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Benchmark datasets used for testing computer vision methods often contain little variation in illumination.
The methods that perform well on these datasets have been observed to fail under challenging illumination
conditions encountered in the real world, in particular when the dynamic range of a scene is high. We present
a new dataset for evaluating computer vision methods in challenging illumination conditions such as low-light,
high dynamic range, and glare. The main feature of the dataset is that each scene has been captured in all
the adversarial illuminations. Moreover, each scene includes an additional reference condition with uniform
illumination, which can be used to automatically generate labels for the tested computer vision methods. We
demonstrate the usefulness of the dataset in a preliminary study, by evaluating the performance of popular
face detection, optical flow, and object detection methods under adversarial illumination conditions. We
further assess whether the performance of these applications can be improved if a different transfer function
is used.
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I. INTRODUCTION

Computer vision (CV) methods are often trained and
evaluated on datasets that contain images obtained in
relatively “easy” conditions, in which the illumination
is mostly uniform across the scene and there is little
camera noise in the images. The performance of such
methods can drop substantially when used with images
captured in more realistic conditions, where the illumina-
tion can vary substantially across the scene. Commonly
encountered problems include false edges produced by
shadows, contrast reduction due to glare, and camera
noise in the darker parts of the scene. These problems
have been recognized and addressed by collecting large
datasets with varying illumination conditions22,27,34 or
by simulating different illumination conditions with com-
puter graphics37 methods.

In this work, we capture a dataset using controlled
camera and lighting setups to evaluate the robustness of
CV methods under adversarial illumination conditions.
Our dataset is composed of video sequences captured for
the same scene but under several different illuminations.
The frames were captured from the same camera posi-
tion with the same scene arrangement, while a set of ar-
tificial lights were configured to mimic one of four illumi-
nation conditions: an “easy” uniform illumination, low-
light night condition, high dynamic range (HDR) con-
dition, and a condition with a bright light source that
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induces strong glare. The main advantage of this ap-
proach is that we can use the “easy” uniform condition to
produce labels for any CV method. Subsequently, these
labels enable us to measure the relative degradation in
performance of the method under other illumination con-
ditions. This saves us the manual work of labeling the
dataset for each CV application. The dataset is publicly
available at https://doi.org/10.17863/CAM.71285.

We captured video sequences with a CV camera
mounted on a motorized camera slider, which let us in-
troduce motion parallax and therefore widen the range of
applications that can be addressed. Thus our sequences
can be used to evaluate optical flow11,19 and global mo-
tion compensation31 methods under challenging illumi-
nations. We provide both linear 16-bit demosaiced RGB
images and merged HDR images in the OpenEXR for-
mat. The former is representative of a typical CV camera
and the latter can be used to simulate a range of cameras
and capture scenarios.

In Sec. II, we discuss existing datasets and categorize
them according the target applications. Then, we de-
scribe our camera and illumination setup (Sec. III), and
the construction of our indoor scenes (Sec. IV). Next, in
Sect. V, we provide a summary of the dataset and de-
scribe how each frame is processed. To demonstrate the
utility of our dataset, we show how several face detection,
object detection, and optical flow methods are affected by
adversarial illumination (Sec. VI A). Finally, we analyze
how the choice of the color transfer function (TF) can
improve the performance of CV methods in adversarial
illumination conditions (Sec. VI B).
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II. RELATED WORK

Publicly available image datasets serve as the main
means of evaluating and comparing CV methods. Some
established datasets, such as Middlebury stereo32,33 and
optical flow datasets6 contain well-illuminated images
captured in controlled laboratory conditions. A simi-
lar trend can be observed for higher-level detection and
recognition tasks, for which commonly used evaluation
datasets are COCO18 for objects and LFW15, CelebA21

and FFHQ16 for faces. Although such datasets are highly
influential and essential for evaluating CV methods, they
attract criticism since they may not sufficiently reflect the
varied illuminations found in real-world scenes.

In-the-wild datasets Very large datasets with a good
variation of illumination conditions have been captured
with monitoring cameras22,34 or car-cabin cameras23.
However, such datasets are intended for a single applica-
tion, and extending them to other applications requires
tedious manual labeling (e.g. 11 man-months of work
in some cases22). Our dataset cannot match the size of
these specialized datasets but can be used across diverse
CV applications.

