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Abstract

The vast majority of standard image and video content
available online is represented in display-encoded color
spaces, in which pixel values are conveniently scaled to a
limited range (0–1) and the color distribution is approxi-
mately perceptually uniform. In contrast, both camera RAW
and high dynamic range (HDR) images are often repre-
sented in linear color spaces, in which color values are
linearly related to colorimetric quantities of light. While
training on commonly available display-encoded images is
a well-established practice, there is no consensus on how
neural networks should be trained for tasks on RAW and
HDR images in linear color spaces. In this work, we test
several approaches on three popular image restoration ap-
plications: denoising, deblurring, and single-image super-
resolution. We examine whether HDR/RAW images need to
be display-encoded using popular transfer functions (PQ,
PU21, and mu-law), or whether it is better to train in linear
color spaces, but use loss functions that correct for percep-
tual non-uniformity. Our results indicate that neural net-
works train significantly better on HDR and RAW images
represented in display-encoded color spaces, which offer
better perceptual uniformity than linear spaces. This small
change to the training strategy can bring a very substantial
gain in performance, between 2 and 9 dB.

1. Introduction

Neural networks are typically trained on images represented
in display-encoded color spaces, such as BT.709 with the
sRGB non-linearity [2]. These are known as display-
encoded color spaces because they are commonly used to
drive displays. HDR images, as well as RAW images con-
taining camera sensor values, are often represented in linear
color spaces, in which the pixel values are proportional to
colorimetric, photometric or radiometric light quantities1.
Notably, linear color spaces are very far from being percep-

1The proportionality is approximate, as camera spectral sensitivity does
not allow for direct measurement of colorimetric or photometric quantities.

tually uniform [16]: the same change in physical units is
much less visible at high brightness than low. Modern per-
ceptually uniform transfer functions, such as the SMPTE
PQ (perceptual quantizer) [20] and PU21 (perceptually uni-
form transform) [17] have been developed to address this.
By way of example, according to the PQ function, a change
of 1 cd/m2 starting from near darkness (0.005 cd/m2) is over
150 times more visible than the same change starting at
100 cd/m2.

There are arguments both for and against training neural
networks with images in linear spaces. If a plain L1 or L2
loss is used to train networks for linear data, we run the risk
that the network will overfit for bright colors, and introduce
unacceptable inaccuracies for darker colors. Additionally, if
we wish to avoid visible quantization errors, pixel values in
linear color spaces must be represented with more bits than
display-encoded spaces. However, any physical phenomena
involving light, such as lens blur, motion blur, or noise, can
only be modeled in a physically plausible manner in linear
color spaces. Therefore, physically plausible image forma-
tion models for blur, noise and sampling must be defined in
linear color spaces, and by analogy, the inverse problems of
deblurring, denoising and super-resolution should also be
formulated in linear color spaces. It is unknown, however,
whether neural networks can benefit from this connection
to physical properties of linear color spaces.

In this work, we want to determine what training strategy
leads to the best results. Should we train neural networks in
display-encoded or linear color spaces (Section 3)? If we
train networks in linear color spaces, should we use a loss
function that compensates for perceptual non-uniformity
(Section 4)? There is no consensus in the literature on
these questions. Many works train on images in linear color
spaces and use an L1 loss [6, 27? ]. Some use a loss with
perceptual encoding [7, 12, 19]. Our goal is to find em-
pirical evidence to motivate a training strategy for image
restoration techniques trained on HDR/RAW images. To
that end, we collect datasets of HDR and RAW images and
train six networks to perform common image restoration
tasks: single-image super-resolution, denoising, and deblur-
ring (Section 5).
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Rather than proposing a new method, this paper is a
benchmark and reproduction study intended to settle these
open questions. Our results serve as best practice guidelines
for future ML methods operating on HDR and RAW con-
tent. Our results (Section 6) show a clear benefit in training
networks in display-encoded color spaces, offering a gain
in performance between 2 and 9 dB for these applications.

