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ABSTRACT A Tone Mapping Operator (TMO) is required to render images with a High Dynamic Range
(HDR) on media with limited dynamic capabilities. TMOs compress the dynamic range with the aim of
preserving the visually perceptual cues of the scene. Previous literature has established the benefits of
TMOs being semantic-aware and understanding the content in the scene to preserve cues better. Expert
photographers analyze the semantic and contextual information of a scene and decide tonal transformations
or local luminance adjustments. This process can be considered a manual analogy to tone mapping. In this
work, we draw inspiration from an expert photographer’s approach and present a Graph-based Semantic-
aware Tone Mapping Operator, G-SemTMO. We leverage semantic information as well as the contextual
information of the scene in the form of a graph capturing the spatial arrangements of its semantic segments.
Using Graph Convolutional Network (GCN), we predict intermediate parameters called Semantic Hints and
use these parameters to apply tonal adjustments locally to different semantic segments in the image. In
addition, we also introduce LocHDR, a dataset of 781 HDR images tone mapped manually by an expert
photo-retoucher with local tonal enhancements. We conduct ablation studies to show that our approach, G-
SemTMOa, can learn both global and local tonal transformations from a pair of input linear and manually
retouched images by leveraging the semantic graphs and produce better results than both traditional and
learning based TMOs. We also conduct ablation experiments to validate the advantage of using GCN.

aCode and dataset to be published with the final version of the manuscript.

INDEX TERMS Deep Learning, Graph Convolutional Networks, Semantic Awareness, HDR ToneMapping
Operators.

I. INTRODUCTION

TONE mapping operators compress the dynamic range
of an image, trying to preserve its aesthetic and visual

quality. The problem of finding a balance between dynamic
range compression and aesthetic quality predates digital im-
age processing. Renaissance painters created high-fidelity
paintings with a limited dynamic range of pigments while
maintaining the contextual cues of the scene. In the era of ana-
log photography, photo-retouchers reproduced high dynamic
range content on limited dynamic media by locally adjusting
exposure and contrast [1]. Artists naturally took regions of
semantic similarity and image saliency into account in order
to reproduce the visual cues of the scene. Therefore, while
a TMO maps the luminance values from a linear image to
its output, it helps if it is also aware of the content in the
scene. The importance of TMOs being aware of the semantic

context of a scene has been established in literature [2]. The
research problem addressed in this paper lies in the question,
how can we use contextual semantic information explicitly
in the tone mapping pipeline? We hypothesize that ideally a
TMO should analyse an image like an expert photographer,
generate an abstract understanding of the scene and modify
the image locally based on the abstract semantic information.
How do photographers analyse a scene while retouching?
Parsing a scene is essential for aesthetically modifying an
image. Learning-based semantic segmentation networks as-
sign fine-grained labels to pixels and generate a semantic
map for an image [3]. Unlike fine semantic segmentation,
photographers parse scenes at a coarser level. We conducted
interviews with expert photographers and photo retouchers to
understand the tonal adjustment process. It is a two-step pro-
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cess. First, the expert identifies photographically important
objects (semantic classes or labels) in the scene. A coarse
map is thus created with individual segments signifying re-
gions of semantic similarity. For each region of interest the
expert considers its semantic class, neighbouring classes, the
histograms and local tonal deviations to create an estimate of
tonal adjustment to apply. Finally, the expert uses a tool such
as radial or gradual filter or a brush to apply the estimated
adjustment locally to the individual region.
We aim to mimic this two-step process using a data-driven
method. The spatial arrangement of the semantic classes and
their neighborhood adjacency can be represented in form of
nodes in a connected graph. Drawing inspiration from the
expert’s process, abstract features can be extracted for each
region by combining the spatial arrangement, their global
attributes, such as the luminance histogram, and local tonal
deviations. We call these abstracted semantic features ‘Se-
mantic Hints’. Due to the nature of data representation, GCN
provides a powerful medium of leveraging local and neigh-
bourhood information to compute the semantic hints. For
each node, a GCN can leverage direct and indirect neighbour-
hood relations through connected edges and extract node spe-
cific semantic hints. These hints are used to apply the actual
tonal adjustment locally using a fully connected network. In
summary, in this work, we propose:

• a tone mapping operator which learns the tonal transfor-
mation as a function of semantic and contextual infor-
mation of the image.

• a GCN to exploit the semantic information from the
spatial arrangement of semantic segments in the image
and predict aforementioned semantic hints.

• to exploit the hints in conjunction with the semantic
features from the linear image to predict a tone mapped
image aesthetically and perceptually close to a retouched
version as generated by an expert photographer.