Multi-illumination datasets Scenes with the same
composition but varying illumination can be captured us-
ing a motorized photographic flashlight on a camera by
taking multiple images26,27. The light bouncing off the
walls and the ceiling illuminates objects from different
directions, providing a large variation in illumination re-
quired for image relighting methods. Such an approach,
however, is suitable only for indoor scenes without mo-
tion, results in a rather artificial structure of the reflected
flashlight, and is unlikely to produce high-contrast HDR
illumination. Instead, we carefully compose scenes with
multiple light sources to achieve challenging illumination
conditions.

Abdelhamed et al.2 captured the smartphone image
denoising dataset (SIDD), a dataset for testing denoising
methods intended for smartphone cameras. They cap-
tured a series of images for 10 different static scenes,
each under four conditions by varying the camera gain
settings, color temperature, and brightness of the light
sources. In contrast, our dataset consists of video se-
quences with motion parallax, captured with a CV cam-
era, in which the illumination was specifically designed
to challenge a range of CV methods.

Tracking and detection under challenging il-
lumination conditions Underexposed and saturated
regions pose problems to object detection5 and track-
ing methods4. To address this, Atoum5 proposes
illumination-aware CNNs (convolution neural networks)
to improve object detection. Alismail et al. adapt
illumination-invariant binary descriptors to achieve pho-
tometric invariance in tracking4. Our work provides an
evaluation dataset for these and other related problems.

Relighting Image-based relighting can be used to gen-
erate novel images of a scene under arbitrary illumination
conditions14,39. However, most relighting methods either

FIG. 1: The Street scene along with the capture and
setup. Controllable lights are present on either side of
the scene to simulate various lighting conditions. The

right image shows the spotlight behind the scene, which
shines through the diffuser and serves as a source of

glare.

require several images of the same scene captured under
different lighting, or they are restricted to a single appli-
cation, such as portrait relighting35. Since several images
need to be captured anyway, we are better off capturing
the images under the desired illumination and avoiding
potential artifacts of the relighting method used.

Rendering Large datasets with automatically gen-
erated labels can be produced with computer graphics
methods8,12,37. Game engines or offline rendering can
be used to render photorealistic scenes in arbitrary illu-
mination conditions. However, obtaining highly realistic
rendering results, comparable to camera images, requires
a substantial amount of effort by skilled professionals.
Furthermore, rendered images tend to differ substantially
from those captured by cameras. This may introduce a
bias in training, validation and result in a model that
underperforms in-the-wild40. This problem is addressed
by domain adaptation methods40, which involve training
on a mixture of real and computer-generated images in
a fully or semi-supervised manner or adversarial training
on the source and target domains38.

III. CAPTURE SETUP

In this section, we discuss the common capture and
illumination setup shared across all scenes under differ-
ent illumination conditions. Fig. 1 depicts the various
components of the capture setup.

A. Lights

Each illumination condition was simulated by toggling
or dimming a combination of lights according to the con-
figurations detailed in Table I. The lights included a
compact spotlight (Cameo Q-SPOT 40 TW) and a pho-
tographic box light (Astora SF 120), both controlled over
the DMX512 protocol using the QLC+ software9. Sele-
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(a) Patches of the night illumination
(right column) captured with

exposure time t = 1/150 secs and gain
g = 16, compared to uniform
illumination (left column).

(b) HDR image along with
appropriately exposed insets of dark
and bright regions. Notice the noise

in the left inset and saturation in
parts of the right inset.

(c) Glare or blooming (top) causing
contrast reduction and lens flare
(bottom). Notice that flare may

occur due to lights outside the field of
view.

FIG. 2: Gamma encoded (γ = 2.2) images of the dataset showing the various problems or imperfections in images
under non-ideal but realistic illumination conditions.

TABLE I: Configuration of lights used for different
illumination conditions. The first two lights were

controlled using the DMX512 protocol, allowing a value
between 0-255. The remaining lights could only be

turned on or off using relays connected to an Arduino
board.

Light Night HDR Glare Uniform
DMX area 0 63 255 255

DMX spotlight 10 0 255 0
Photographic light off on off off

Tunnel/street LEDs on off off on
Background on on on on

nium webdriver28 was used to control QLC+ software us-
ing its web interface. We also used a photographic light
with a single LED bulb (Omnilux 18W 1800-3000K),
and smaller LED lights controlled by a custom Arduino
board with several relays. Additionally, background il-
lumination was provided by an LED video light (Neewer
NL480). We tested all the lights with a custom high-
frequency light meter to ensure that they were flicker-free
up to 8.9 kHz.