2. Related work
2.1. Imaging RAW pixels

RAW image data, captured directly from image sen-
sors, preserves unprocessed and uncompressed pixel data,
thereby providing rich information for restoration tech-
niques. RAW image formats also represent pixels in linear
color spaces, which facilitate physically plausible model-
ing of camera noise [1]. Early works [9, 11] in this area
mainly focused on noise reduction and artifact suppression
based on statistical models of noise. With the advent of deep
learning, restoration in the RAW domain has witnessed a
paradigm shift. [4, 21, 25] pioneered by the integration of
deep neural networks for denoising. Those early works,
however, targeted sRGB images, typically with synthetic
additive Gaussian noise. Since denoising is likely to be inte-
grated in the very early stages of the ISP pipeline, it should
operate on linear RAW pixel values instead.

Surprisingly, many deep-learning methods proposed for
processing RAW images were never tested on RAW images
[15, 26]. Instead, they opted to work with display-encoded
images in the sRGB space, and assumed additive Gaus-
sian noise. Both assumptions make input data very differ-
ent from RAW sensor pixel values, raising the question on
whether these methods would be equally effective for real
camera data. Other methods that were trained and tested on
RAW images [6, 27], did so directly on linear color values
and used an L1 loss. Our work demonstrates this strategy
often fails to achieve good results.

2.2. High Dynamic Range (HDR) imaging

The dynamic range is the contrast between the brightest and
darkest parts of an image or video. Notably, the dynamic
range the human eye can see is extremely high and much
larger than what most standard dynamic range (SDR) cap-
ture and display pipelines are capable of. High Dynamic
Range (HDR) is a term for a range of technologies that en-
hance the visual quality and realism of content by providing
a wider than normal dynamic range [22].

A key problem in HDR imaging involves merging mul-
tiple exposures into an HDR image while reducing “ghost-
ing” artifacts due to motion [12]. Another problem is tone-
mapping of HDR scenes to the dynamic range that can be
shown on a display [22]. Yet another is the reconstruction
of an HDR image from a single exposure (i.e. inverse-tone

mapping) [7, 13]. However, standard reconstruction prob-
lems like denoising, single-image super-resolution, or de-
convolution/deblurring, are also relevant for HDR imaging.

This work focuses on how HDR data in linear color
spaces was handled in these previous works. Both Eilertsen
et al. [7] and Kalantari et al. [12] trained the networks to
directly predict HDR images in a linear color space. How-
ever, to compensate for the perceptual non-uniformity of
that space, Eilertsen et al. used the logarithmic function,
and Kalantari et al. introduced the µ-law (explained in de-
tail in Section 3). Mildenhall et al. [19] used a relative
loss, similar to SMAPE (explained in Section 4), to train a
NeRF on RAW images. The networks intended to recon-
struct HDR UHD video content [13] were directly trained
to predict display-encoded frames using the PQ OETF [20].

3. Representations

In this work, we explore popular perceptual pixel value rep-
resentations from the literature for use in machine learning
applications. The main question that arises is what rep-
resentation — linear or display encoded — is most suit-
able for deep-learning networks. The linear representation
should be better to model physical phenomena (assuming
neural networks are able to take advantage of this bene-
fit). However, the display-encoded representations are more
data-efficient (requiring fewer bits) and have better percep-
tual uniformity. Moreover, most existing methods have
been trained on display-encoded representations, as these
are commonly used for SDR content widely available on-
line. To answer the question above, we tested four repre-
sentations: one linear and three display-encoded:

Linear: linear RGB pixel values with BT.709 primaries,
scaled between 0 and 1;

µ-law: a transfer function commonly used for perceptual
audio encoding. Kalantari and Ramamoorthi [12] proposed
to encode HDR images using the µ-law function:

vµ(l) =
log(1 + µ l)

log(1 + µ)
(1)

with the constant µ = 5000. l is a relative linear (RGB)
color value scaled to the range 0–1.