• LocHDR, a locally enhanced dataset of 781HDR images
tone mapped manually by an expert photo-retoucher.

II. RELATED WORK
The term ‘‘tone mapping" is used to describe a broad range
of techniques, often solving different problems. Therefore, it
is important to position our research in that broader scope.
The three main application areas of tone mapping are com-
puter graphics, HDR video/television, and photography. In
computer graphics tone mapping is used in the final stages
of the rendering pipeline to simulate either a camera or the
eye. Tone-mapping in graphics is often intended to bring a
cinematographic look by simulating lens softness, or flare
[4]. Alternatively, it could be used to mimic the appearance
of scene as it would be perceived by the eye, for example,
by simulating night vision [5], [6]. Another important ap-
plication is HDR video and television, where color graded
HDR content needs to be mapped to a display that may offer
lower dynamic range and brightness than the reference HDR
display used for color grading [7]. This paper focuses on the
application of tone mapping in photography, where the goal

is to produce images of certain aesthetics from linear (RAW)
images captured by a camera sensor. All three application
areas are not mutually exclusive, however, their input and
aims are distinct.
The early tone mapping techniques for photography re-

lied on heuristics or rules often inspired by photographic
practices, intended to reproduce images of good contrast on
displays of limited dynamic range [8], [9]. Later methods
were guided by optimization, which attempted to find the best
reproduction by minimizing a perceptual difference between
the original and reproduced images [10], [11]. It has been ac-
knowledged that the goal of finding the ‘‘best’’ tone mapped
image is ill-posed as tonemapping is a subjective process with
one-to-many possible mappings. Enhancement is often based
on style of the individual and even then, can be inconsistent
from one result to another. Mustafa et al. [12] reinforce
this hypothesis and show that a style vector distilled from a
ground-truth pair of raw and stylised images is required as
a conditional parameter to find the closest colour mapping
for each image. Since the main goal of photographic tone
mapping is reproducing loosely defined image aesthetics, the
problem is an excellent fit for machine learning techniques,
which can learn from a large number of examples, without the
need for well-defined rules. More recently, machine learning
was introduced to tone mapping as a tool to learn mapping
from RAW/HDR/linear images to their desired reproduction
from a large dataset of training examples [13].
Tone mapping can be considered as a regression problem,

in which the goal is to learn a function mapping from input
HDR, RAW or linear images to the desired tone mapped
images, usually provided by a large dataset of input/output
examples. Such regression could be realized by standard
techniques, such as LASSO (least absolute shrinkage and
selection operator) or GPR (gaussian process regression)
[13], by finding nearest-neighbors in a dataset of reference
images [14], using a fully connected neural network to learn
the coefficients of the quadratic polynomial basis functions
[15], or learning simple brightness adjustment for semantic
segments [2]. More recent methods involve a combination of
fully connected and convolutional neural networks to extract
both local and global (contextual) features from images [16],
or the use of Generative Adverserial Networks (GANs) [17]
to enhance region of shadows for darkened images [18]. An-
other popular choice is encoder-decoder architecture, based
on convolutional neural networks [19], [20]. More recent
unsupervised learning approach [21] or unpaired adverserial
training-based operators [22] have also attempted to find the
best tone mapping result. One common feature in all these
methods is that the input to the regression typically combines
local features, such as pixel color and its neighborhood and
global features, such as image statistics, contextual or se-
mantic information. Our method expands on this concept by
explicitly modeling a trainable semantic graph of the image,
which guides the tone mapping process.
All the aforementioned learning based methods implicitly

use semantic information in different forms to improve tone
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FIGURE 1. G-SemTMO has 4 data blocks and 2 network blocks. We obtain a connected graph of N semantic nodes from the linear image and its semantic
map. Input feature matrix X and the node adjacency matrix from the graph is forwarded to the semantic hints module, GCN. The GCN uses graph
convolutions to leverage scene context from the spatial arrangement of semantic segments and provide semantic-aware hints. It has 6 graph
convolutional layers (128-128-256-256-128-64 channels) followed by an activation layer of Leaky-ReLU. DropEdge [23] and Node dropouts are used to
prevent over-fitting. The GCN outputs latent semantic hints H with 18 hints per node. The latent features or hints highlight semantic relationship and
guide the tone mapping in a data-driven manner. Broadcasted features X and H stacked together (Ĥ) with the input linear RGB create the final data
block which is forwarded to the final network block FC. The FC block acts as a tone mapping module which uses the semantic hints from the GCN as a
guide to tone map the linear RGB inputs. The FC has 2 fully connected layers (32-32 channels) with an activation Leaky-ReLU layer between the two. A
gamma curve of 2.2 is applied to the input of the FC and the output is the tone mapped image.