Some example images from the captured scenes under
each illumination conditions are shown in the columns of
Fig. 3. These conditions are described below:

1. Uniform

For each scene, a uniform condition was obtained by
manipulating the lights to illuminate as much of the

scene as possible. The camera parameters were selected
to produce well-exposed frames with low levels of noise.
The CV methods tested in our experiments (Secs. VI A
and VI B) perform very well on images captured under
the uniform condition. Thus, it serves as a reference con-
dition for generating labels used to test other, more chal-
lenging illumination conditions. The advantage of such
a framework is that we prevent tedious, manual labeling
of the data for different applications. We note, however,
that the labels obtained are not ground truth labels and
their only purpose is to test the relative change in per-
formance in under adversarial illuminations.

2. Night

Night illumination simulates low-light conditions by
using only a few selected lights and dimming them as
needed. In low-light imaging, it is customary to use a
high camera gain to capture video, and thus, we used a
gain of 16 (the camera’s maximum gain). The high gain
introduces significant noise in the images as depicted by
the zoomed-in patches in Fig. 2a. Using longer exposure
times is often not an option for videos, as it results in
motion blur and a low frame rate. Another characteris-
tic of the night condition is bright lights such as tunnel
lights in the Tunnel and street lights in the Street scenes.

3. High dynamic range

Here, the lights were arranged to achieve a very high
contrast between the dark and bright parts of the scene
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to simulate HDR illumination conditions (see Fig. 2b).
Such high contrast was achieved either by illuminating
one of the faces with the spotlight (for the Faces scene)
or by using a foam board to produce sharp shadows from
a bright source of light (see Fig. 1) (for other scenes).
In the Tunnel scene, the ceiling lights of the tunnel were
turned off, while photographic lights simulated the bright
outdoors. As depicted in Fig. 2b and Fig. 3 column (b),
dark regions of the scene were barely visible when the
image was display-encoded using a regular gamma en-
coding. These image regions were also affected by noise
much more than their brighter counterparts.

4. Glare

It is often unavoidable to have very strong light
sources, such as car headlights or the Sun, in an im-
age. Such strong light sources introduce visible glare,
also known as blooming, caused by unwanted scatter-
ing and reflections of light inside the camera lens. The
glare causes a reduction in contrast in an otherwise well-
exposed image, as shown in Fig. 2c (top). Depending
on the configuration of the scene, we used either three
bright LED bulbs fixed in a photographic frame and con-
nected to a relay, or the compact spotlight controlled by
DMX512 protocol to induce glare in the images (see Fig 1
right).

Lens flare is another problem caused by stray reflec-
tions. Lens flare can be seen in Fig.2c (bottom) and is
caused by the tunnel lights present in the scene.

B. Camera and lens

We captured the scenes using an IDS UI-3860CP-C-
HQ computer vision camera, which has a Sony IMX290
1/2.8” CMOS sensor of resolution 1936×1096 pixels and
pixel size 2.9 µm. The camera was remotely controlled
to capture 12-bit RAW images. For each video frame,
we captured a stack of 13 images with increasing expo-
sure times with a distance of 1 stop between them. A
higher gain of 16 was used for some conditions such as
night and HDR. The final images selected for each illu-
mination condition depend on the scene-specific lighting
configuration and lens aperture used. These are selected
from the captured exposure stacks. An advantage of the
captured exposure stacks is that the HDR scenes can be
accurately reconstructed. Subsequently, pretrained gen-
erative models1 or calibrated camera parameters3,13 can
be used to simulate other cameras, generating additional
realistic images of the same scenes captured with differ-
ent camera settings.

Our scenes were captured using one of three lenses de-
pending on the specific camera motion and illumination
condition. The different lenses used were:

• Narrow: Fujifilm HF25HA-1B with focal length

25mm and the effective field of view (accounting
for the sensor crop) of 14.6°× 9.78°

• Medium: Navitar HR973NCN with focal length
8 mm and the effective field of view of 43.7°× 29.9°

• Wide: Wide-angle Navitar MVL4WA with focal
length 3.5 mm and the effective field of view of
85°× 62.9°

All lenses have a maximum aperture of f/1.4. However, in
most captures, we set a much smaller aperture to ensure
a sufficiently large depth of field. The exact lens used
varied for each sequence and is discussed in Sec. IV.