PQ (perceptual quantizer): display-encoding for HDR
content [20], used in video coding and display standards
(e.g., BT 2100). The PQ encoding was applied separately to
each RGB channel in our experiments. Input linear values
were given in absolute units (see Section 5.2).
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PU21 (perceptually uniform transform): a transform
similar to PQ but based on more modern data. It was orig-
inally proposed as an encoding of HDR images to be used
with existing standard dynamic range metrics [3, 17]. For
the PU21 encoding we use the quadratic function fitted to
the original curve (which was derived numerically)

vPU21(L) = a (log2(L)−Lmin)
2+b (log2(L)−Lmin) , (2)

where L is an absolute linear (RGB) color value (in the
range 0.005–10 000) and the fitted parameters are a =
0.001908, b = 0.0078, and Lmin = log2(0.005). The en-
coded values are between 0 and 1. The inverse is given by:

v−1
PU21(V ) = 2

2 aLmin−b+
√

b2+4 a V

2 a . (3)

The functions above were fitted to the PU21 encoding for
a banding model without the influence of glare (details
in [17]) and are more computationally efficient than the
PQ encoding or the original source code for PU21. This
encoding was applied to each linear RGB channel in the
same manner as PQ (see Section 5.2).

The pixel encodings described above are plotted in Fig-
ure 1. It can be observed that both PQ and PU21 share very
similar shapes, but PQ does not reach 0 for the minimum
encoded value (0.005). The mu-law has a much shallower
shape for values below 1, which means these values are en-
coded with less precision. Finally, linear encoding over-
emphasizes large pixel values by allocating a very steep
slope to those (note that the luminance is plotted on a loga-
rithmic scale).

4. Loss functions
In addition to the way pixels are encoded, the loss function
is a key feature of training neural networks. Most image
restoration problems can be effectively trained using L1 or
L2 norms on pixel values as a loss function. However, this
is not necessarily true when pixel values are represented in
linear color spaces (e.g. RAW or HDR images), as they are
perceptually non-uniform — a small error at low brightness
is more visible than the same error at large brightness lev-
els. This problem can be avoided by first converting the
compared pixel values to a color space that is more percep-
tually uniform so that the loss function becomes

ℓ = ||p(fϕ(x))− p(y)||1 (4)

where fϕ(·) is a network with the weights ϕ, x is input,
y is a reference (label) and the p(·) is a perceptual encod-
ing function such as µ-law, PQ or PU21 (all introduced in
Section 3). One important consideration is that the val-
ues passed to the function p(·) must be within the allowed
range (e.g., greater than 0.005 for PQ and PU21). This
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Figure 1. Perceptual encoding functions used to transform linear
RGB color values to an approximately perceptually uniform space.
A logarithmic scale is used for the x-axis to account for Weber’s
law. Following BT.2100, the range of interest for encoded values
is between 0.005 and 10 000. Note, however, that in our experi-
ments, we used a smaller range between 0 and 4 000. Since µ-law
encoding expects input values between 0 and 1, the values were
divided by 10 000 before passing to the function in Eq. (1).

means that out-of-range values must be clamped. Both PQ
and PU21 require absolute photometric values, which cor-
respond to light emitted from a display (e.g., between 0.005
and 10 000).

The final loss we investigate is the symmetric mean ab-
solute percentage error (SMAPE):

ℓ =

∥∥∥∥ |fϕ(x)− y|
|fϕ(x)|+ |y|+ ϵ

∥∥∥∥
1

, (5)

where ϵ is a small constant avoiding division by 0. Dividing
by the sum of absolute values makes the error relative and
more perceptually uniform, following Weber’s law.

5. Experiments
In this work, we focus on image restoration problems
(denoising, deblurring, and single-image super-resolution),
which aim to generate a higher-quality version of the input
image. We exclude higher-level tasks (e.g., recognition) as
they involve very different losses to those used for restora-
tion. We also do not consider the tasks in which input and
output images differ in dynamic range — tone mapping and
single-image HDR reconstruction — as these tasks would
only allow us to test either the representations (for tone
mapping) or the loss functions (single-image HDR recon-
struction) but not both at once.

