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Abstract—ColorVideoVDP-ML is a full-reference image and
video quality metric, which combines a visual difference predictor
with a machine learning regressor. It employs ColorVideoVDP
as an encoder of visual information and visible differences, and
a neural architecture as a regressor of the final quality scores. It
benefits from low-level vision models of contrast sensitivity and
masking, found in ColorVideoVDP, as well as its ability to handle
both SDR and HDR content, and to adapt to arbitrary viewing
conditions, display resolution, and size. Two neural regressors,
one based on MLPs and one on Transformers, are trained on
multiple video and image quality datasets, all scaled in the
Just-Objectionable-Difference (JOD) units. The regressors let
us account for higher-level factors influencing perceived image
quality, such as saliency or texture differences, and provide a
way to fine-tune and specialize the metric in handling a specific
type of distortions. The code for the metric can be found at
https://github.com/gfxdisp/ColorVideoVDP.

Index Terms—Visual difference predictor, image and video
quality assessment, neural regressor, saliency, attention

I. INTRODUCTION

ColorVideoVDP [1] is a full-reference quality metric for
images and videos, which accounts for the physical specifica-
tions of a display (emitted color, size, resolution) and which
models low-level human spatio-temporal and chromatic vision.
Because it incorporates contrast sensitivity (castleCSF [2]) and
contrast masking models, it can predict whether introduced
distortions are visible to the human eye. However, since it
relies on a simple pooling of visible contrast differences,
it cannot account for higher-level factors that affect image
quality, such as saliency or texture similarity. For example,
if we have a video with a salient foreground attracting all the
attention, ColorVideoVDP will still penalize equally the dis-
tortions in the foreground and background. Since background
can cover a larger area, the metric can skew its predictions
towards less important parts of the frame. Another problematic
case for ColorVideoVDP is image parts containing high-
entropy (random) textures, such as foliage or grass. For a
human observer, a slight difference in such a texture, such as
rotation or displacement, makes no difference. However, since
ColorVideoVDP compares local differences between the test
and reference contrast, it will label those as containing large
distortions.

To address those shortcomings, we introduce
ColorVideoVDP-ML — ColorVideoVDP with machine
learning regressors, which can account for high-level factors

and improve the regression of quality values. We use the
original ColorVideoVDP to encode visual information as
perceived contrast of the test, reference image, and also
as visible difference between the two, which accounts for
contrast masking. To reduce such visual information to a
manageable size, we compute local statistics for patches over
a spatial region of one visual degree and then pass those to
one of the deep-learning architectures: either a saliency-based
or a transformed-based regression network, which predict the
final quality score.

We could train ColorVideoVDP-ML both effectively and
efficiently with three training strategies. First, the extracted
features with local statistics reduced the size of the training
data from terabytes of raw video files to a few gigabytes of
feature vectors, which could be efficiently used for training.
Second, we were able to train and validate the metric on mul-
tiple datasets, all scaled on the Just-Objectionable-Difference
(JOD) units. Because JOD units are generally consistent across
datasets, we could train on multiple datasets at the same time,
and monitor for overfitting using other datasets. Finally, the
videos used to train one of the models were augmented by
extracting smaller videos, trimmed in the temporal dimension,
and cropped in the spatial dimension. We assumed that smaller
segments of a video have the same quality score as the entire
video. This lets us train larger models and also increases the
amount and diversity of the training data.

II. RELATED WORKS

We briefly review visual difference predictors, as those
are the most relevant to the proposed metric. The original
difference predictor [3] was proposed in the 90s as a way
to incorporate psychophysical models of low-level vision into
the assessment of image quality. It included models of contrast
sensitivity (dependence of sensitivity on spatial frequency) and
contrast masking (the reduced visibility of differences in the
presence of a masking signal, such as textures). HDR-VDP-
1 [4] introduced modeling of glare and luminance masking
to account for the visibility of distortions in high-dynamic-
range images. HDR-VDP-2 [5] was the main redesign of
the original VDP, which was calibrated on multiple psy-
chophysical datasets. It was also the first VDP metric that
could regress visual differences, typically represented as a
difference map, into single-value quality scores that were well
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Fig. 1. Architecture overview of the proposed ColorVideoVDP-ML. (a) provides details on the ColorVideoVDP metric that is used as a backbone. (b) explains
how we pooled the features from the contrast information extracted from ColorVideoVDP. (c) showcases the two architectures that we employed to regress
the features.