C. Motorized camera slider

The camera was mounted on a camera slider was pow-
ered by a stepper motor driver (Wantai DQ542MA) and
controlled with a custom Arduino board connected to
a PC. To ensure that the frames were captured from
the same viewpoint for each illumination condition, we
cycled through all illumination conditions before mov-
ing the camera to the next position on the slider. We
captured each scene from 100 different camera positions,
simulating smooth camera motion. The total length of
the movement was 808.89 mm and thus, the distance be-
tween each frame of the sequence was 8.09 mm. We po-
sitioned the slider parallel, perpendicular, or diagonal to
the background plane of the physical scene, depending
on the scenario.

IV. SCENES

Since we required full control of the lights and needed
to capture the scenes over several hours, we had to sim-
ulate semi-realistic scenarios in the lab. The scenes con-
sisted of printed foam board cutouts and models in 1:24
scale. All objects were placed at different distances from
the camera to introduce parallax. The background was
made out of a large foam board with printed photographs
or patterns glued on it. All the scenes also included an X-
Rite Classic Color Checker Chart, used for white-balance
and color calibration.

A. Faces

Face detection and recognition are important and well-
studied problems. Most face datasets15,16,21 contain
prominent, well-exposed faces under ideal illumination
conditions. To evaluate the robustness of state-of-the-art
face detection and recognition methods, we constructed a
scene composed of cardboard cutouts of the faces of pop-
ular figures. We also included cutouts of a tiger and a
gorilla to introduce the possibility of false positives. The
source of glare was introduced by cutting a circular hole
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FIG. 3: The scenes (rows) captured under different illumination conditions (columns). All images have been gamma
encoded (γ = 2.2) for visualization.

in the foam board that supported the background and
covering it with a diffuser film. As depicted in Fig. 1,
the compact spotlight was placed on the other side of
the foam board and directed towards the camera. For
this scene, the camera slider moved horizontally, parallel
to the scene. The dynamic range of the scene was in-
creased by pointing the focused spotlight on one of the
cutouts (the Queen in Fig. 2b) while keeping the back-
ground light dim. The lens with medium focal length was
used for HDR and night conditions as it allowed the cam-
era to be placed closer to the scene. However, this lens
produced images with significant lens flare in the presence
of a bright source of light. For this reason, the narrow-
angle lens was used for the glare condition and the camera
was placed at a larger distance from the scene. Since we
had to use a different lens and also move the spotlight,
we captured a separate uniform illumination condition,
which served as a reference for the glare condition.

B. Tunnel

This scene simulated a camera mounted inside a car
on a busy road. The motion of the camera slider simu-
lated the movement of the car as it exited a tunnel and
approached an intersection. Unlike the other scenes, the
camera moved in the direction it was facing, perpendicu-
lar to the plane of the background. We used a wide-angle

lens, similar to those used in dash cameras. The scene
consisted of objects built from cardboard and foam board
cutouts (the tunnel, truck, bus, traffic signs, etc.), models
of cars in 1:24 scale, and a model of a tree. We modified
one of the cars so that it had its headlights on during the
capture. For the night illumination condition, the tunnel
was illuminated with controllable LED lights.

This scene had a large dynamic range as it included
low-luminance regions inside the tunnel and bright re-
gions outside. Lens flare caused by the headlights of on-
coming cars and tunnel lights provided additional adver-
sarial illumination.

C. Street

The final scene depicted a crowded street with cars, a
bus, and pedestrians. For the night condition, the street
was partially illuminated with small model lamp posts,
controlled by the Arduino board. The pedestrians were
model people in 1:25 scale from a model train collection
(the closest matching scale). The camera moved either
along the street (labeled Street-parallel) or on a diagonal
45° path (labeled Street-diagonal), simultaneously mov-
ing along and towards the street. The source of glare
had the shape of a set of construction-site lights with the
DMX spotlight behind the diffuser film.
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FIG. 4: Distribution of pixel values under different
illumination conditions for all scenes in the dataset.
Dashed vertical lines show the average pixel values

under each illumination for each scene.

V. PROCESSING OF THE FRAMES

We prepared linear color camera frames, stored as 16-
bit PNG files, and HDR frames stored as OpenEXR im-
ages. The RAW camera frames were first demosaiced
using DDFAPD24 and then white-balanced. To perform
white balance, we multiplied RGB values so that all color
channels had equal intensity for the white patch in the
color checker chart.

