stereoscopic images was
comparable to that for monoscopic images, and it was not improved by the introduction of motion parallax. Second, while
discriminating depth computationally (e.g., using 3D reconstruction from sampled multi-view images) is currently impossible
with state-of-the-art methods in the case of strong occlusion, it becomes feasible visually by fusing binocular images with
scaled disparities, which can be easily generated with optical synthetic aperture sensing.

Third, the sampling and visualization parameters (best baseline and synthetic aperture size), although restricted by the
acuity limits and disparity gradients (refer to Fig. 2), were found to be fairly consistent across all test cases evaluated.

Our findings are discussed in Summary and Conclusion. They demonstrate that it is possible to discriminate the depths of
objects seen through foliage on the basis of optical synthetic aperture imagery captured with first-person-view (FPV) controlled
drones or a manned aircraft. It has the potential to support challenging search and detection tasks in which occlusion caused
by vegetation is currently the limiting factor. This includes use cases such as search and rescue, wildfire detection, wildlife
observation, security, and surveillance.

Results
We test observers’ ability to (a) identify objects and (b) discriminate depth in thermal recordings captured by a drone at 26 m
above ground level (AGL), with some of the objects hidden under foliage.
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The experiments were conducted for four different scenes (cf. Fig. 5): an open field without vegetation (scene 1) with a
standing (object 1) and a lying (object 2) person; a forest (scene 2) with one easily detected (based on shape features) person
(object 1) standing with arms outstretched to the sides; a denser forest (scene 3) with a standing (object 1) and a lying (object 2)
person; and a sparser forest (scene 4) with a standing person (object 1) and a 30 cm high (roughly the height of a lying person)
artificial object (object 2) of similar shape, footprint, and temperature as the standing person.

Figure 5. Four test scenes used in the experiments with different occluded (scene 1) and unoccluded (scenes 2-4) target
objects of various heights. A wide synthetic aperture suppresses occlusion in the resulting integral images. In all conditions,
users could change the horizontal perspective to find less occluded views and use motion parallax as an additional depth cue.

These recordings were then computationally combined to integral images (as explained in the Introduction, cf. Fig. 1a) and
presented to 21 observers (11 female, 10 male, average age: 36) via a head-mounted stereoscopic display. At all times, the
observers were able to use a game controller to interactively change the horizontal viewing perspective within the limits of the
synthetic aperture a covered. This allowed them to find less occluded viewing directions and rely on motion parallax when
discriminating depths. We changed visualization parameters, such as aperture size a for integration and (camera) baseline e f
for stereo-pair computation while asking the observers to describe the quality of the perceived images. The synthetic focal
plane was set to the depth of the forest floor. Details on how the field and user experiments were carried out are provided
in the Methods section. Detailed results, the raw and the cleaned data, and the software systems used for our filed and user
experiments are available in the supplementary material (see Code and Data Availability).

First Experiment: Object Identification
In the first experiment (object identification, cf. Fig. 6), we asked the observers to identify (i.e., to detect — not to classify) all
objects that appeared to be just above the forest floor in our scenes 2-4 and to report on how confident they were on a scale
from 0 (not confident at all) to 10 (very confident) in their decisions. We asked to detect objects rather than people to avoid any
bias in this task. Since the detection of unoccluded objects is trivial, scene 1 was skipped in this experiment. This task was
repeated for regular monoscopic images without disparity (mono), for regular stereoscopic images at different baselines e f
(stereo), and for stereoscopic integral images at different synthetic apertures a and different baselines e f (SA stereo).

Fig. 6 illustrates how often and with what level of confidence our target objects (objects 1 and 2) were detected among all
identifications. See the supplementary material for details on which objects were identified. Note that confidence values (the
bottom row) were counted as negative if our target objects were not identified. Thus, the negative values indicate misplaced
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confidence in identifications.
Stereoscopic depth cues (yellow bars in Fig. 6) improved the performance for scene 2, and boosted the confidence across all

the scenes. However, when detecting a shorter and more occluded object 2 in scenes 3 and 4, stereoscopic depth cues alone
did not improve the performance over monoscopic viewing (blue bars). Only when stereoscopic viewing was combined with
synthetic aperture (green bars in Fig. 6, SA stereo), did the performance and confidence improve for that object.

This indicates that occlusion removal leads to a measureably better detection of objects and, consequently, to an increase in
correct identifications. This method of presentation is still hindered by the lack of distinctive features, occlusions and resulting
binocular rivalry. However, it offers marked improvement over monoscopic and stereoscopic presentations.

Since our object identification experiment was a detection and not a classification task, true and false positive rates cannot
be determined.

Figure 6. Object identification performance (solid bars, top row) and confidence values (dotted bars, bottom row) for test
scenes with occlusion (scenes 2-4). We measured how often and with what confidence our target objects (object 1 and object 2)
were detected among all identifications and across all observers. The error bars denote 95% confidence intervals (based on the
binomial distribution for performance and normal for observers’ confidence).