correlated with mean opinion scores [6]. HDR-VDP-3 [7]
further improved quality and introduced variants of the pre-
dictor (e.g., side-by-side vs. flicker presentation of compared
images). FovVideoVDP [8] was another major redesign, which
simplified many components of HDR-VDP-3 to make it more
suitable for video quality predictions. It introduced temporal
channels, which modeled the visibility of temporal distortions,
such as flicker. FovVideoVDP could also model foveation,
which is the reduction of sensitivity to distortion outside
the foveated (gazed) region. ColorVideoVDP [1], which our
metric is based on, removed the modeling of foveation in favor
of modeling color vision, both in the spatial and temporal
domains. ColorVideoVDP relies on a modern spatiotemporal
and chromatic contrast sensitivity function, castleCSF [2].

All reviewed VDPs share the same weakness — inability
to model higher-level factors affecting image quality. Our
ColorVideoVDP-ML is an attempt to address this weakness.

III. COLORVIDEOVDP-ML

In this section, we introduce ColorVideoVDP-ML. The
objective of this metric is to leverage the components of visual
difference predictors based on the psychophysical foundations
of the low human visual system and extend them to cap-
ture higher-level neural processing through the use of neural
network architectures. An overview of the metric pipeline is
presented in Figure 1, with a detailed explanation provided in
the subsequent sections.

A. Perceptual difference features
The backbone of our metric is ColorVideoVDP [1] —

a recent visual difference predictor for image, video, and
display distortions. It is used to encode test and reference
images and their difference into perceptual representations.
At a high level, as shown in Figure 1-(a), ColorVideoVDP
first models the display by transforming input content from
its native color space (e.g., BT.2020 with the PQ EOTF)
to a linear color space that represents absolute quantities of
light emitted from a display. This step is responsible for
handling both SDR and HDR content and for accounting for
the physical characteristics of the display (size, resolution,
viewing distance). Following that, temporal filters are used to
decompose videos into four perceptually meaningful channels:
achromatic, red-green, yellow-violet, and transient channel.
Those are then decomposed into a multi-scale bandpass pyra-
mid (the Laplacian pyramid). Each band is then modulated by
the corresponding contrast sensitivity (based on castleCSF [2])
and passed to a contrast masking model, which predicts the
visibility of the distortions. In the original ColorVideoVDP,
such contrast differences are simply pooled across the spatial
dimension, bands, channels, and frames. Instead, we pass this
information to the machine learning regressor.

B. Feature pooling
The main difficulty of training a video quality metric is the

gigantic amount of raw video data used to predict relatively
few labels. Video datasets can easily take several terabytes



when stored in uncompressed format. To reduce the amount of
data to a manageable size, we pool the ColorVideoVDP output
in non-overlapping spatial patches, as shown in Figure 1-(b).
Each patch has a width and height of one visual degree at the
highest frequency band. At lower frequency bands, which are
subsampled in the pyramid, the number of pooled coefficients
remains the same, so that the patch increases in the size
measured in visual degrees. The pooling computes six statistics
for each patch: mean and standard deviation of absolute values
of the test and reference contrast (modulated by the contrast
sensitivity), and mean and standard deviation of the perceptual
differences. Those statistics are computed separately for the
four visual channels, for each band, and each frame. Since
images lack a transient achromatic channel, the statistics of
that channel are set to 0 for images.

C. Regression network architecture

We regress the final quality scores using either one of the
two neural architectures, explained below.

1) ColorVideoVDP-ML-Saliency: The first architecture at-
tempts to learn the saliency of different image regions and
weigh the impact of the local distortions accordingly. As illus-
trated in Figure 1-(c), the saliency-based regression network
utilizes one MLP network ϕD to regress visible differences
(D) into quality scores, and another MLP network ϕS to
compute the weight for the first network prediction. This
allows us to modulate the influence of the distortions found
in each patch by the saliency computed from the test (T ) and
reference (R) patch statistics.