mapping. However, we realise that semantic awareness is not
limited to learning local or global attributes based on semantic
categories. It also involves analysing the context under which
the semantic categories are observed. Hence, we explicitly
analyse semantic information through a graph of connected
semantic segments. GCN helps us pass information between
nodes in the graph [24] and learn local adjustments based on
contextual information. A comparative study of graph neural
networks and its applications [25] lists the domain of com-
puter vision and image sciences where GCN has been applied
for image classification [26], [27], segmentation [28] and
reasoning [29] or image denoising [30]. However, to the best
of our knowledge, our work is the first attempt to apply GCN
as a model of trainable image semantics for tone mapping.
Although digital images have a regular grid-like structure,
their semantic segmentation maps combined with attributes
per segment leads to an irregular data structure fit for graph-
based representation. Training a GCN to learn contextual
information from semantic categories and how it affects tonal
modification, requires a dataset of input-and-retouched image
pairs. MIT Adobe FiveK [13] dataset provides 5000 RAW
images and their retouched versions created manually by 5
expert photographers. This dataset has been used to learn
expert retouching styles, most notably for HDRNET [16].

III. SEMANTIC-AWARE TONE MAPPING
We propose a neural network architecture that is trained over
the pairs of RAW linear and expert retouched images. The
network learns to generate latent hints based on the semantic
content of the image and adjust tone mapping based on this

semantic information, as illustrated in Fig. 1. In the following
subsections we describe our new learning-based pipeline. The
pipeline has broadly two modules: a Semantic Hints Module
and a Tone Mapping Module. The semantic hints module
drives the semantic awareness of the TMO and generates
the aforementioned hints. The application module works as
a n-dimensional lookup table and learns a mapping as a
function of the aforementioned hints. Before going further,
it is necessary to delve into the notion of semantic awareness.

A. INTRODUCING SEMANTIC AWARENESS
To introduce semantic awareness, we incorporate the seman-
tic features of a scene, based on the different labels obtained
using a semantic segmentation algorithm, e.g. the color and
luminance statistics per semantic label. We also incorporate
the contextual understanding of the scene through a graph
representing the neighborhood and spatial arrangements of
the semantic labels in the segmentation map. We hypothesize
that, along with the semantic features, the node-level neigh-
borhood semantic information guides the image enhancement
while retouching images.
Fig. 2 shows two images A and B from the Adobe FiveK

[13] dataset, both manually retouched by expert E. We use
FastFCN semantic segmentation algorithm [3] and merge the
labels to coarser bins as suggested in SemanticTMO [2].
Although visually both images have a similar composition,
a closer examination reveals the difference in semantic la-
bels and their neighbors. The water semantic segment is
surrounded by sky andmountain in imageB, whereas in image
A the vegetation and city are also neighbors to water. For
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FIGURE 2. Understanding semantic awareness. Row 1: Gamma corrected
input images A (a1824) and B (a1892). Row 2: Images manually retouched
by expert E from MIT Adobe FiveK [13]. Row 3: Coarse semantic segments
— fine labels obtained via FastFCN [3] segmentation and merged as per
SemanticTMO [2]. Bottom: Input and output average intensity histograms
for the ‘water’ semantic segment. Histograms show markedly different
output distribution for relatively similar input distribution.

both images, we plot the intensity histograms of the water
segments for both the gamma-corrected input image and
output image modified by the expert. The input histograms
have a similar narrow distribution, although visibly shifted to
the left for image B due to the overall low light. However, the
output histograms show a very different distribution. The two
segments receive different tonal adjustments despite having
the same semantic label. This prompts us to conclude that the
tonal adjustments are not just a function of semantic-based
priors, but also of the local neighborhood of the semantic
labels and their attributes, such as the intensity distribution
or label information. Hence, we propose a learning-based
tone mapping algorithm which leverages spatial semantic
information, as well as the contextual information in the form
of a graph capturing the spatial arrangements of the segments.

B. SEMANTIC HINT MODULE
A semantic segmentation network creates a map which di-
vides an image into regions of semantic consistency. The
segmentation map can be represented as a connected graph in
which each node corresponds to a semantic segment and an
edge is inserted when two semantic segments are neighbors in
the map. This representation mimics the way a photographer
may analyze the semantic information in an image.

