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Figure 1: Overview of our pipeline: (1) We generated a dataset of video sequences containing 1 431 BRDF models with complex geometry

and environment map; (2) We then conducted a perceptual quality assessment using our multifocal HDR display; (3) Finally, we analyzed

existing BRDF-space and image-space metrics as both quality metrics and loss functions.

Abstract

Material appearance is commonly modeled with the Bidirectional Reflectance Distribution Functions (BRDFs), which need

to trade accuracy for complexity and storage cost. To investigate the current practices of BRDF modeling, we collect the first

high dynamic range stereoscopic video dataset that captures the perceived quality degradation with respect to a number of

parametric and non-parametric BRDF models. Our dataset shows that the current loss functions used to fit BRDF models,

such as mean-squared error of logarithmic reflectance values, correlate poorly with the perceived quality of materials in

rendered videos. We further show that quality metrics that compare rendered material samples give a significantly higher

correlation with subjective quality judgments, and a simple Euclidean distance in the ITP color space (∆EITP) shows the

highest correlation. Additionally, we investigate the use of different BRDF-space metrics as loss functions for fitting BRDF

models and find that logarithmic mapping is the most effective approach for BRDF-space loss functions.

CCS Concepts

• Computing methodologies → Perception; Reflectance modeling; Rendering;

1. Introduction

Accurate capture, representation, and reproduction of the appear-
ance of real-world materials is fundamental to photorealistic ren-
dering in computer graphics. The bidirectional reflectance distri-
bution function (BRDF) [Nic65] describes how light interacts with
and is scattered at surfaces in a scene, determining its appearance
under varying illumination and viewing conditions. Although tech-
niques for measuring BRDFs, spatially varying BRDFs and bidi-

rectional texture functions (BTFs) from real materials have ad-
vanced significantly [DJ18; KHM*24; MTH*24; HHN*17], fitting
these measurements to concise and efficient models still remains a
crucial and challenging step.

Traditional BRDF fitting methods, [NDM05; KSK10;
LKYU12], primarily focus on minimizing cost functions based on
L2 errors in linear or logarithmic space between the measured and
modeled reflectance values. However, these metrics often fail to
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correlate well with both numerical errors, e.g. PSNR and MSE, as
well as the perceptual quality of rendered images. In other words,
there is a clear difference between the BRDF model fitting errors
and the corresponding errors/quality obtained when the fitted
models are used in renderings. This disconnect stems from several
factors, including the non-linear nature of human visual perception,
approximations inherent in the rendering process, and the influence
of the characteristics of the scene such as illumination, shape,
normal directions, and view direction to name a few.

To address this limitation, we conduct a perceptual BRDF qual-
ity assessment experiment, collecting subjective data for a diverse
set of complex BRDFs, modeled using nine different BRDF mod-
els with varying levels of approximation error and sourced from
multiple BRDF datasets. We investigate the effectiveness of exist-
ing image-space and BRDF-space metrics in evaluating the qual-
ity of BRDF fits, using the collected subjective data as a bench-
mark. Through evaluation, we identify the best-performing image-
space and BRDF-space metrics based on their correlation with
subjective quality judgments. Additionally, we benchmark exist-
ing BRDF fitting loss functions to find solutions that yield more
visually accurate and compelling renderings of real-world mate-
rials. Our study focuses on isotropic BRDFs, due to the limited
availability of anisotropic datasets and the limitations of current
BRDF models—particularly learning-based ones—which are not
well-suited for modeling anisotropy.

Our key contributions are:

1. New BRDF model quality dataset measured on an HDR stereo-
scopic display for a range of classical parametric and new neu-
ral BRDF models with a complex animated object. The dataset
can be accessed at https://doi.org/10.17863/CAM.
118756 and also at the project web page.

2. A benchmark of both image- and BRDF-space quality metrics
on our new dataset.

3. A benchmark of loss functions for fitting BRDF models.

2. Background and related work

Modeling and representation of scattering properties, as described
by the BRDF, is fundamental to computer graphics and vision. A
large body of work has been directed towards the development of
models that can describe BRDFs and SVBRDFs efficiently. These
models can be divided into two main categories, parametric models

and non-parametric data-driven models.

Parametric models are typically derived either from empir-
ical observations of scattering characteristics [Pho75; War92;
LKYU12; AS00; Bli77] (phenomenological), or through theoreti-
cal analysis based on the physics of light-surface interactions, such
as microfacet theory [CT81; WMLT07; Bur12; HP17; TS67]. How-
ever, for accurate modeling and simulation of real-world materi-
als, it is often necessary to measure the scattering properties from
physical samples. This is typically done using gonioreflectometers
[Foo97; WSB*98; ELU11; DJ18], light stage setups [DHT*00;
MGW01; MMS*05; RMS*08; BWW*08], or catadioptric sys-
tems [MDL*98; Dan01; KN06; NZV*11; GAHO07; YSX*24].
Such measurements can be used to fit parametric models and to
build data-driven models.