The 16-bit PNG images were created by selecting an
appropriate exposure from the captured exposure stacks.
For every scene and illumination, we selected the expo-
sure that avoided saturated pixels, and hence, was rep-
resentative of typical capture conditions. For example,
we chose sequences with high gain for night conditions,
and exposures with high contrast and almost no satu-
ration for the HDR scene. Saturation of the pixels was
unavoidable for the glare conditions, containing bright
light sources. However, we selected exposures in which
most objects were visible and not saturated.

The HDR image stacks were merged using HDRutils13,
which reduces estimation error in the presence of noise.
We used 13 exposures, from 0.2 ms to 819.2 ms, sepa-
rated by 1 stop. Demosaicing and white-balance were
performed after merging RGGB sub-pixels. The multi-
exposure merging procedure resulted in HDR images
with a minimal amount of noise and without any satu-
rated regions. Such images can be used to simulate other
cameras with different noise characteristics1,3,13.

A. Distribution of pixel values

To visualize the differences between the illumination
conditions, we plot histograms of pixel values in Fig. 4
for each scene. It should be noted that the pixel values

under uniform illumination are in the upper part of the
dynamic range, making those images well-exposed. The
HDR condition resulted in the widest histograms, often
with two distinct modes. The histograms under the night
illumination are shifted to the left, making images darker
and more affected by noise. And finally, the histograms
are shifted to the right in the glare condition due to the
scattered light.

VI. PERFORMANCE OF COMPUTER VISION
METHODS

To demonstrate the usefulness of the new dataset, we
perform two experiments: first, we test how much the
performance of selected CV methods degrades due to
challenging illumination and then test whether their per-
formance can be improved when different TFs are used
to encode frames. A suitable TF maps linear RGB pixel
values to non-linear values, which can be represented at
lower bit-depths and tend to be more perceptually uni-
form. Note that we avoid labeling these methods tone
mapping operators, as tone mapping is typically used to
produce visually pleasing images for human consumption
rather than machine vision. Our experiments form a pre-
liminary study intended to confirm the selection of the
adversarial illumination conditions and are not meant to
be a comprehensive evaluation of all possible TFs. Such
a larger experiment is planned for future work.

Traditional image signal processing pipelines are de-
signed for best visual quality and are not optimized for
CV algorithms7,29. Many steps in the ISP pipeline may
be redundant for some CV algorithms, and may even
degrade their performance. Previous work7 has shown
that only two stages of the traditional ISP pipeline are
critical in terms of machine vision, namely demosaic-
ing and gamma encoding (or gamma compression). We
follow this observation and simulate a simplified cam-
era pipeline, shown in Fig. 6. The first two steps of
this pipeline, demosaicing and white balance, were ex-
plained in Sec. V. The last two steps, encoding with a
TF and quantization, were different for each experiment
and tested method, and are explained in more detail in
the following sections.

Our experiments were performed on publicly available
implementations for three CV applications — optical
flow, object detection, and face detection. We used the
uniform condition encoded with the gamma TF (with an
exponent of 1/2.2) to generate reference labels for evalu-
ating methods. As described in Sec. III A 1, the uniform
condition consists of well-exposed frames with low levels
of noise. We created individual labels for each tested
CV method and thus each face detection and optical
flow method had its own set of reference labels. We in-
spected the reference labels and found that almost all ob-
jects were correctly detected in the uniform condition and
therefore no manual labeling was necessary. It should be
noted, however, that the reference condition should not
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FIG. 5: Bounding boxes for several face and object detection methods (rows) for three adversarial illumination
conditions (columns), each gamma encoded (with γ = 2.2). Faces and objects detected by the various methods for
the reference uniform illumination condition are shown as shaded green rectangles, while the results of the tested

methods for other illumination conditions are shown as red rectangles.
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FIG. 6: The ISP pipeline used for evaluating the
performance of CV methods. The intermediate frames

are processed by a TF, followed by an optional
quantization. This serves as an input to the CV

application being tested.

be considered as the ground truth and is only meant to
show the relative degradation in the performance due to
the adversarial illumination.