Formally, an input image I with linear color values and
with n semantic segments can be represented as a graph G =
(V, E) where V are n nodes corresponding to the semantic
segments, and E are the edges, represented as an adjacency
matrix, such that Ei,j = 1 if the segments corresponding to

the nodes i and j are neighbours to each other. A GCN [24] is
trained to learn a function on the graph G. More specifically,
it takes, for each node in the graph, an input feature vector
xi, i ∈ n, summarised in a n× d feature matrix X , where d is
the number of features defining the semantic node. The GCN
produces a node-level n × f output feature matrix H, where
f is the number of output features per node.
In our pipeline, the GCN takes an n × 16 input feature

matrix and produces an n × 18 output feature matrix, called
semantic hints H. The input features include: the one-hot-
encoded labels of the semantic segments (with 9 semantic
classes, see Sec. III-D2), median and standard deviation for
each R, G and B channel, and the median luminance value,
all computed for the pixels belonging to the corresponding
semantic segment.
Each layer l of the GCN can be represented as a function:

Y (l+1) = σ
(
EY (l)W (l)

)
, (1)

where Y 0 = X , Y (L) = H, and L is the last layer. E is the
edge representation in form of an adjacency matrix,W l is the
weight matrix of layer l of the GCN and σ(·) is a non-linear
activation function which, in our case, is Leaky-ReLU.

C. TONE MAPPING MODULE
The tonemappingmodule is a Fully Connected (FC) network,
a 3D lookup table to map each input linear RGB pixel to
the output display-encoded RGB pixel. Supplemental inputs
allow this function to be local and semantics aware: the con-
textual information in form of n× 18 semantic hints H from
the GCN is passed in addition to the spatial information from
the n × 16 input feature matrix X . The combined semantic
information Ĥ from the resulting n × 34 matrix is spatially
arrangedwith the input linear image such that each pixel in the
image corresponds to 37 values: the 3 RGB channels and a 34-
element semantic hint-feature vector. Consequently the FC
trains over this 37 channel data to learn a mapping function:

f (IR,i,j, IG,i,j, IB,i,j, ĥ1,k , ĥ2,k , ...ĥ34,k) = Oc,i,j, (2)

where k is the semantic segment corresponding to pixel (i, j).
We train to minimise the L1 difference in pixel values for
all pixel positions {i, j} and colour channels between the
predicted, O, and reference, R, images:

L =
∑
i,j

∑
c∈{R,G,B}

∣∣∣Rc,i,j − Oc,i,j

∣∣∣ , (3)

where bothR andO are gamma-encoded RGB images in ITU-
Rec.709 color space [31].

D. THE IMPLEMENTATION DETAILS
1) Preparing the image dataset
MIT-Adobe FiveK dataset [13] provides a set of 5000 high
resolution RAW images and their manually retouched ver-
sions provided by 5 expert photographers (A, B, C, D, E).
Prior work on image enhancement uses retouched versions
created by expert C [13]–[15]. Gharbi et al. [16] use all
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5 expert versions for their HDRNET but point out the in-
consistencies among the expert retouches. In particular, they
mention that expert B is more self-consistent and easier to
learn for the network.

We initially choose expert E based on our subjective aes-
thetic preference of retouched results. However, we show in
Sec. V-C that our architecture can learn irrespective of the
choice of expert photographer. We observe that the dataset
contains a significant number of images with large portion
of saturated pixels in the RAW images. Adobe Lightroom
software reconstructed those pixels to non-unique colors in
the retouched images. As such saturated pixels may lead to
inconsistent learning, we filter images with high number of
saturated pixels before training. More specifically, we con-
sider pixels as saturated where any of the RGB channels’
value is above a normalised tonal value of .99. We filter out
images with more than 3% of saturated pixels, this threshold
being set empirically. This provides us with 4205 16-bit linear
color images and their retouched versions for our training.We
use the ‘as-shot’ white balance applied by the camera while
exporting the linear images. For training, we resize images to
the resolution of 100× 100 pixels.

2) Preparing the input features
The next step is to generate input feature space for each
image-graph representation. Global attributes and overall vi-
sual cues such as the average luminance or standard deviation
of intensity values could inform decision on image enhance-
ment. Based on this idea, Yan et al. [15] use both global and
contextual feature descriptors for their image enhancement.
We use similar attributes corresponding to each semantic
region of the image. First, we use FastFCN semantic clas-
sifier [3] pre-trained over ADE20K dataset [32] to generate
segmentation maps. ADE20K provides a dataset with 150
annotated labels which results in a very fine-grained semantic
breakdown of an image. However, we realise that, in the use-
case of digital photography, the semantic abstraction which
drives decision on image edits is not as fine-grained. There-
fore, we merge the fine labels to a coarser semantic abstrac-
tion based on the work of Goswami et al. [2]. The 9 coarse
labels – sky, mountain (terrain), vegetation, water, human
subject, non-living subject, city, indoor-room and others fit
the use-case of digital photography better. The segmentation
maps are generated at full resolution and consequently resized
to match the training image resolution of 100. The spatial
arrangement of the segments are stored in the edge descriptor
E in Pytorch coordinate format (COO) for the GCN. Further-
more, we compute attributes for each segmented region: the
median and standard deviation of RGB values, the median
luminance and the 9-class one-hot encoded semantic labels
for each semantic node.