A challenge inherent to high-quality BRDF acquisition is
the combination of the high sampling density required to ob-
tain accurate model fits and the dimensionality (4D) of the
BRDF space. To address this problem, it is common to em-
ploy nonparametric techniques that project the data onto a low-
dimensional space to enable more efficient rendering and re-
duce storage requirements. Approaches in this domain include
matrix factorization [LRR04; SSN18; KM99], tensor decompo-
sition [SZC*07; BÖK11; TUKK20], analytical methods [SJR18;
BSN16; CBP22; PSS*12], and machine learning-based tech-
niques [FR22; LSZ*24; TUGM22; GSZ*25; ZSR*24; FWH*22;
CNN20; HGC*20; SRRW21]. While these non-parametric tech-
niques yield more precise BRDF representations due to their data-
driven modeling, they generally come with higher storage and com-
putation costs compared to parametric models.

Central to all previous and current efforts towards the develop-
ment of new BRDF models intended for modeling real-world ma-
terials and techniques for BRDF acquisition is the need to accu-
rately measure and characterize the error introduced using some
metric. BRDF metrics are typically computed in one of two do-
mains: in image-space, where the BRDF accuracy is evaluated as
rendering error, and in BRDF-space, where the focus is on mea-
surement and representation error. The rendering error is typically
evaluated using the mean squared error (MSE), the peak signal-
to-noise ratio (PSNR), or using some of the commonly used per-
ceptually based metrics, including the structural similarity index
measure (SSIM) [WBSS04a] or the visual difference predictor for
HDR images (HDR-VDP) [MDMS05; MKRH11].

Image-based metrics are by nature not suitable for applications
like BRDF fitting and measurements as they require the image to be
rendered in each iteration. Instead, the cost functions used for the
BRDF fitting and optimization tasks are typically based on the ℓ1
or ℓ2 norms, which measure the error distance between the original
and approximated reflectance in the linear space. When applied to
BRDF modeling, these functions are often weighted by the cosine
of the incoming and outgoing directions to balance the contribu-
tions of reflectance values [LFTG97; NDM05; LKYU12; PL07;
WLT04; HP17]. To better align the ℓ2 distance with the human
perceptual system, Forés et al. [FFG12] explored various functions
based on the root mean square (RMS) and concluded that a cube-
root cosine-weighted metric provides a better perceptual approx-
imation. This was further confirmed by Lavoué et al. [LBFS21],
who demonstrated that a cubic root transformation prior to com-
puting RMS-based cost functions improves the quality of the ap-
proximations when used for BRDF fitting purposes. Based on the
established relationship between the logarithm of intensity and the
human perceptual system [VS13], Löw et al. [LKYU12] proposed
a logarithmic cosine-weighted ℓ2 metric, which was later refined
through the incorporation of an exponent factor to further miti-
gate the impact of grazing angles [CMF18]. In related studies, log-
relative mapping was introduced [SJR18; NJR15], demonstrating
that logarithmic mapping performs similarly to cubic root mapping,
while ℓ2 log mapping produces a shorter tail in the specular compo-
nent. Although these representation-based techniques offer a good
approximation of the tabulated data without dependence on spe-
cific scene configurations (e.g., illumination type, or the positions
of light sources and cameras), their focus on minimizing numerical
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errors often overlooks the complex details of reflectance behavior,
which can result in renderings that lack perceptual accuracy.

A key problem is the weak correlation between the error mea-
sured in BRDF space and the rendering error, i.e. a low fitting error
may still yield a high rendering error. This problem can be observed
both in our experiments and in previous work [NDM05; BP20;
HFM16], and points to the need for accurate metrics to bridge this
gap.

To consider visual appearance in the evaluation, Brady et
al. [BLPW14] and Havran et al. [HFM16] analyzed the impact of
different perceptual metrics, including ∆EITP, C-SSIM [LPU*13],
and HDR-VDP2 [MKRH11], to compare anisotropic BRDFs with
optimized shapes. Building on the strengths of image similarity
metrics, Bieron et al. [BP20] proposed the use of LPIPS [ZIE*18a]
and C-SSIM on rendered images to select the best BRDF fit from
candidates obtained through numerical error minimization. To de-
velop this further, user studies have been conducted to derive ap-
pearance metrics, exploring factors such as variations in lighting
and geometry [LMS*19], and to analyze the correlation between
analytical BRDF models and perceptual scores [LBFS21]. More re-
cently, Filip et al. [FDS*24] conducted a user study on videos of flat
surfaces to gather ratings on 16 perceptual attributes. Their findings
demonstrate that a weighted combination of Pearson’s correlation
and the ℓ1 norm captures perceived material similarity. Although
significant progress has been made, this is still an open research
problem.