To compare the effectiveness of different loss functions
and pixel encodings, we train networks with HDR images
on three tasks: image denoising, deblurring, and super-
resolution. For each task, we choose two different neural

3



networks: one a well-established technique and the second
a more recent method. We follow the training settings pro-
posed in the original works. EDSR (2017) [14] and Real-
ESRGAN (2021) [24] are used for the task of single-image
super-resolution (4x). The downsampled images used for
training were created using a bilinear filter. For image
deblurring, we train GFNNet (2018) [31] and MirNet-v2
(2022) [29]. The networks are trained on images affected
by Gaussian blur with sigma values of 8 px in both direc-
tions. DnCNN (2017) [30] and SADNet (2020) [5] are
used for denoising of HDR images. All the tested meth-
ods were originally designed for display-encoded (SDR)
images. Therefore, our tests demonstrate how well they
generalize to HDR data and what is the best training strat-
egy.

All networks are trained using the code provided by the
authors on their GitHub repositories. We adopted the same
training schemes as the original papers to train each net-
work, including the optimizer and learning rate. The ex-
ception was Real-ESRGAN for which we used only L1 loss
(disabled the perceptual loss) and adjusted the learning rates
as listed in Table S1 (in supplementary). We trained each
network for a different number of epochs to ensure that con-
vergence was reached. EDSR was trained for 3k epochs,
150 epochs for Real-ESRGAN, 1k epochs for MirNet-v2,
GFNNet, DnCNN, and SADNet.

5.1. Datasets

We used two datasets: one for testing reconstruction on
HDR images and another for testing on camera RAW im-
ages. The first dataset consisted of 106 HDR images from
the HDR Photographic Survey [8] and HDR video frames
from the SJTU HDR Video Sequences [23]. Since frames
originating from the same video share similarities, we used
one representative HDR frame provided for each video2,
adding an additional 16 reference images to the dataset.
60% of images were selected for training, 20% for valida-
tion, and the remaining 20% were used for testing. To verify
the networks’ generalization ability to exposure variations,
the testing data set was augmented five-fold by multiplying
it with a random exposure coefficient drawn from a uniform
distribution between 0.1 and 0.9. Physically plausible sim-
ulated camera noise (photon and readout noise) was added
to training images [9].

Additionally, to show that our observations generalize to
RAW images, we test super-resolution on the Learning to
See in the Dark dataset [6]. We utilized 231 long-exposure
RAW images from this dataset [6], with the same 60/20/20
split for training, validation, and testing. The color val-
ues were reconstructed from RAW values using Adaptive
Homogeneity-Directed (AHD) demosaicing [10] and con-
verted to the BT.709 color space (linear). The demosaicing

2The frames can be downloaded from the website.

Table 1. The eight combinations of pixel encoding and loss func-
tions tested in our experiments.

Label Pixel encoding Loss function

Linear-L1 Linear L1
PQ-L1 PQ L1
PU21-L1 PU21 L1
µ-L1 µ-law (mu-law) L1
Linear-PQ Linear PQ
Linear-PU21 Linear PU21
Linear-µ Linear µ-law (mu-law)
Linear-SMAPE Linear SMAPE

step was necessary as the tested architectures expected RGB
images as input. Because RAW pixel values are relative, we
had to rescale RGB values to the absolute range suitable for
the PU21 and PQ encoding. We adjusted exposure of each
image so that the average luminance was 20 nits. Such ex-
posure adjustment matched the average luminance of SDR
content and made images sufficiently bright without satu-
rating the brightest pixels. The histograms of pixel values
across both datasets can be found Figure S1 of the supple-
mentary document. Note that due to the computational con-
straints, we could test only super-resolution methods on the
RAW dataset.