3) GCN and semantic hint generation
The GCN-based Semantic Hint module has 6 graph con-
volutional layers generating 128, 128, 256, 256, 128 and 64
latent features respectively. Each convolutional layer is fol-

lowed by a Leaky-ReLU activation. To prevent overfitting the
model, we use dropout layers before the first convolutional
layer and after the last convolutional layer with probability
of 0.2 and 0.5 respectively. Furthermore, we apply a DropE-
dge [23] with a probability of 0.2 before the first dropout.

4) Prediction using FC
The FC module is a function which learns the tone mapping
from the input RGB values and semantic hint-feature vector.
Specifically, we define it as a function f : R37 → R3. During
training, the input to the FC is a 2D array 10000 × 37 con-
taining all pixels in the image and their corresponding hints
and features.We observe that applying a power of 1/2.2 to the
input of the FC improves its ability to learn non-linearity. The
FC has two fully connected hidden layers with 32 neurons
each separated by a Leaky-ReLU activation function. The
output of the FC is the predicted non-linear RGB value. Due
to the design of pixel prediction, the inference can be obtained
on a high resolution image instead of 100× 100.

5) Blending
The predicted output RGB values show visible inconsisten-
cies at the border of semantic regions due to 1) the differ-
ence in tone mapping function across regions and 2) lack of
smooth transition and segmentation precision of the FastFCN
algorithm. In order to incorporate pixel precision, we utilise
a shared alpha matting technique [33] and draw inspiration
from the semantic framework idea of Goswami et al. [2]
which involves stacking normalised fuzzy segmentationmaps
of each semantic region and blending the tonal modification.
To create the framework, we obtain n binary maps from a

segmentation map containing n unique labels. Shared matting
[33] converts each binary map into an alpha map using a
trimap obtained by morphologically dilating the segment in
the binary map with a disk of the radius 25 pixels. A bilat-
eral filter (pixel neighborhood diameter d = 50 and color
parameter σ = 30) is applied to each alpha map to remove
discontinuities stemming from the morphological operations.
The alphamaps are stacked along the z-axis and normalised to
complete the semantic framework (S). The FC is used to infer
n images, one for each semantic hint where the same hint is
used for all pixels. Stacking the n images similarly provides
an image framework (F). The weighted summation of the two
frameworks provides us the blended image result.

Oblended =

n∑
i

Si · Fi (4)

6) Training procedure
We use 4000 resized images out of the selected 4205 to
train our network and keep 106 images for validation and
99 for inference. The weights and biases are optimized by
minimising the loss defined in Eq. 3. The weights are further
regularised with a weight decay of 5e − 4. We optimize the
network parameters using ADAMW solver [34]. We train in
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3D LUT Global mapping 3D LUT Local mapping G-SemTMO Ground Truth (expert E)

HyAB: 12.12 PSNR: 16.95 HyAB: 10.55 PSNR: 18.21 HyAB: 5.85 PSNR: 21.91

HyAB: 9.66 PSNR: 19.69 HyAB: 6.08 PSNR: 23.33 HyAB: 3.59 PSNR: 24.53

HyAB: 10.92 PSNR: 18.01 HyAB: 8.00 PSNR: 19.79 HyAB: 5.29 PSNR: 21.27

FIGURE 3. Ablation comparisons. We present tone mapped results from the ablation studies for 3 images from the FiveK dataset: a4886, a4986 and
a5000. Left to right –Ablation 1: 3D LUT Global tone mapping, Ablation 2: 3D LUT Local tone mapping with semantic-specific information and Proposed
G-SemTMO which considers semantic information as well as the contextual information from spatial arrangement of semantic labels using graph
convolutions. The manually retouched version of each produced by expert E [13] is also included. The HyAB and PSNR objective metric scores for each
tone mapped image validates the advantage of graph-based learning over the other ablation studies.

batch size of 1 due to the variable structure of the graphs and
the learning rate is scheduled to vary with the epoch. We train
for 250 epochs with a learning rate of 10−3 between epoch 0
and 75, of 10−4 between epoch 75 and 150, and 10−5 from
150 onwards. We implement our architecture using PyTorch
[35] and PyTorch Geometric [36] on an Nvidia RTX2060
GPU. The training takes about 24 hours.