While most prior work has focused on analytic BRDF mod-
els, we present the first comprehensive evaluation of the emerging
class of machine learning–based BRDF models, which introduce
a broader range of rendering artifacts. Our study also considers
a significantly larger and more diverse set of evaluation metrics,
including several that have not previously been applied in BRDF
research. To ensure a wide variety of material appearances, our
dataset incorporates complex materials from the DTU and RGL-
EPFL datasets, expanding beyond the simpler examples found in
the MERL database. In contrast to previous work, we conduct a
subjective perceptual study using a stereoscopic HDR display to
gather high-quality labels, enabling an in-depth analysis of both
BRDF-space and image-space metrics. Our primary goal is to iden-
tify and benchmark the metrics that best correlate with human per-
ceptual judgments, with the aim of informing quality assessment
and improving loss functions for BRDF fitting.

3. Dataset

One of our key contributions is a new dataset of rendered
BRDF samples designed for quality assessment experiments.
We employed isotropic measured BRDFs samples from the
MERL [MPBM03], DTU [NJR15], and RGL-EPFL [DJ18]
datasets. The samples were used to fit one of the popular BRDF
models and then render an animation of a rotating object. In total,
159 material samples were used. To ensure a consistent treatment
of all materials, we transformed the RGL-EPFL dataset to align
with the MERL coordinate system, following the Rusinkiewicz co-
ordinate framework [Rus98].

Table 1: BRDF models used in our dataset. Three values listed

for SPARSEBRDF and HYPERBRDF correspond to three different

compression/encoding levels. The parameters listed for HYPER-
BRDF correspond to the number of query samples used.

BRDF model #parameters

WARD [War92] 7
GGX [WMLT07] 8
NEURALBRDF [SRRW21] 675
SPARSEBRDF [TUGM22] 256, 512, 2 048
HYPERBRDF [GSZ*25] 40, 400, 4 000

3.1. BRDF models

To study the relationship between the choice of metric used
in BRDF modeling/fitting and the visual quality obtained in
the resulting BRDF approximations, we utilized five different
BRDF models, as listed in Table 1. The WARD [War92] and
GGX [WMLT07] models are selected as representatives of para-
metric approaches, with WARD embodying an empirical model and
GGX a microfacet-based model. NEURALBRDF [SRRW21] of-
fers a simple MLP architecture that is overfitted to each material. In
contrast, SPARSEBRDF [TUGM22], and HYPERBRDF [GSZ*25]
provide representations that can learn multiple materials, either
through sparse encoding or a hypernetwork.

We used the logarithmic cosine-weighted mapping error metric
introduced by Löw et al. [LKYU12] to fit the tabulated data to para-
metric models:

ϵ= ∥ f (ρmodel(ωi,ωo;p))− f (ρref(ωi,ωo)∥
2
, where (1)

f (ρ) = log(1+ρ · cos(θi) · cos(θo)) . (2)

Here, ρref represents the measured BRDF and ρmodel is the pre-
diction of the model. The terms ωi = (θi,φi), and ωo = (θo,φo)
denote the incident and outgoing directions, with θi and θo as the
incident and outgoing elevation angles, and φi and φo as the corre-
sponding azimuth angles. The vector of parameters is denoted as
p, depending on the model. The fitting process was carried out us-
ing the lsqcurvefit function in MATLAB, which solves the
non-linear least squares problem from Eq. (1).

For the data-driven models, we followed the original method-
ologies. Specifically, we adopted the same architecture proposed in
the original NEURALBRDF paper, which employs an auto-encoder
with two hidden layers and 675 parameters, training a unique latent
space for each material in the dataset. In contrast, for SPARSE-
BRDF and HYPERBRDF, the dataset was randomly split into
training and testing sets, with 75% of the data allocated for training
and 25% for testing set. When training and testing SPARSEBRDF,
we applied the log-plus transformation used in their work, which
is a simplified version of Eq. (2) that lacks cosine weight mapping.
The number of BRDF parameters required for the SPARSEBRDF
model is defined by sparsity. Therefore, to cover a diverse range of
BRDF approximations, we produced three models from SPARSE-
BRDF with training sparsity values of 256, 512, and 2 048. The
number of dictionaries trained for each sparsity was set to 4. Dur-