We used dense optical implementations of a polyno-
mial expansion algorithm11, a coarse-to-fine algorithm19

and a state-of-the-art deep neural network RAFT36. To
compare predicted pixel-wise optical flow field Vpred(p)
to the reference Vref(p), we used the endpoint error (EE)
metric:

EE =
1

N

N∑
p=1

|Vpred(p)− Vref(p)| . (1)

where N is the number of pixels.
For object detection we used a pretrained YOLOv330

network. For face detection we used a pretrained single-
shot detector (SSD)20, face detector based on histogram
of oriented descriptors (HOG)10, and maximum margin
object detection with CNN features (MMOD)17. Bound-
ing boxes of both detection tasks were evaluated using
the mean intersection over union (mIoU) metric:

mIoU =
area(Rpred

⋂
Rref)

area(Rpred

⋃
Rref)

, (2)

where Rpred =
⋃N
i=1Bpred(i) is the union of all N bound-

ing boxes predicted and Rref =
⋃M
j=1Bref(j) is the union

of all M reference bounding boxes.

A. Effect of changing illumination

All images Iin were encoded with the gamma encoding,

Iout = I
1/γ
in where γ = 2.2. Such a gamma encoding is

the most widely used TF in CV cameras, which produces
images that can be directly viewed on standard monitors,
as it approximates the TF used in the sRGB color space.
Here, we test how the performance of the CV methods is
degraded in adversarial illumination conditions.

FIG. 7: TFs used in our experiments to map linear color
values to the encoded values, suitable for CV methods.

The results of this experiment are listed in Table II.
We observe a considerable difference in the results of the
tested methods with changing illumination conditions.
Fig. 5 shows a qualitative comparison for the different
conditions for the face and object detection methods.

The low scores of all face detection methods for the
HDR illumination (see Table II) can be explained by the
first three images of the second column of Fig. 5. The
inefficient encoding of the input images results in 5 out
of 6 faces being underexposed. In the glare condition
(last column of Fig. 5), the faces present under the bright
light source are not detected by any of the methods. The
MMOD and HOG detectors are slightly more robust to
glare and are able to detect faces further away from the
source of glare. This explains their better performance
for the same inputs.

Glare is not as much of a problem in the other scenes
(Tunnel and Street) because the objects of interest are
further away from the bright light source. In general, the
methods produce lower mIoU scores for very dark objects
in night illumination. This is likely a consequence of un-
derexposed pixels rather than noise since underexposed
objects pose a problem even in HDR conditions (for exam-
ple, the bus and truck in Tunnel and the car and person
in the bottom-right shaded region in Street-diagonal).

B. Comparison of TFs

Next, we evaluate the performance of the CV meth-
ods when the input images are encoded using different
TFs. These include a linear function (no TF, linear color
values), gamma encoding (see Sec. VI A) using three dif-
ferent exponents (1/1.8, 1/2.2 and 1/2.6), the log function,
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TABLE II: The performance of popular methods under different illumination conditions, averaged over 100 images
in each sequence. All input images were encoded using a gamma encoding (γ = 2.2). The reference labels for each
application were obtained from uniform conditions. (*) The lens and setup for images containing glare in the Faces
sequence differed from other conditions. As a result, a different setup for the reference uniform condition was used.

Application Method
Faces Tunnel Street-parallel Street-diagonal

Night HDR Glare* Night HDR Glare Night HDR Glare Night HDR Glare

Face detection
(mIoU) ↑

HoG 0.75 0.15 0.66 7 7 7 7 7 7 7 7 7
MMOD 0.93 0.16 0.44 7 7 7 7 7 7 7 7 7

SSD 0.56 0 0.1 7 7 7 7 7 7 7 7 7
Object detection

(mIoU) ↑ YOLOv3 0.92 0.63 0.76 0.52 0.85 0.9 0.71 0.76 0.88 0.78 0.82 0.9

Optical flow
(EE) ↓

PolyExp 0.97 5.91 3.1 2.52 2.78 2.35 4.11 3.56 1.34 2.07 2.47 1.84
Coarse2Fine 0.13 0.64 0.35 1.03 6.21 6 0.57 0.18 0.09 0.35 0.28 0.17

RAFT 54.71 40.49 1.82 22.6 0.32 0.27 0.68 0.15 0.1 0.48 0.2 0.15

and the perceptual quantizer (PQ) TF, which is com-
monly used for encoding HDR content25. All the TFs
are plotted using log-linear coordinates in Fig. 7. The
advantage of this visualization is that the slopes of the
plotted functions correspond to the compression or ex-
pansion of contrast at a particular intensity value. The
plots show that the TFs intended for HDR images (log
and PQ) better preserve contrast across the entire range
of values, while gamma and linear functions compress
contrast at lower intensity values. The code for the trans-
fer functions can be found at https://www.cl.cam.ac.
uk/research/rainbow/projects/hdr4cv-dataset/.