5.2. HDR/RAW training cases

We tested 8 combinations of pixel encodings and loss func-
tions, listed in Table 1. All perceptual pixel encodings (PQ,
PU21, and µ-law, see Section 3) were used with a regular
L1 loss because the encoded values are expected to be ap-
proximately perceptually uniform and, therefore, should not
require a custom loss function. However, when no encoding
was used (labeled linear), we used either an L1 loss or one
of the losses described in Section 4. We also experimented
with losses that were the sum of two terms, such as L1 and
PQ-encoded L1, but they performed no better than individ-
ual loss terms. Figure 2 shows a diagram of our training
setup.

Since PQ and PU21 both require pixel values in absolute
units (of light, as emitted by a display), the linear pixel val-
ues were scaled to the range 0.005–4 000. Although both
encodings allow values up to 10 000 (nit), 4 000 was se-
lected as being more representative of realistic peak lumi-
nance values for a high-quality HDR display. For other
pixel encodings, the linear color values were scaled in the
0–1 range. By following these steps, we ensure all values
passed to the networks (for every encoding) were between
0 and 1, as is typical for training.
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Figure 2. Training on HDR/RAW images. Training pairs were first
(optionally) encoded from a linear to a perceptually uniform color
space using PQ, PU21 or a µ-law transfer function (explained in
Section 3). If no pixel encoding was applied (linear), one of the
loss functions from Section 4 was used to account for the percep-
tual non-uniformity.

6. Results
To evaluate the results, we used three image quality met-
rics: PSNR, SSIM and ColorVideoVDP [18]. PSNR and
SSIM were selected as the two most widely used metrics.
ColorVideoVDP was selected because it natively supports
HDR images and was designed to compare color images
and videos. To adapt PSNR and SSIM to HDR images, we
used the PU21 encoding [17], i.e. PSNR was computed on
the PU21-encoded RGB pixels. SSIM was computed on the
luma channel of the PU21-encoded pixels.

6.1. Single-image super-resolution

The numerical results for the two single-image super-
resolution methods can be found in Figure 3 and in the top
row of Table 2, and examples of visual results in Figure S2
(in supplementary) for HDR and in Figure S3 (in supple-
mentary) for the RAW dataset. In Figure 3, we visualize the
distribution of the quality scores across the entire test set
and also report the results of pair-wise t-tests (two-tailed,
α = 0.05, N = 144 for HDR (24 test images × 6 ex-
posures) and N = 276 for RAW (46 test images × 6 ex-
posures)). The violin plots are sorted left-to-right from the
best-performing condition to the worst. Red horizontal lines
connecting two or more violin plots signify no evidence of
statistically significant differences within that group. Con-
versely, conditions that are not joined by a common line
were found to have performances that differ at a statistically
significant level.

The results in Figure 3 indicate a substantial gain in per-
formance of both super-resolution methods (1.5–9 dB, as
compared to Linear-L1) when one of the perceptual pixel
representations is used. However, we have no statistical ev-
idence showing that one perceptual representation is better
than the others. Interestingly, except for the ESDR-RAW
experiment, perceptual loss functions did not improve the
results of either super-resolution methods with respect to
the “plain” Linear-L1. The visual results in Figure S3 and
Figure S2 show that networks trained on Linear represen-
tations often result in color artifacts. The networks trained
on perceptual representations (PU-L1, PQ-L1 and µ-L1) do

not suffer from those artifacts and produce sharper images.

6.2. Deblurring

The deblurring results are different for the two tested meth-
ods and will be discussed separately. GFNNet failed to train
and converge for several of the tested loss functions; it did,
however, converge for all perceptual pixel encodings. As
shown in Figure 4 and Table 2, the best performance was
obtained using either the µ-law or PU21 pixel encodings,
resulting in an improvement of about 3.8 dB compared to
the plain Linear-L1 configuration. The improvement was
smaller (but still significant) for the PQ pixel encoding and
linear encoding using the µ-law loss function. Visually (see
Figure S4 in supplementary) the Linear-L1 configuration
resulted in artifacts in the form of vertical stripes. These
artifacts were also present but less noticeable for other con-
figurations. The PQ-L1 configuration resulted in a slightly
softer image.