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 13 B. Kavoosighafi et al. / Perceived quality of BRDF models

acrylic_felt_green_rgb aluminium blue-fabric blue-metallic-paint bluebook

cardboard cc_amber_citrine_rgb color-changing-paint1 gold-metallic-paint2 green-metallic-paint2

ilm_l3_37_dark_green_rgb ilm_solo_m_68_rgb light-red-paint notebook red-metallic-paint

silver-metallic-paint2 specular-green-phenolic vch_dragon_eye_red_rgb vch_golden_yellow_rgb violet-acrylic

Figure 2: Materials used in our experiment. The images show the first frame of HDR video sequences, for which we manually adjusted the

exposure and converted the image to the sRGB color space. Note that the materials may appear dim due to the tone mapping applied.

ing inference, the sparsity was set to the corresponding sparsity of
the trained model.

For HYPERBRDF, the encoder and hypernetwork decoder were
trained on the full set of available reflectance measurements. Dur-

ing the inference phase, we set the query sample sizes to 40, 400,
and 4 000, respectively. These configurations yielded three distinct
variants of HYPERBRDF. In total, we considered nine BRDF mod-
els in our experiments.
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3.2. Rendering

Existing BRDF studies often involve inspecting 2D images on low-
dynamic range monitors. However, it has been shown that gloss
perception is strongly affected by tone mapping and dynamic range
reproduction [AKLM18; CJP*23], as well as the lack of 3D dispar-
ity depth cues [WF19]. In the real world, we typically interact with
objects to assess material properties; we may rotate an object to
examine its appearance from varying angles and geometrical per-
spectives. To simulate this natural interaction, we generated a set
of realistic reproductions of the materials, where each material was
reproduced as a stereoscopic HDR video clip, each showing a com-
plex object (Stanford bunny, see Figure 2) rotating about the verti-
cal axis so that the video can be looped. We kept the illumination
(image-based lighting) and camera position fixed to resemble a nat-
ural interaction with an object.

We utilized Mitsuba 3 [JSR*22] to render 150 frames with 1 024
samples per pixel, illuminated using the Pixar Campus environ-
ment map. The videos were rendered at 30 frames per second,
resulting in 5-second video sequences for each material. The 3D
scene was configured to show the rotating bunny at about 470 mm
from the observer’s eyes. The distance was selected to coincide
with the focal plane of the display we used in the experiment and
reduce potential verge-vs-accommodation conflict. The Stanford

Bunny was selected as our test geometry due to its optimal com-
bination of surface bumpiness and moderate curvature. Excessive
curvature, as indicated in previous studies [HLM08; MKA12], can
reduce contrast and negatively impact perceptual evaluation. More-
over, the use of a video sequence, rather than a static image, enabled
us to capture a wider range of surface curvatures than would be pos-
sible with simpler shapes like spheres or blobs. Additionally, we
chose natural illumination using an environment map rather than
artificial illumination sources, such as point lights, to reflect real-
istic viewing conditions. Prior work by Serrano et al. [SCW*21]
indicated that varying environment maps minimally affect the per-
ception of glossiness and metallicness—two essential attributes for
material discrimination. Thus, we proceeded with the Pixar Cam-

pus environment map as the illumination source throughout our
dataset.

To direct the observer’s focus solely on the object, the environ-
ment map was hidden during rendering. The video for each eye
was cropped to 880× 970 px (off-center projection) and spanned
approximately 6◦×6.6◦ visual field. The rendered frames were
initially stored in the OpenEXR format in absolute BT.709 RGB
color space, then encoded into HDR video (BT.2020 with the PQ
EOTF, SMPTE ST 2084). The frames were rendered on a cluster
of NVIDIA A100 GPUs, and rendering each video sequence took
approximately 130 minutes.

4. BRDF quality assessment experiment

In this section, we measure, in a quality assessment experiment,
how well each BRDF model can approximate each material sam-
ple. Due to the large size of our dataset, the perceptual quality ex-
periment was conducted on a subset of 20 materials selected from
the entire set of 159. This subset will be then used in Section 5 to
address the central question of our work: how well do error met-
rics in BRDF space correlate with human assessment of rendering
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Figure 3: Haploscope used in the experiment. (a) Physical ar-
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quality? The complete set of 159 materials will be then used in
Section 6 to assess the effectiveness of BRDF-space metrics as loss
functions for BRDF fitting.

4.1. Stimuli

Our goal was to create a dataset that is sufficient for the evaluation
of quality metrics. Therefore, we prioritized the diversity of quality
levels rather than coverage of materials and BRDF models. We se-
lected 20 BRDFs for our experiments, including 11 from MERL, 6
from RGL-EPFL, and 3 from DTU. Figure 2 shows the first frame
of the reference video sequences rendered for each of these materi-
als. The selection was made to represent a diverse range of diffuse,
glossy, and specular materials, which should ensure the generaliza-
tion of our findings to other materials in the dataset.