Optical flow As shown in the top three rows of Fig. 8,
all tested optical flow methods show similar characteris-
tics: they all benefit from HDR TFs (log and PQ) for
most conditions. It should however be noted that there
are also important differences between the methods. The
Coarse2Fine method seems to be robust to noise in the
night condition but affected by the large dynamic range in
the HDR condition, especially for the tunnel scene (note
the absolute values of the EE). PolyExp resulted in larger
EE across all the conditions and is less robust to noise.
Finally, RAFT resulted in huge EE for Faces and Tun-
nel. We investigated this issue and found that the cause
was a dark region of the image, which captured a part of
our laboratory outside the illuminated part of the scene.
RAFT predicted very high velocity for this region, re-
sulting in an EE an order of magnitude higher than for
other methods (see Fig. 9). For the two Street conditions,
RAFT was robust in the HDR condition but was affected
by noise in the night condition. We can conclude that
the Coarse2Fine method is most robust to adversarial
conditions and it should be combined with PQ.

Object detection The results for object detection
(YOLOv3) shown in the bottom row of Fig. 8 are strongly
affected by the adversarial illumination. The TFs in-
tended for HDR data, log and PQ, improve performance
for HDR condition, but they also reduce performance
for the two other conditions. This is because night and
glare conditions contain objects of interest in the upper

(brighter) part of the dynamic range. Since gamma en-
coding tends to enhance contrast in the upper part of the
dynamic range, it achieves better performance for those
two conditions but fails for HDR, where it is unable to
reproduce contrast in the darker part of the frame, as
shown in Fig. 10.

Face detection The results plotted in Fig. 11 show
similar trends for all three face detection methods. As
was the case with object detection, HDR TFs help in
HDR conditions, but can also degrade performance for
other conditions. For the same reason, linear color repre-
sentation unexpectedly performs reasonably well for night
and glare, though it still fails for the SSD method. It is
also worth noting that the SSD face detector is more af-
fected by the adversarial illumination than the two other
methods. We can conclude, that face detection would
benefit from an adaptive TF, which selectively repro-
duces contrast in the darker or brighter part of the dy-
namic range, depending on image content.

VII. LIMITATIONS

Although our dataset was designed to be possibly real-
istic, it may not be suitable for applications that rely on
accurate material reflectance properties, such as shape-
from-shading or relighting. This is because many objects
in our model scenes are cardboard cutouts and do not
capture the richness of materials in the wild. The dataset
could complement computer graphics datasets, which can
potentially reproduce more accurate materials but may
lack imperfections and artifacts caused by camera sensors
(noise, quantization) and optics (glare).

VIII. CONCLUSIONS

We created a new dataset consisting of short video
clips captured in adversarial illumination conditions. The
main advantage of our dataset is that it includes uni-
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FIG. 8: The performance of optical flow (top three rows) and object detection (bottom row) for all four scenes
(columns) and three adversarial illumination conditions (three sections in each plot). Dots represent the mean and

the error bars represent the standard deviation for a sample of 100 frames. The y-axis is reversed for optical flow so
that the points located higher on the plot correspond to the better performance.

formly illuminated scenes which result in images with
minimal noise. With these, reference labels can be au-
tomatically generated for most CV methods. Such la-
bels can be then used to measure the degradation in the
performance of computer vision methods in adversarial
conditions: night (high noise), HDR (high contrast) and
glare (stray light in camera lens).

We used the dataset in our preliminary study to eval-
uate the robustness of popular methods for face detec-
tion, optical flow, and object detection under adversar-
ial illumination conditions. We also studied whether the
performance of these methods can be further improved
under challenging lighting conditions by selecting an ap-
propriate transfer function. The results suggest that as
expected, the popular gamma encoding is unsuitable for
HDR scenes. At the same time, the transfer functions
intended for HDR scenes, such as log or PQ, reduce con-
trast in bright regions leading to rather poor performance
in well-exposed images. We plan to expand this study

to consider more advanced, adaptive transfer functions,
which could further improve the robustness of CV meth-
ods under adversarial illumination is in preparation.
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