IV. ABLATION STUDIES
To analyze the importance of each component of our method,
we conduct two ablation experiments in addition to the pro-
posed G-SemTMO. We observe in literature that tone map-
ping approaches work better than existing methods when
explicit semantic information is provided as input [2]. Our
hypothesis is that it can be improved further when contextual
semantic information is supplied in conjunction to the learn-
ing pipeline. We designed our ablation experiments to incre-
mentally modify the sophistication of semantic information
introduced to the learning pipeline as follows:
Ablation 1: 3D LUT-Global mapping Fully connected neural
network (FC) without any semantic information.
We utilise the FC architecture of our Tone Mapping Module
to learn the mapping from linear RAW images to expert
retouched images. No additional semantic information is pro-
vided and GCN is not used.
Ablation 2: 3D LUT-Local Semantic mapping FC with se-
mantic information.
We train the image pairs over the FC architecture similar to
Ablation 1. But for every pixel semantic information is added.

A vector of size 19 is provided – 3 colour channel values and
semantic-specific input features of size 16 similar to the input
to GCN (refer to Sec. III-B). GCN is not used.
Ablation 3: Graph based Semantic mapping G-SemTMO.
This ablation consists of the full architecture with GCN,
as explained in Sec. III. GCN uses semantic-specific input
features to provide semantic hints to FC.

We conduct hyper-parameter optimisation during training.
Schedulers are used to vary the learning rate for training to
achieve generalisation. The models for ablation studies are
finally trained using the same hyper-parameters. They are
trained on 3000 training image pairs and validated on 20
image pairs for 250 epochs. To report test results, we compute
the mean pixel HyAB perceptual colour distance [37] and
the PSNR for the prediction results of 99 test images. We
used HyAB rather than CIE DeltaE as it was shown to better
capture luminance differences.

Observations: Fig. 3 presents 3 images from the FiveK
dataset [13] tone mapped by the networks from the ablation
studies and their respective HyAB color distance and PSNR
scores. Based on subjective assessment, we conclude that our
proposed graph-based learning produces results much closer
to the ground truth for the selected images. Fig. 4 illustrates
the training and validation loss curves across the three studies.
The curves confirm our hypothesis that enriching the feature
space with contextual semantic information improves the
performance of the model. Across the three ablation studies,
we observe that the model with the full semantic information
results in lower training and validation loss. Fig. 5 plots the
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FIGURE 4. Training and validation curves for the ablation study.
Introduction of semantic graph improves performance of the model.
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FIGURE 5. The histograms of HyAB and PSNR scores for the 3 ablation
studies are presented. The histograms correspond to score distribution
over 99 test images. The median of the distribution is plotted with a solid
circle with a confidence interval of 95%.

histogram of HyAB and PSNR objective scores across 99
test images for each ablation study. Additionally, we plot the
median for each histogram with its confidence interval of
95%. We observe that the proposed G-SemTMO prediction
gets closest to the images retouched by expert Ewith amedian
perceptual colour distance score of 5.53. It also receives better
PSNR evaluation than the other two ablations.

V. LEARNING GLOBAL IMAGE ENHANCEMENTS
Comparing tone mapping operators is a difficult task due to
subjectivity of the tone mapped results. Although having the
‘best’ tone mapping outcome is an elusive objective, certain
HDR datasets [13] provide reference tone mapped LDR im-
ages to reconstruct. To evaluate G-SemTMO’s performance
against references, we compare the quality of reconstruction
of different operators using objective metrics. Conversely,
it is also common for HDR images to not have any tone
mapped references [38]. Consequently, several operators are
developed or trained without a target reference. In such cases
comparison becomes challenging, choice of objective metrics
are limited and we rely on visual evaluation of objective
image parameters such as contrast, saturation etc. In the fol-
lowing subsections, we compare G-SemTMO to several tone
mapping and image enhancement operators based on results
with and without reference LDR images. The use of different
operators, datasets, metrics as well as visual observation just
outlines how challenging the task of assessing TMO perfor-
mance can be.