Figure 7 illustrates the ranges of baselines e f and synthetic apertures a for which our observers performed best. Note that
the best parameters varied between the observers and the scenes. Therefore, the color-coded numbers indicate the count of
overlapping ranges across all observers (i.e., how often a parameter pair was considered best). Consistently across all three
scenes, e f =1–2 m and a=1–4 m were found to be optimal. Note also that practical GPS positioning was too imprecise for
sampling these parameters below 1 m.

Second Experiment: Depth Discrimination
In the second experiment (depth discrimination, cf. Fig. 8), we asked observers to indicate the highest object (which was
always the standing person, object 1, in our experiments) of those identified and again report how confident they were in their
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Figure 7. Ranges of baselines e f and synthetic apertures a for which our observers performed best in the object identification
task. Note that observers performed best over a range of parameters rather than for exactly one pair. The color-coded numbers
indicate the count of overlapping ranges across all observers (i.e., how often a parameter pair was considered best). The units of
e f and a are in meters.

decisions. Here, we considered all four test scenes and varied a for the scenes with occlusion (scenes 2–4) and e f for all scenes.
The multi-view depth reconstruction results in the Appendix reveal that computational depth discrimination is infeasible for our
occluded scenes.

Our observers were unable to discriminate depth in monoscopic images, even for the simplest case that is, without occlusion
(scene 1). Not even motion parallax was sufficient to enable them to determine depth differences. We assume that the
monoscopic and parallax depth cues were simply too subtle for aerial viewing conditions (see also the most extreme horizontal
perspectives of scene 1 in Fig. 5). When stereoscopic viewing was enabled (orange bars in Fig. 8), all observers could
discriminate depth with good accuracy in the scene with no occlusion (scene 1). In the scenes with occlusions (scenes 2–4), we
observed a consistent improvement in performance when stereoscopic viewing was supported. The persistently low confidence
scores (dotted orange bars in Fig. 8), however, underline a remaining strong uncertainty. A significant improvement in both
performance and confidence was observed when stereoscopic viewing was used together with synthetic aperture sensing (green
bars in Fig. 8).

Fig. 9 illustrates the ranges of baselines e f and synthetic apertures a for which our observers performed best. As for the
results presented in Fig. 7, observers performed best over a range of parameters rather than for exactly one pair. The color-coded
numbers indicate the count of overlapping ranges across all observers (i.e., how often a parameter pair was considered best).
Consistently across all occluded scenes and in line with the theory explained in Fig. 7, we found e f =1-2 m and a=1-4 m to be
optimal. For the case without occlusion (scene 1), however, the average of best baselines was significantly higher than for the
cases with occlusion. While larger baselines help in discriminating depths, they also make the left- and right-eye views more
different from each other. Therefore, in the cases with occlusions in which the views are likely to vary, the observers did better
with smaller baselines.

The occlusion differences between the left and right views are unavoidable even with the synthetic aperture filtering.
Remaining occlusion that appears stronger in one view than in the other leads to binocular rivalry that negatively affects

depth perception (cf. Fig. 10). This is not the case for scene 1 without occlusion and the reason why the observers were able to
increase the baseline up to the disparity gradient limit (cf. Fig. 2).

Methods
For our field experiments, we used a real-time kinematics (RTK) enabled DJI Mavic 3T drone with a 640×512@30 Hz thermal
camera (61 deg FOV, f/1.0, 5 m-infinity focus). We developed a real-time imaging application using DJI’s Mobile SDK 5 that
runs on the DJI RC Pro remote controller (Android 10). It supports real-time optical synthetic aperture scanning, occlusion
removal, and interactive monoscopic and stereoscopic visualization. Visual results during flight can be presented either live on
the remote controller’s display (monoscopic) or on a head-mounted display attached to the remote controller’s HDMI port
(monoscopic or stereoscopic). See Code and Data Availability section for how to obtain the imaging application. The data of
our four test scenes was recorded at a constant altitude (26 m AGL) by scanning a 1D synthetic aperture over a linear flight path
of 14 m and by choosing a sampling distance (0.5 m) that was well above the GPS error. Consequently, a total of 29 thermal
images were captured per scan. For a flying speed of 15 m/s and an imaging speed of 30 Hz, this takes approximately 1 s, and
the results are instantly displayed. As explained in the Introduction, the scanned images are computationally combined to
generate stereoscopic integral images, depending on the parameters chosen: synthetic aperture size a (where a=14 m is the
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Figure 8. Depth discrimination performance and confidence for all test scenes. We measured how often and with what level of
confidence the true highest object (object 1) was the highest object identified. The error bars denote 95% confidence intervals
(based on the binomial distribution for performance and normal for observers’ confidence).

maximum) and baseline e f (where e f =14 m-a is the maximum). The synthetic focal plane was always kept on the ground (i.e.,
h=26 m, cf. Fig. 1a), since focus shifts of the order of the target heights (e.g., 0–2 m AGL) did not significantly change the
image content when observed from a large distance of 26 m. Our test sites for scenes 2–4 were forested to various degrees with
conifers and/or a variety of other tree species. The open field site for scene 1 was a freshly harvested corn field.