Deblurring with MirNet-v2 produced better results than
for GFNNet. Similarly as for GFNNet, the worst results
were achieved by the plain Linear-L1 configuration. The
best results were obtained by a linear encoding with the µ-
law loss, PQ and µ-law pixel encodings (gain of 2–3 dB).
Interestingly, the PU21 pixel encoding resulted in worse re-
sults (see Figure S5 in supplementary, note the visual re-
sults’ softer appearance), though the reason is unclear.

6.3. Denoising

For denoising networks, PSNR had more distinctive and
slightly different results than ColorVideoVDP and SSIM,
as seen in Figure 5 and Table 2. We investigated this dis-
crepancy further by comparing pairs of conditions for which
the metric predictions differed the most. We observed that
both denoising methods, in particular DnCNN, resulted in
images that differed in brightness, tone, color, and contrast
from the original. Even though such changes may be less
perceptually objectionable (and difficult to notice without a
reference), PSNR was very sensitive to them. Both Col-
orVideoVDP and SSIM put more emphasis on structural
distortions and seemed to correlate better with the perceived
quality.

For both denoising methods, perceptual pixel encod-
ings produced the best results in most cases. µ-law and
PU21 performed the best for DnCNN, followed by PQ,
which performed slightly worse according to PSNR and
ColorVideoVDP. In the case of SADNet, ColorVideoVDP
could not distinguish between any of the configurations
(no evidence of statistical differences). While µ-law con-
sistently produced the highest metric scores for SADNet,
PU21 was the second best in terms of SSIM, but the last in
terms of PSNR. We attribute this discrepancy to color shifts
(SSIM is insensitive to color changes). The visual results
(see Figure S6 in supplementary) show changes in color for
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Figure 3. Single-image super-resolution results for the HDR (top) and RAW (bottom) datasets, the two networks (Real-ESRGAN and
EDSR), and three metrics. The violin shape represents the distribution across the testing set. A thin black line shows the range of quality
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combination of representation and loss and are consistent across plots.
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Table 2. The median values for evaluation results. The last column “Naive” is bilinear-upsampling results for super-resolution experiments,
original blurry images for deblurring experiments, and the original noisy images for denoising experiments. The best-performing scores
are annotated in red, while the second-best is in blue. The ”N/A” entries correspond to the cases for which the training failed.

PU21-L1 PQ-L1 µ-L1 Linear-L1 Linear-PU21 Linear-PQ Linear-µ Linear-SMAPE Naive

SI
-S

R
—

H
D

R

EDSR
SSIM 0.93 0.93 0.93 0.87 0.87 0.84 0.86 0.81 0.89
PSNR 33.04 32.81 33.03 28.10 27.31 26.62 27.71 22.37 30.14
CVVDP 8.64 8.59 8.65 8.11 8.04 8.01 8.03 7.73 7.96

Real-ESRGAN
SSIM 0.93 0.93 0.93 0.91 0.84 0.85 0.76 0.79 0.89
PSNR 33.10 33.17 33.12 29.80 27.77 27.88 21.74 18.25 30.14
CVVDP 8.65 8.66 8.65 8.44 7.66 7.82 6.49 6.86 7.96

SI
-S

R
—

R
A

W EDSR
SSIM 0.92 0.92 0.91 0.87 0.79 0.87 0.88 0.64 0.90
PSNR 34.64 34.73 33.66 25.60 19.10 28.67 27.49 25.99 33.37
CVVDP 8.84 8.85 8.84 8.42 7.24 8.60 8.51 8.27 8.51

Real-ESRGAN
SSIM 0.92 0.92 0.92 0.91 0.72 0.87 0.86 0.83 0.90
PSNR 35.18 35.21 35.07 33.70 18.50 16.77 30.07 21.32 33.37
CVVDP 8.90 8.91 8.91 8.81 6.94 6.65 8.06 7.87 8.51