4.2. Apparatus

The experiment was carried out on a custom-built multifocal HDR
stereoscopic display, similar to the one described in [ZJY*21]. The
observers could view a stereoscopic video through an optical setup
similar to a Wheatstone mirror stereoscope (see Figure 3). The
stereoscopic projection was calibrated for each participant by per-
forming a grid alignment task. The procedure allowed us to de-
termine the position of the observer’s eyes and ensure correct ge-
ometric projection (e.g., account for the inter-pupillary distance).
We used this display not only because of its accurate stereoscopic
calibration but also for its HDR capabilities, which are essential for
faithful reproduction of the gloss [CJP*23]. We could accurately
reproduce color and luminance up to 4 000 cd/m2, with the black
level below 0.01 cd/m2, offering a dynamic range far superior to
that of most commercially available displays. The display was col-
orimetrically calibrated using a spectroradiometer (Specbos 1211).

4.3. Experimental procedure

We employed a pairwise comparison protocol in which an ob-
server was presented with three stereoscopic videos played simul-
taneously: a reference video rendered using the original measured
BRDF of the material and two test videos, each rendered using a
different BRDF model. One of the test videos could be the refer-
ence. Observers were instructed to select the test video for which
the material appearance was closer to the reference.

© 2025 The Author(s).
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For better data efficiency of the experiment, we used an active
sampling technique, specifically ASAP [MWP*21], to strategically
select the pairs of conditions to compare. ASAP uses previous mea-
surements to schedule pairs of conditions that maximize informa-
tion gain. Each participant completed between two and three full
ASAP batches of comparisons, corresponding to an average of 450
pairwise comparisons per participant.

Participants

We recruited 20 participants (7 female and 13 male) aged 14 to 46
years. Prior to the experiment, each participant received a briefing
form and signed a consent form. The study protocol was approved
by the departmental ethics committee. Participants were compen-
sated for their involvement in the study. Each experimental session
lasted between 30 and 60 minutes. The participants were encour-
aged to take short breaks during the study.

4.4. Results

To scale and analyze the results of our pairwise comparison experi-
ment, we adopted the Bayesian scaling approach, which represents
the quality in just-objectionable difference (JOD) units [PM17].
Before scaling, we used the outlier analysis from the pwcmp pack-
age to exclude two observers whose responses were substantially
different from the others (according to the interquartile distance
criterion) [PM17]. The reference condition was assigned a quality
score of 10 JOD, and the quality values decreased for lower qual-
ity. 1 JOD difference between two conditions means that 75% of
observers selected one condition as better than the other.

The subjective quality scores of the BRDF models for each
material are shown in Figure 4 and scaled across all materi-
als in Figure 5. The results indicate that some materials are
much more difficult to model than others. For example, none
of the BRDF models could match the quality of the reference
for bluebook, specular-green-phenolic, or violet-
acrylic, indicating that these materials exhibit complex re-
flectance properties—such as multilayered surfaces or strong spec-
ular highlights—that are not well captured by current models.
The learning-based models performed generally better than the
parametric models. GGX typically provided better approxima-
tions than WARD’s model due to its greater flexibility in model-
ing glossy surfaces. With a few exceptions, NEURALBRDF pro-
vided the most accurate approximation of the material samples,
consistently ranked at the top for challenging materials such as
silver-metallic-paint2, color-changing-paint1,
and all materials in the RGL-EPFL dataset but at the cost of re-
quiring the largest number of parameters. The HYPERBRDF vari-
ants also outperformed the SPARSEBRDF family, especially on
complex or specular materials. Among them, HYPERBRDF-L0,
which employs the highest number of parameters (4000), achieved
the best performance. It is important to note that direct compar-
isons between HYPERBRDF and SPARSEBRDF are complicated
due to differences in their model capacities. For simpler, more dif-
fuse materials (acrylic_felt_green_rgb, blue-fabric,
and notebook), almost all models, including the learning-based
and parametric ones, achieved high subjective score. These find-
ings support an adaptive approach to BRDF modeling: lightweight

Table 2: State-of-the-art BRDF-space metrics. Here, ρref is the ref-

erence and ρmodel is the approximated BRDF, C = cos(θi) ·cos(θo),

ϵ = 10−λ, with λ ranging from 0 to 6, and N is the number of re-

flectance measurements. The abbreviations stand for RMS: root-

mean-squared, E: error, Log: logarithmic, W: weighted, CR: cubic

root, and MA: mean absolute. We do not list the remaining MA-

variants as these are analogous to the RMS- variants.