All image data captured during the field experiments was recorded by the imaging application on the drone’s remote
controller and was used later in our offline user experiments. For the experiments, we developed a visualization application
that runs on desktop PCs or laptops (Microsoft Windows 11) and that reproduces the same visual experience as the imaging
application during flight. It presents the image data to our observers via a head-mounted stereoscopic display without requiring
them to be in the field during the actual scans. See Code and Data Availability section for how to obtain the visualization
application and the data used for our survey. The head-mounted stereoscopic display used was a 1920×1024@60Hz Enmesi E
812 (68 deg diagonal FOV, 2485.2 mm focal distance, 152× magnification, 10 mm eyebox, internally using two 2.1" 1600 x
1600 IPS microdisplays at up to 1058 PPI). Per-observer diopter settings were adjusted on the display before each session. A
PowerA Nintendo Switch USB wired game controller was used to change the viewing perspective interactively.

We tested a total of 21 observers (11 female, 10 male, average age: 36, the youngest 14, the oldest 67, recruited through the
authors from all social classes – ranging from students over workers through pensioners in Austria). Note that stereoscopic
depth perception is considered to be fully developed at the age of 1245. As explained in the Results section, we first performed
the object identification task, then the depth discrimination task. On average, a survey round took a total of 45 minutes
per participant. The observers were not informed about study goals. We have intentionally chosen the following order of
experiments: mono, stereo, SA stereo – since our hypothesis was that object identification and depth discrimination becomes
easier with the introduction of stereoscopic depth queues and occlusion removal. Any other order would have incorrectly biased
our results since subjects would have gained knowledge about objects and depths detected under simpler conditions before
approaching them under more difficult conditions (e.g., SA stereo) before stereo, stereo before mono, or SA stereo before mono)
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Figure 9. Ranges of baselines e f and synthetic apertures a for which our observers performed best in the depth discrimination
task. Note that observers performed best within a range of parameters rather than in exactly one pair. The color-coded numbers
indicate the count of overlapping ranges of all observers (i.e., how often a parameter pair was considered best). Note also that
for the unoccluded scene (scene 1) only e f is considered as a synthetic aperture for occlusion removal is not required. All units
are in meters.

for the same scene. In between the scenes, we displayed a neutral stereo pair to set stereoscopic fusion back to the same initial
condition. While feedback from the participants was recorded in a questionnaire, all adjusted parameters were automatically
recorded and stored by our application. To explore optimal visualization parameters, we incrementally increased a and e f
(starting with a=0 and e f =0) while repeating each experimental trial of each task (object identification or depth discrimination)
for each scene until the depth perception reported deteriorated. If both parameters were to be changed, we always started with
a, followed by e f . Participants were, at all times, able to interactively change their viewing positions using a game controller,
and the time for stereo fusion was always allowed.

Summary and Conclusion
Identification and classification of objects that are strongly occluded by vegetation is aided significantly by the ability to
discriminate their depths, which provides important additional information to tell true from false findings, for instance, people,
animals and vehicles from sun-heated patches of open ground or the tree crowns, or ground fires from tree trunks. This cannot
be accomplished with conventional monoscopic or multi-view aerial images — neither computationally nor by visual inspection
of images or video.

While neither human nor computer vision can perform this task on its own, we show that the synergy of both makes it
possible. We have demonstrated this based on three main findings: First, occlusion removal in stereoscopic images is necessary
to identify objects occluded by foliage. This is because binocular images cannot be fused when one of them contains occlusions.
Second, the combination of stereoscopic presentation and synthetic aperture imaging gives the highest accuracy of depth
judgments when discriminating depths. Our observers found the task (of selecting the tallest object) impossible to complete
in traditional monoscopic presentation, even in the presence of motion parallax. Stereoscopic presentation made the task
straightforward for non-occluded object, but very difficult in the presence of occlusions.

Our third finding is that the relevant sampling and visualization parameters (best camera baseline and synthetic aperture
size) are consistent throughout all test cases evaluated and in line with the theory explained in Fig. 2. The ability to discriminate
depth is limited by sterescopic acuity, disparity gradient and rivalry. However, the flexibility of synthetic aperture imaging let
us choose the reconstruction parameters that navigate those limitations (as discussed in the Introduction).