D
eb

lu
rr

in
g GFNNet

SSIM 0.94 0.93 0.92 0.83 N/A N/A 0.88 N/A 0.87
PSNR 33.52 32.57 33.65 29.98 N/A N/A 32.80 N/A 27.30
CVVDP 7.59 7.27 7.66 7.09 N/A N/A 7.41 N/A 5.51

MirNet-v2
SSIM 0.93 0.95 0.94 0.93 0.93 0.95 0.95 0.95 0.87
PSNR 32.99 34.65 34.10 31.98 32.06 33.57 34.80 34.10 27.30
CVVDP 7.40 7.89 7.77 7.31 7.35 7.73 7.93 7.72 5.51

D
en

oi
si

ng DnCNN
SSIM 0.85 0.84 0.86 0.80 0.83 0.83 0.82 0.80 0.24
PSNR 23.10 22.44 23.65 17.93 20.56 21.03 20.56 18.57 10.60
CVVDP 6.07 5.96 6.15 5.68 5.87 5.74 5.76 5.66 4.37

SADNet
SSIM 0.90 0.91 0.90 0.88 0.89 0.89 0.88 0.89 0.24
PSNR 23.94 27.76 26.47 24.62 26.03 25.32 26.32 26.08 10.60
CVVDP 6.52 6.86 6.61 6.71 6.73 6.68 6.67 6.71 4.37

Linear-PQ and Linear-PU. As a result, these two configu-
rations have lower PSNR than the input noisy image (but
higher ColourVideoVDP index because of the denoising).

7. Discussion and conclusions
The results across six tested methods clearly indicate
that networks for image restoration should be trained on
HDR/RAW images that are encoded using one of the per-
ceptual transforms: PU21, PQ, or µ-law. We did not
find sufficient evidence to recommend one transform over
another across all applications. However, we observed
slightly worse performance of PQ for GFNNet, and PU21
for MirNet-v2 and SADNet. µ-law encoding was robust
across different methods but did not always produce the
best results. Both µ-law and PU21 use simpler and more
computationally efficient formulas. PQ fails to scale the
resulting values to a 0–1 range (see Figure 1), which may
cause practical issues. Unlike the µ-law, PQ and PU21 were
derived from psychophysical data and have stronger per-
ceptual bases. As the differences in performance between
the three transforms are mostly small, we recommend us-
ing any of them, as this offers a substantial gain in per-
formance over not using them at all. The actual gain in
performance is application-specific and can be as large as
2–9 dB as compared to the “default” approach of training
linear color values with an L1 loss. Using linear color val-
ues in tandem with a loss function that employs perceptual

encoding seems to be less effective across the tested appli-
cations.

Although we cannot provide a conclusive answer of why
perceptual transforms are beneficial for training neural net-
works, we suspect that this is because they offer better data
efficiency. Pixels encoded with PU21, PQ, or µ-law require
fewer bits to represent the same amount of visually relevant
information. Although networks should be able to learn
such a transform during training, this removes some capac-
ity from the network, which could otherwise be devoted to
their main task. Some works avoid the conundrum of what
representation to use by providing both linear and gamma-
encoded images to the network [12, 28]. This, however,
leads to larger networks, reduced capacity or efficiency of
the trained models.

The empirical findings in this work are relevant as they
show that very small changes in training strategy (“one-
liners”) can substantially improve the results of neural net-
works trained for popular tasks on HDR or RAW images.
Moreover, the winning strategy of using perceptual pixel
coding is rarely used in practice. More often, networks
are trained in linear color spaces using an L1 cost func-
tion [6, 27? ], or at most, use a perceptual encoding loss
[7, 12, 19] — both strategies shown in this work to under-
perform. We hope our findings help practitioners in design-
ing better training strategies for HDR/RAW images.
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Figure 4. Deblurring results for the two networks (columns) and three metrics (rows). A few configurations are missing for GFNet as
network training failed to converge for those. The notation is the same as in Figure 3.