BRDF-space metric

RMS-E
√

1
N ·∑(ρmodel −ρref)

2

RMS-LogE
√

1
N ·∑(log(ρmodel + ϵ)− log(ρref + ϵ))2

RMS-LogWE
√

1
N ·∑(log(ρmodel ·C+ ϵ)− log(ρref ·C+ ϵ))2

RMS-CRWE

√

1
N ·∑

3
√

(ρmodel ·C−ρref ·C)
2

MA-LogWE 1
N ·∑ |log(ρmodel ·C+ ϵ)− log(ρref ·C+ ϵ)|

parametric models are well-suited for diffuse surfaces with minimal
perceptual sacrifice, while high-capacity learning-based models are
necessary to accurately capture the appearance of visually complex
or highly specular materials. The overall results in Figure 5 show
that NEURALBRDF is the best data-driven model, while GGX is
the best parametric model.

5. Quality metrics for BRDF

The results of our study presented in the previous sections are lim-
ited to a single geometry, a single illumination map, and just 20
materials. However, the measured subjective scores are sufficient
to evaluate automated quality metrics for the BRDF materials. If
we can find a reliable metric, it can be used to label much larger
datasets. Therefore, in this section, we assess the performance of
existing metrics in both BRDF-space and image-space and com-
pute the correlation of their results with the collected subjective
data. We report the Spearman rank-order correlation coefficients
(SROCC), where a higher SROCC value indicates stronger align-
ment between the metric outputs and the subjective JOD values.
Other performance metrics (RMSE, PLCC, KROCC) and detailed
results can be found in the supplementary HTML report.

5.1. BRDF-space metrics

We evaluated eight different BRDF-space metrics and loss func-
tions, five of which are listed in Table 2. For RMS-LOGE, RMS-
LOGWE, MA-LOGE, and MA-LOGWE, we tested the ϵ = 10−λ

value from λ = 0 to λ = 6 to examine how the scalar added for
numerical stability and robustness to noise affects metric perfor-
mance.

Figure 6 illustrates the SROCC results for BRDF-space metrics.
Before computing the metrics, grazing angles were discarded for
all models. The results show a poor correlation between BRDF-
space metrics and the subjective data, with the maximum correla-
tion reaching only 0.553. The choice of the ϵ constant had a notable
impact on performance, as it controls the level of noise suppres-
sion. When set too high (e.g., 1), both signal and noise are overly

© 2025 The Author(s).
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Figure 4: The results of the subjective BRDF quality experiment. The y-axis is the quality in JOD units (the higher, the better). Each plot

shows results for a single material. The models are ordered from the best to the worst. The error bars denote 95% confidence intervals. The

order of the plots is the same as for the material samples shown in Figure 2.
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Figure 5: The subjective experiment results scaled across all ma-

terials. The notation is the same as in Figure 4.

attenuated, reducing prediction accuracy. In contrast, values that
are too small allow measurement noise to dominate, leading to de-
graded quality estimates. The highest correlation was achieved with
ϵ = 0.0001. Further gains were achieved by using absolute differ-
ences (MA variants) and cosine weighting (WE variants), helping
in better alignment of BRDF-space metrics with subjective quality
scores.

Lavoué et al. [LBFS21] identified RMS-LOGWE and MA-
LOGWE with ϵ = 0.001 as the best Lp metrics in their study. We
found that both metrics offer better performance, when ϵ= 0.0001
with MA-LOGWE outperforming RMS-LOGWE (SROCC 0.553
vs. 0.518). However, our obtained correlations are much smaller
than those reported in their work (∼0.8). These discrepancies are
likely due to the differences in the datasets. Their dataset was mea-
sured for the MERL BRDF materials and mostly parametric BRDF
models, while we used materials from three different datasets and
included modern learning-based BRDF models. More importantly,
we could accurately reproduce material properties on our stereo-
scopic HDR display, while no such guarantees were possible for
the stimuli shown in their crowd-sourced experiment.

5.2. Image-space metrics

Next, we tested the performance of 33 state-of-the-art image/video-
space metrics, listed in Table 3. The correlation values for those
metrics are shown in the bottom part of Figure 6.

Because our test and reference BRDF video clips were in HDR
format, we used PU21 [MA21] encoding to make the content suit-
able for processing with non-HDR metrics. The metrics that could
operate on HDR content were supplied with video frames in the
appropriate format, e.g., linear BT.709, or linear BT.2020, color
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Table 3: A list of image-space metrics used in the evaluation. The “color” column states if the metric accounts for colors. The “temporal”

column states if the metric considers temporal information, and the “HDR” column indicates whether the metric natively supports HDR or

requires a PU21 encoding [MA21].