A. COMPARING ON MIT-FIVEK DATASET REFERENCES
The MIT-FiveK [13] dataset presents ground truth expert
tone mapped images. We compare the results of G-SemTMO
against the prediction of other supervised learning-based
methods, HDRNET [16] (retrained on the same images as
our method) and EnlightenGAN [18] (using the pre-trained
weights provided by the authors). We also include 4 tradi-
tional TMOs: Photoreceptor TM [39], Photographic TM [8],
Display Adaptive TM [10] and Bilateral TM [40]. The tradi-
tional TMOs do not allow for training and they are included
in our comparison to show the difference between trained
and non-trained tone mapping. We present our observations
based on our subjective assessment and validate them using
objective metrics.
Since we are unable to train the official HDRNET Ten-

sorflow implementation due to rather old version of the de-
pendencies, we rely on the PyTorch re-implementation by
Jinchen Ge [41]. Gharbi et al. [13] use FiveK dataset to
learn style transfer and their network was trained using image
pairs comprising of 8-bit input images without corrections
and 8-bit images retouched by experts. However, as per au-
thor suggestions, we use their network architecture to train
for end-to-end tone mapping using 16-bit linear images as
input and 8-bit retouched images as output. EnlightenGAN
[18] provides weights to relight 8-bit input images. We use
EnlightenGAN both on input images in linear RGB colour
space and in gamma-encoded RGB space to generate separate
results. To generate the results for the 4 traditional TMOs, we
used pfstools1 software.
To assess the tone mapping results, we use 6 objective

metrics: PSNR, Multi-scale Structural Similarity Index (MS-
SSIM) [42], Visual Difference Predictor for HDR images
HDR-VDP-3 [43], hybrid perceptual colour distance metrics
HyAB [37] and CIEDE2000 (∆E00) [44] and Colourfulness-
based contrast quality metric (C-PCQI) [45]. More precisely,
HyAB and∆E00 are colour-sensitive and assess the closeness
of color reproduction to the ground truth. They use compu-
tations in the CIELAB colour space to measure perceptual
distance from the reference image. It has shown good agree-
ment to subjective preference for small colour deviations.
A smaller HyAB and ∆E00 score suggests better quality.
To evaluate the reproduction of structural details and local
contrast preservation, we use MS-SSIM and a colour and
patch-based contrast quality metric C-PCQI. A higher score
for either suggests a higher measure of structural and contrast
reconstruction resulting in better perceptual quality.
Furthermore, for overall quality, we choose traditional

PSNR and the HDR-VDP-3 (v3.0.6)2 Quality correlate (Q)
score. It is a measure of the magnitude of distortion corre-
sponding to visibility rather than the mathematical distance
between the pixels. The HDR-VDP-3 score attains a max-
imum of 10 for best perceptual quality and gets lower for
poorer reconstruction.

1http://pfstools.sourceforge.net/pfstmo.html.
2https://sourceforge.net/projects/hdrvdp/files/hdrvdp/.
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FIGURE 6. Left to Right: 4 selected images from FiveK dataset. Row 1: Target images modified by expert E [13]. Row 2-6: Selected TMOs with HyAB and
PSNR metric scores. Row 7: Tone curve applied per semantic segment by G-SemTMO.
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B. OBSERVATIONS
Fig. 6 presents the results for 4 images from the MIT Adobe
FiveK dataset [13] (from the testing set). In the top row, we
present the target images manually retouched by expert E
(used for trainingHDRNET andG-SemTMO) and the follow-
ing rows contain the results of each operator. Objective metric
scores, HyAB and PSNR with respect to expert E, are also
indicated. The last row contains the plots of the per segment
gray-scale tonecurves, produced by G-SemTMO for each
semantic region. The tone curves are generated by mapping
input grayscale values (where R = G = B) to output color
and then computing the luma value. Our first observation is
that, for the selected images, G-SemTMO produces results
closer to the expert retouched images than HDRNET and
EnlightenGAN trained on the same data.

Another interesting observation can be made when analyz-
ing the per-segment tone curves of G-SemTMO (the bottom
row in Fig. 6). Each plot presents the tone curves predicted by
G-SemTMO using the semantic hints per segment in a log10
space. We hypothesized that the neighborhood of semantic
segments play a part in deciding the tonal adjustment inside
the segment. Consequently, different neighborhood result in
different tone curves for the same semantic label.

Fig. 7 compares the graph representations of the semantic
segments in two images A and B from Fig. 6 (a4986 and
a5000 respectively). Both images contain a large semantic
segment annotated as vegetation but the neighbors to vege-
tation in A are different from B. Consequently, from Fig. 6,
we observe that the tone curve for vegetation is different in
the two plots. Hence, we validate that the GCN learns the
neighborhood information and predicts different hints for the
same semantic label resulting in different tone curves.