The final quality score is computed as:

QJOD = 10−

k

F∑
f=1

B∑
b=1

P∑
p=1

R (ϕS (Tf,b,p ⊕Rf,b,p)) · R (ϕD (Df,b,p))

(1)
where k = 1

FBP is the normalization constant and the
summation is performed across patches p, bands b and frames
f . R denotes the ReLU activation function that constrains
the saliency and distortion scores to remain non-negative,
as our goal is to model only perceptual degradation rather
than enhancement. The symbol ⊕ denotes the concatenation
operator. Vectors T , R and D contain 8 values — two statistics
computed for four channels.

While we do not train our saliency predictor ϕS on eye-
tracking data, we believe that using this joint-training of
both predictors on quality datasets, the model would learn
to assign higher scores for salient regions (as shown later in
Section IV-D).

2) ColorVideoVDP-ML-Transformer: While the previous
architecture incorporates semantic information to weigh the
distortions’ visibility, it does not account for the relationship
between the different patches. Therefore, as an alternative
regressor, we use an architecture based on Transformers [9].

As shown in Figure 1-(c), the metric can leverage the
Transformer network architecture to capture inter-patch de-
pendencies and their impact on the global perceived quality.

Given each patch p, we concatenate the corresponding test
T , reference R, and difference D features and feed them to
the patch encoding module ϕP , implemented as a linear layer.
The resulting patch embeddings, concatenated with a learnable
classification token CLS, are then fed to the Transformer
encoder to predict the distortion score for each band and frame,
which were then aggregated across all bands and frames, as
described previously in Eq. (1).

As illustrated in the figure, we omit positional embed-
dings, as they did not yield any performance improvement.
Additionally, we explored incorporating the features across
all frequency bands, by including a “band” embedding as in
[10]. However, considering that contrast information is similar
across frequency bands and to reduce the complexity of the
model, we opted not to include it.

D. Implementation details

For the ColorVideoVDP-ML-Saliency model, the saliency
predictor is implemented as an MLP with 4 layers and 48
hidden units, along with a dropout rate of 0.2. The distortion
predictor consists of 3 layers with 24 hidden units and the same
dropout configuration. Batch normalization is intentionally
omitted from both predictors to preserve the units of the
ColorVideoVDP features, which are expressed in meaning-
ful perceptual units. Both networks utilize ReLU activation
functions.

In the ColorVideoVDP-ML-Transformer variant, the patch
encoding module is implemented as a single linear layer
that transforms the input features of size 24 to a token of
dimension 256. The Transformer encoder consists of 4 layers,
each with 8 attention heads. Within the encoder’s MLP blocks,
we adopt the GeLU activation function, following standard
practice in Transformer architectures. The regression MLP
head is implemented as a single normalization layer, followed
by a linear layer, and a ReLU activation function.

Both architectures include two additional learnable param-
eters: the “baseband weight” and the “image weight”. The
baseband weight is used to scale the model prediction for the
baseband, following the approach in ColorVideoVDP, ensuring
they are normalized to be compatible with the magnitude
of higher frequency bands. The image weight is introduced
to adapt the model for image quality assessment, where no
temporal information is available. It adjusts the resulting
quality scores to be consistent with those predicted for video
content.

The number of parameters for each architecture, their infer-
ence time, as well as the learnable baseband and image weight,
are reported in Table I.

IV. EXPERIMENTS

A. Training and testing datasets

We utilized a total of eight datasets, four used for both
training and validation (with an 80/20 train/test split with no
shared scenes) and the remaining four were reserved solely for
validation. We used a large number of validation datasets to
monitor training and prevent overfitting. Details of all datasets



TABLE I
THE MODEL PARAMETER NUMBER, SIZE, INFERENCE TIME, AND

TRAINABLE PARAMETERS OF COLORVIDEOVDP AND BOTH
COLORVIDEOVDP-ML NEURAL ARCHITECTURES. THE INFERENCE TIME
IS MEASURED FOR A 60 FRAMES 4K HDR10 VIDEO USING AN NVIDIA

GEFORCE RTX 4090 GPU.