While detecting depth differences computationally (e.g., using advanced multi-view 3D reconstruction) is currently
impossible with state-of-the-art methods in the case of strong occlusion1 (see Appendix), we have shown that the human visual
system can perform this task robustly. One reason for this might be our visual system’s ability to integrate partially occluded
surfaces that appear sufficiently continuous in a horizontal viewing direction43, even in the presence of binocular rivalry. While
this continuity is not given in conventional stereo pairs with dense occluders, it is enhanced in stereoscopic integral images with
wider synthetic apertures that suppress occlusion. We believe that this is the main reason why depth discrimination improved
for stereo integral images, even though binocular rivalry was not fully eliminated in cases of locally varying occlusion densities
and too wide baselines.

Wider synthetic apertures reduce occlusions, but they also lower image contrast by blending multiple reprojected images.
Therefore, for very large apertures that result in lower contrast, stereo acuity is reduced, making it more difficult to detect small
disparities. This correspond to the grayed region shown in Fig. 2 gradually shrinking, with the bottom part shifting towards the

9/14



Figure 10. Increasing binocular rivalry in integral stereo pairs with wider baseline due to locally varying occlusion density
(a=2, in this example). All units are in meters.

top. This gray region let us deduce the range of effective baselines: a small baseline results in smaller disparities, especially for
the objects that are just above the ground level. If the disparity falls below the just-detectable depth interval (JDDI in Fig. 2), no
depth difference is seen. But, if the baseline is too large, the disparity gradient may exceed the limit for binocular fusion (upper
edge of the gray box in Fig. 2), making the depth judgment also impossible. When all the factors are considered, we can find
the range of visualization parameters that provide the most reliable depth cues.

In our experiments, the observers could discriminate disparity of 12 arcmin (resulting from a height difference between a
standing and a lying person from 26 m viewing distance and at 1 m baseline, see Fig. 2) seen through foliage. The relationship
between depth discrimination precision, occlusion density, imaging, and display parameters has yet to be investigated.
Furthermore, the results in Figs. 7 and 9 indicate that it is worthwhile to explore apertures and baselines below 1 m, which
could not be investigated in this study because of imprecise GPS positioning.

Deep-learning-based image restoration methods46 can potentially compensate for the contrast and sharpness loss in the
integral images. It may also be possible to retain stereo acuity with more advanced sampling: If a drone were equipped with
two cameras at the optimum baseline distance (e f≈1 m) and the video was captured in the direction orthogonal to the baseline,
the defocus due to the synthetic aperture would affect contrast only in the vertical direction, which is less relevant to binocular
fusion. Such avenues should form part of future work.

Our findings demonstrate that human operators can detect depth differences between objects seen through foliage with
first-person-view (FPV) drones or manned aircraft, where the thermal images captured are processed in real time with synthetic
aperture sensing methods. This has the potential to support challenging search operations where occlusion caused by vegetation
is currently the main limiting factor, as is the case for search and rescue, wildfire detection, wildlife observation, security, and
surveillance. Although our experiments focused on detecting people, we believe that our findings are equally applicable to
other objects, such as occluded vehicles and buildings.

Appendix
Fig. 11 illustrates 3D reconstruction results of our four test scenes, computed with the state-of-the-art structure-from-motion
and multi-view stereo pipeline, COLMAP (version 3.9.1)47, 48.

While the occlusion-free scene 1 can be fully reconstructed from the recorded aerial images, and the height difference
between the two targets (standing and lying person) can easily be determined computationally, depth estimation fails for all
other scenes. Here, at best, only tree crowns can be partially reconstructed. Using integral images from multiple perspectives
on the synthetic aperture does not reconstruct the occluding tree structures, but an extremely noisy ground on which the targets
cannot be detected at all.

The reason for this behavior is that without occlusion removal only the unoccluded tree crowns provide consistent and
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strong image features over a sufficient number of perspectives. The appearance of image features of occluded objects below is
too inconsistent to be matched properly. With optical synthetic aperture sensing, in contrast, occlusion caused by the tree crowns
is suppressed and is therefore not reconstructed. This comes at the cost of image features of the remaining ground surface
loosing contrast and high frequencies (sharpness) in general. They become insufficient for computational stereo-matching - but
are obviously sufficient for perceptual stereo fusion.

Note that for each scene all images captured were used and that 3D reconstruction took approx. 15 min on a modern desktop
computer.

Figure 11. Multi-view 3D reconstruction results of our four test scenes. With regular aerial images (a = 0) only the upper
depth layer can be reconstructed. For the unoccluded scene 1, it contains the two targets on the ground. For all occluded scenes,
it contains –at best– the tree crowns. Yellow boxes show close-ups of of the reconstructed ground surface. If
occlusion-suppressed integral images (with a=3 in this example) are used instead of regular aerial images, targets remain
undetectable in noisy reconstructions of the ground surface. All units are in meters.
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