Metric Color Temporal HDR Details
PSNR-Y No No PU21 Mathematical measure of the pixel-wise difference.
SSIM [WBSS04b] No No PU21 Measure of difference in luminance, contrast, and structural information.
MS-SSIM [WSB03] No No PU21 Multi-scale variant of SSIM.
IW-SSIM [WL11] No No PU21 SSIM weighted by local information content.
GMSD [XZMB13] No No PU21 Gradient magnitude similarity measure.
MS-GMSD [ZSB17] No No PU21 Multi-scale variant of GMSD.
DSS [BSMP15] No No PU21 DCT subbands’ similarity measure.
NLPD [LBBS16] No No PU21 Distance measure of the Laplacian pyramid’s normalized contrast.

FSIMc [ZZMZ11] Yes No PU21 A phase congruency and gradients’ magnitude similarity measure.
VSI [ZSL14] Yes No PU21 Visual saliency-based weighting of features’ similarity.
HaarPSI [RBKW18] Yes No PU21 A Haar wavelet coefficients’ similarity measure.
sCIELab [ZW*96] Yes No native A CSF-based difference measure in the CIELab color space.
HDR-FLIP [ANA*20] Yes No native Fusion of color and feature differences in a perceptual uniform space.

CIEDE2000 [SWD05] Yes No native A perceptual color measure in the CIELab color space.
Hybrid Delta E L*a*b* [AAF20] Yes No native A taxicab distance between the lightness and chroma in the CIELab color space.
DeltaE ITP [ITU19] Yes No native A color measure in the ICtCp color space.
LPIPS [ZIE*18b] Yes No PU21 A difference measure of the activations of a deep neural network (Alex and VGG Nets).
DISTS [DMWS20] Yes No PU21 A DNN-based model tolerant to texture resampling.
AHIQ [LGS*22] Yes No PU21 A hybrid model of CNN and ViT for quality assessment.
TOPIQ [CMH*24] Yes No PU21 A CNN-based model for high-level semantic information extraction for quality assessment.
PieApp [PCMS18] Yes No PU21 A CNN-based metric trained on pairwise comparison data.
STRRED [SB13] No Yes PU21 Entropy differences in wavelet subbands.
VMAF [LBN*18] No Yes PU21 A fusion of VIF, DLM, and temporal information metrics.

HDR-VDP-3 [MHH23] No No native A visual different predictor based on low-level human vision for image distortions.
ColorVideoVDP [MHA*24] Yes Yes native A visual different predictor based on spatial, temporal, and chromatic low-level human vision.

spaces depending on the metric. We also provided the experimen-
tal display specification to the metrics that require such infor-
mation (HDR-FLIP, HDR-VDP-3, ColorVideoVDP). For image-
based metrics, the average of the metric output over all frames was
used. The left-eye videos were used for evaluation.

The results in Figure 6 indicate that the best prediction is
achieved by one of the simplest metrics — ∆E color difference in
the ITP color space [LPY*16]. Even its spatial extension that incor-
porates the contrast sensitivity function (∆E ITP spatial) resulted in
much smaller correlations. We can deduce that color information
is crucial, as the PSNR computed on RGB values (PSNR-RGB)
resulted in a much higher correlation than the one computed on lu-
minance alone (PSNR-Y). The performance of LPIPS varies with
the backbone network, and the variant based on AlexNet performs
better than VGG for this task. The detailed results (see the supple-
mentary HTML) indicate that the AlexNet variant can better cap-
ture quality degradations for complex specular materials, such as
ilm_solo_m_68_rgb or vch_golden_yellow_rgb. The
metrics intended for the evaluation of video compression, such
as VMAF, STRRED, or VIF, performed poorly. Not surprisingly,
blind quality metrics such as BRISQUE and NIQUE failed at the
task—those metrics have never been trained on the distortions
found in our dataset.

6. BRDF fitting

Our results from the previous section show that the BRDF-space
metrics are much less accurate than the image-space metrics when

predicting perceived BRDF quality. However, the main advantage
of BRDF-space metrics is that they can be directly used as a loss
function when fitting BRDF models. Here, we test whether good
BRDF-space quality metrics also make good loss functions for fit-
ting BRDF models.

To test the BRDF-space metrics (see Table 2) as loss functions,
we fitted the GGX parameters to our dataset using the gradient-
free patternsearch global optimization method in MATLAB.
This method was selected because it is robust to local minima and
the selection of a starting point. The fitted parameters were used to
render material samples, and the quality of the fit was evaluated on
rendered images with ∆EITP.