Model
Number

of
parameters

Model
size
[Mb]

Inference
time

[ms/frame]

baseband
weight

image
weight

ColorVideoVDP 33 0.001 85.65 - -
ColorVideoVDP-ML-Saliency 9.4K 0.15 87.84 2.12 0.65
ColorVideoVDP-ML-Transformer 3.2M 37 91.03 0.94 0.90

are provided in Table II. All training datasets’ scores were
scaled in the Just-Objectionable-Difference (JOD) units [11],
which provided consistent quality scores across the datasets.
Moreover, the MOS scores of the LIVE HDR dataset were
converted to JOD scores by linear mapping, as described in the
supplementary of [1]. While the conversation may introduce
some inaccuracy, we found that training including this dataset
resulted in higher performance on the testing datasets.

B. Training methodology

To allow efficient training, the pooled features (statistics
stored T , R, and D tensors) were extracted once at the
beginning of training, cached, and reused across all training
epochs. Despite this optimization, training the Transformer-
based model remained memory-intensive. To mitigate this, we
used data augmentation when training ColorVideoVDP-ML-
Transformer. We applied random spatial cropping to a range
between 25% and 75% of the original resolution and sampled
temporal sequences of random durations between 0.5 and 1
second. While we acknowledge that the perceptual quality of
a spatio-temporal patch may not perfectly reflect that of the
full video [19], we believe that spatial cropping facilitates the
Transformer’s ability to learn inter-patch spatial relationships
more effectively.

For optimization, we employ the Adam optimizer [20],
with a learning rate of 0.001 for the saliency-based model
and 0.0001 for the Transformer-based model. Training is
conducted over 250 epochs, and the final model is selected
based on the epoch that achieves the best overall performance
across all validation datasets. Our framework is implemented
using the PyTorch framework, and training is performed on
an NVIDIA GeForce RTX 4090 GPU.

C. Metric performance

We compare the performance, measured as the Spearman
correlation, of our proposed ColorVideoVDP-ML with eight
state-of-the-art full-reference image and video quality metrics
[7], [21]–[26] on the testing datasets. Metrics that do not
natively account for HDR content were adapted using the
PU21 encoding [27]. Furthermore, metrics that do not natively
account for the viewing distance (introduced in the HDR-VDC
dataset) were adapted using SAST rescaling [28].

The results in Figure 2 show that the challenge dataset
(HDRSDR-VQA) proved difficult for many metrics, with
popular metrics, such as LPIPS, PSNR-Y, HDR-VDP-3 and
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Fig. 2. Spearman correlation performance of ColorVideoVDP-ML compared
with existing quality metrics. The performance is reported on the testing
datasets and the test portion of the datasets employed for both training and
testing. The error bars denote 95% confidence intervals. The metrics are sorted
by their performance on the HDRSDR-VQA (challenge) dataset. The results
of TOPIQ on the Kadid-10K dataset were removed as it was trained on it.



TABLE II
DATASETS USED FOR TRAINING AND TESTING.

Dataset Used for Type Scenes Conditions Distortions
HDRSDR-VQA [12] (challenge dataset) Train & test SDR/HDR videos 20 360 H.265, bicubic upscaling
UPIQ [13] Train & test SDR/HDR images 84 4159 34 distortion types
LIVE HDR [14] Train & test HDR video 21 210 H.265, bicubic upscaling
XR-DAVID [1] Train & test SDR video 14 336 8 display artifacts

HDR-VDC [15] Test HDR video 16 464 AV1, lanczos upscaling, varying
viewing distance and display luminance level

LIVE VQA [16] Test HDR video 10 150 H.264, MPEG-2, transmission

LIVE Mobile VQA [17] Test HDR video 10 200 H.264, wireless packet loss, frame freezes,
temporally varying compression rates

KADID-10k [18] Test SDR image 81 10125 25 distortion types

SSIM, achieving correlations close to 0.5. ColorVideoVDP
and VMAF also struggled — closer inspection showed that
those metrics underpredicted the quality of high-resolution
videos and overpredicted that of low-resolution videos. TOPIQ
and DISTS achieved the best performance on this dataset,
despite showing weaker performance on some other datasets.
Both variants of our metrics outperformed other metrics on the
testing portion of HDRSDR-VQA, but more importantly, they
retained good performance on the testing datasets, confirming
that they were not overfitted. ColorVideoVDP already per-
formed very well on the other training datasets — LIVEHDR,
XR-DAVID, and UPIQ. Both variants of our metric achieved
similar performance on those datasets.