Figure 5. Denoising results for the two networks (columns) and three metrics (rows) The notation is the same as in Figure 3.
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Figure S1. Histogram over all images in the HDR (top) and RAW
(bottom) datasets.

S1. Content
This document contains additional results and details as
listed below:
• Table S1 — learning rates used for Real-ESRGAN
• Figure S1 — histograms over all images and HDR and

RAW datasets.
• Figure S2 — visual results for single-image super resolu-

tion on the HDR image dataset
• Figure S3 — visual results for single-image super resolu-

tion on the RAW image dataset
• Figure S4 — visual results for for deblurring with GFN-

Net
• Figure S5 — visual results for for deblurring with

MirNet-v2.
• Figure S6 — visual results for denoising — DnCNN and

SADNet

Table S1. Learning rates used for Real-ESRGAN.

Label Learning rate

Linear-L1 1× 10−4

PQ-L1 1× 10−4

PU21-L1 1× 10−4

µ-L1 1× 10−4

Linear-PQ 1× 10−5

Linear-PU21 1× 10−5

Linear-µ 1× 10−5

Linear-SMAPE 1× 10−5
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GT
(PSNR/SSIM/CVVDP)

Bilinear upsampling
(32.77/0.95/8.46)

Linear-L1
(34.15/0.96/8.95)

Linear-µ
(31.98/0.93/8.53)

Linear-PQ
(32.38/0.95/8.76)

PU21-L1
(36.60/0.97/9.03)

PQ-L1
(36.28/0.96/8.98)

µ-L1
(36.74/0.97/9.04)

Linear-SMAPE
(29.48/0.95/8.71)

Linear-PU21
(33.57/0.95/8.74)

GT
(PSNR/SSIM/CVVDP)

Bilinear upsampling
(32.77/0.95/8.46)

Linear-L1
(34.33/0.96/9.01)

Linear-µ
(25.96/0.89/7.37)

Linear-PQ
(29.84/0.94/8.39)

PU21-L1
(36.76/0.97/9.06)

PQ-L1
(36.95/0.97/9.05)

µ-L1
(36.98/0.97/9.06)

Linear-SMAPE
(25.82/0.92/7.98)

Linear-PU21
(29.38/0.93/8.33)

Figure S2. Example results for single-image super-resolution on HDR images with EDSR [14] (top) and Real-ESRGAN [24] (bottom).
The numbers in parentheses show PSNR, SSIM, and ColorVideoVDP quality values (the higher, the better) for the reconstructed image.
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GT
(PSNR/SSIM/CVVDP)

Bilinear upsampling
(32.82/0.91/8.37)

Linear-L1
(25.42/0.90/8.56)

Linear-µ
(27.76/0.91/8.58)

Linear-PQ
(30.08/0.91/8.60)

PU21-L1
(34.63/0.93/8.73)

PQ-L1
(34.72/0.93/8.74)

µ-L1
(34.30/0.93/8.73)

Linear-SMAPE
(27.78/0.72/8.41)

Linear-PU21
(19.89/0.85/7.71)

GT
(PSNR/SSIM/CVVDP)

Bilinear upsampling
(32.82/0.91/8.37)

Linear-L1
(33.77/0.93/8.74)

Linear-µ
(29.77/0.88/7.93)

Linear-PQ
(15.41/0.90/6.32)

PU21-L1
(35.16/0.93/8.79)

PQ-L1
(35.22/0.94/8.81)

µ-L1
(35.20/0.94/8.82)

Linear-SMAPE
(22.00/0.87/8.11)

Linear-PU21
(19.50/0.78/7.11)

Figure S3. Example results for single-image super-resolution on RAW images with EDSR [14] (top) and Real-ESRGAN [24] (bottom).

Figure S4. Example results for deblurring with GFNNet. The results are missing for Linear-PQ, Linear-PU21, and Linear-SMAPE, as the
networks failed to converge for these configurations.
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Figure S5. Example results for deblurring with MirNet-v2

Figure S6. Example results for denoising with DnCNN (top) and SADNet (bottom).
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