Figure 7 illustrates the relationship between the mean SROCC
for quality predictions (see Figure 6) and the average ∆EITP values
across all 159 materials in our dataset. The metrics with adjustable
ϵ values are connected by dashed lines. Note that a higher SROCC
value indicates more accurate quality prediction, and a lower ∆EITP
indicates a better BRDF fit.

Our results highlight the significant impact of logarithmic trans-
formation on the effectiveness of loss functions compared to their
linear counterparts (RMS-E and MA-E), consistent with obser-
vations reported in prior works [LKYU12; LBFS21]. We found
out that RMS-LOGE with ϵ = 0.001 is the most effective loss
function, achieving the lowest ∆EITP error while maintaining rel-
atively high SROCC values of 0.501. Consistent with our findings
for BRDF-space quality metrics, the choice of ϵ plays a critical role
in the performance of the loss function. Specifically, we observed
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Figure 6: The Spearman rank-order correlation coefficients for

BRDF-space metrics (top) image-space metrics (bottom) tested on

our BRDF dataset.

that ϵ = 1 results in the poorest performance for RMS-LOGE and
RMS-LOGWE, likely due to the distortion of relative differences
for small BRDF values. The mean absolute (MA) variants, how-
ever, show less sensitivity to changes in ϵ value.

We also observed that applying cosine weighting slightly re-
duced the performance of loss functions, despite its clear benefits
in metric-based evaluations. This difference may be due to several
factors. During optimization, the optimizer appears to prioritize rel-
ative differences, and since the logarithmic transformation already
compresses the dynamic range, additional weighting has limited
impact. Cosine weighting may also emphasize angular regions that,
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The markers with saturated colors indicate the variant with the ϵ

constant that results in the smallest ∆EITP.

Table 4: Comparison of BRDF fitting using the image-driven met-

ric from [BP20] and RMS-LOGE (ϵ= 0.001).

Method ∆EITP ↓

[BP20] 16.56
RMS-LOGE (ϵ= 0.001) 17.07

while perceptually important, contribute less to the gradient sig-
nal, or may even highlight high-variance regions (such as specular
peaks), introducing noise that hinders convergence. Additionally,
by suppressing contributions from less-emphasized regions, cosine
weighting can reduce gradient diversity, which limits generaliza-
tion. In contrast, when used as a metric, cosine weighting better
reflects the perceptual importance of angular regions in rendered
appearance, which explains its improved alignment with subjective
assessments.

Additionally, we see a weak correlation between the fitting er-
ror and the quality of the metric predictions. For example, RMS-
LOGE with ϵ = 0.001 is a reasonably good quality predictor with
(SROCC=0.496) and one of the best loss functions. The same met-
ric with ϵ= 0.01 is an equally good loss function, but a much worse
quality metric.

We also compared the performance of the best-performing fit-
ting metric with the image-driven metric proposed by Bieron et
al. [BP20]. To do so, we sweeped the γ parameter in their method
from 1 to 3 and rendered the fitted BRDFs using the same illu-
mination setup (Pixar Campus) and geometry (Stanford Bunny).
The best fit was selected based on the lowest ∆EITP value. Table 4
presents the average ∆EITP scores across all materials for both ap-
proaches, showing that the image-driven metric outperforms the
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simpler RMS-LOGE with ϵ= 0.001. This result reinforces the ad-
vantage of image-space metrics over BRDF-space metrics in cap-
turing perceptual quality, albeit with significantly higher computa-
tional cost—each material required 21 separate optimizations and
renderings to determine the best fit.

7. Conclusions

In this paper, we conducted a comprehensive analysis of the im-
pact of BRDF modeling error on perceived quality. To achieve this,
we generated the first HDR stereoscopic video dataset of 1 431 dif-
ferent BRDF models and performed a psychophysical experiment
using our multifocal HDR display. Our analysis of the correlation
between the collected subjective data with both image-space and
BRDF-space metrics shows a significantly stronger alignment with
image-space metrics, with the Euclidean distance in the ITP color
space exhibiting the highest correlation. Additionally, we investi-
gated the use of BRDF-space metrics as loss functions for BRDF
fitting. Our results demonstrate that logarithmic transformation is
highly effective, both in terms of its correlation with subjective data
and its alignment with image-space metrics.

Our experiment included five BRDF models spanning both an-
alytical and machine learning-based approaches, selected to cover
a wide range of complexities and representational capacities. It is
important to note that these models were not chosen to identify
the best-performing BRDF model, but rather to introduce a diverse
set of reconstruction errors that could be used to evaluate quality
metrics. Due to significant differences in memory usage and com-
putational cost (Table 1), direct comparisons between models fall
outside the intended scope of this study.
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