When we consider testing datasets, we can observe
both gains in performance with respect to ColorVideoVDP
(ColorVideoVDP-ML-Transformer on HDR-VDC and LIVE-
Mobile), but also losses in performance (ColorVideoVDP-ML-
Saliency also on LIVEMobile). Both variants of our metric
perform worse than VMAF [25] and FUNQUE [26] on the
LIVE VQA dataset. This is an older dataset, which includes
transmission error distortions that were missing in the training
datasets. Overall, ColorVideoVDP-ML-Transformer performs
better in those tests than ColorVideoVDP-ML-Saliency, how-
ever, it requires 3 orders of magnitude more parameters (see
Table I).

D. Qualitative analysis: Distortion visibility map visualization

To assess the effectiveness of our model in incorporating
semantic information during quality prediction, we visualize
the distortion visibility maps generated by the two variants of
the ColorVideoVDP-ML model in Figure 3. For comparison,
we also include a baseline version of ColorVideoVDP-ML
trained without any semantic information, using only a simple
distortion predictor trained solely on perceptual difference
features.

As shown in the figure, the baseline model — lacking
semantic awareness — assigns relatively uniform importance
across the entire image and tends to emphasize background
distortions that are unlikely to influence perceived quality. The
saliency-based variant partially mitigates this issue by reducing
attention to the background and focusing more on the central
object, such as the woman seated on the bench. Notably, the
Transformer-based model demonstrates the greatest improve-
ment, concentrating attention primarily on the woman while

ColorVideoVDP-ML-Saliency
distortion visibility map 

ColorVideoVDP-ML-Transformer
distortion visibility map 

ColorVideoVDP-ML w/o semantic information
distortion visibility map

Test Image

Fig. 3. Distortion visibility maps of a frame extracted from the
HDRSDR-VQA challenge dataset using three different models: A baseline
ColorVideoVDP-ML with no semantic information, ColorVideoVDP-ML-
Saliency, and ColorVideoVDP-ML-Transformer.
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for the test portion of the HDRSDR-VQA dataset.

largely disregarding background regions. This indicates a more
human-aligned perception of quality.

E. Feature sensitivity analysis

To understand which features our model relies on the most,
we perform a feature sensitivity analysis. We set the values of
selected statistics to 0 and then measure how much the quality
prediction changes. The results are reported in Figure 4.

The figure shows that both variants of the ColorVideoVDP-
ML rely on the test contrast features more than the reference
contrast features to derive the semantic information, which
aligns with previous findings [29]. Moreover, we can observe



that the transformer-based network relies more on the percep-
tual difference features. In contrast, the saliency-based network
assigns more importance to the test and reference features in
comparison to the perceptual difference features. This can be
due to the similar importance we are giving to the distortion
and saliency predictors, which can lead the network to slightly
overfit on the test and reference features.

V. CONCLUSION

In this paper, we introduced ColorVideoVDP-ML, a full-
reference image and video quality assessment metric that inte-
grates low-level human visual system modeling with high-level
neural processing. Inspired by the success of both classical vi-
sual difference predictors and deep learning-based approaches,
our method unifies both paradigms into a single, generalizable
metric. We proposed two neural regression architectures: a
saliency-based MLP that learns to weight spatial regions
based on their perceptual importance, and a Transformer-
based model that captures spatial relationships across regions.
Trained on four diverse image and video quality datasets
and evaluated on eight, our metric achieves state-of-the-art
performance, particularly on challenging datasets such as the
HDRSDR-VQA challenge dataset.
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