Fig. 8 shows the distribution of scores for aforementioned
6 objective metrics: PSNR, MS-SSIM, HDR-VDP-3 Quality,
HyAB, C-PCQI and CIEDE2000 over 99 test images. For
completeness, the plot also includes the results of the 4 other
traditional tone mapping operators apart from HDRNET,
EnlightenGAN (in linear and gamma encoded RGB colour
space) and G-SemTMO, but as mentioned previously the
traditional operators were not trained to reproduce the results
of the experts. As reference, we use the test images manually
retouched by expert E from the FiveK dataset. Along with

skycity

mountain

water

humanvegetation

sky

human

vegetation

A B

FIGURE 7. Neighborhood based tonal adjustment. Image A (a4986),
Image B (a5000) and their corresponding graph representation of
semantic labels. The neighborhood of vegetation is different in A from B,
the predicted tone curve would be different too.
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FIGURE 8. Objective metric scores. We present 6 objective metrics: PSNR,
HDR-VDP-3 Quality, MS-SSIM, and colour-sensetive metrics HyAB, C-PCQI
and CIEDE2000. Each plot presents histograms of scores achieved by 7
TMOs: proposed G-SemTMO, EnlightenGAN [18] (linear and gamma-enc.),
HDRNET [16], Photoreceptor TM [39], Photographic TM [8], Display
Adaptive TM [10] and Bilateral TM [40]. The median of each histogram is
marked with a solid circle and a confidence interval of 95%.
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FIGURE 9. Learning distinct styles: HyAB metric scores for expert E (left)
and expert B (right) in comparison to the ground truth of other experts.

the histogram of observed metric scores, we plot the median
metric scores for each TMO with an error bar denoting a
confidence interval of 95% of the median. The histograms
confirm our subjective assessment of Fig. 6. We observe that
across all objective metrics, the proposed G-SemTMO has
a better median scores and produces results that are closer
to the results of expert E compared to the other TMOs.
Among of the included objectivemetrics, HyAB, C-PCQI and
CIEDE2000 are colour-sensitive. We notice that HDRNET
results rival G-SemTMO closely in terms of colour similarity
(HyAB, CIEDE2000) but there is a visible softness which
is reflected in worse scores for more spatial metrics (MS-
SSIM, HDR-VDP-3, C-PCQI) sensitive to sharpness and lo-
cal contrast. Fortuitously, the display adaptive tone mapping
also produces results that are close to the retouched images of
expert E.

C. TRAINING FOR OTHER MIT FIVEK EXPERTS
We trained our network over the same set of training images
for the 4 other expert photographers in the FiveK dataset and
validated the results over the 99 test images. We use the same
hyper-parameters for training as in Sec. III-D6. We observe
that there are inconsistencies among the tonal adjustments
provided by the experts in the FiveK dataset as a result of
which learning tone mapping becomes harder.

Consequently, to validate that our network can differentiate
between the styles of each expert and learn tonal adjust-
ment specific to the expert, we compare the prediction of
G-SemTMO trained for a particular expert to the other ex-
pert ground truth. Fig. 9 shows the performance of networks
trained over expert E and B with HyAB metric. We observe
that results predicted by network trained over E is closest to
the ground truth E than others for 99 images. The same holds
true for network trained over expert B. This concludes that
the parameters learnt by the network are specific to the expert
trained. This is in alignment toMustafa et al. [12] which advo-
cates learning specific style vectors for better representation
of tone mapped images. Our work uses GCN to incorporate
semantic information and could learn an approximate style
specific mapping for each expert on the FiveK dataset.

Gharbi et al. [16] mention that HDRNET could learn the
adjustments made by expert B better. We also notice that our
training could learn and infer better for expert B, as vali-
dated by the objective metric scores in Fig. 10. Subjectively
analysing the enhancements, we find the adjustments made
by expert A to be the most inconsistent.

D. COMPARING WITH HDR PHOTOGRAPHIC SURVEY
Our previous results aimed to reconstruct ground truth refer-
ences produced by experts. In this subsection, we look beyond
target ground truth reconstruction and observe the perfor-
mance of G-SemTMO against traditional methods and data-
driven methods focused towards unsupervised or unpaired
learning. We choose images from the HDR Photographic
Survey dataset [38] for comparison. Fig. 11 presents 2 im-
ages tone mapped by traditional TMOs - Display Adaptive
TM [10], Photographic TM [8], Photoreceptor TM [39] and
proposed G-SemTMO. On cursory observation, we find that
G-SemTMO produces results high on contrast, saturation
and hence appear more aesthetic than other washed-out tone
mapped images. It also preserves details in the shadows and
highlights better than others. Fig. 12 presents images from
the same dataset tone mapped by data-driven operators -
UnCLTMO [21], UnpairedTMO [22], DeepTMO [20] and
proposed G-SemTMO. While UnCLTMO and DeepTMO
both produce visibly high-contrast images with heightened
low frequency details and darker shadows, UnpairedTMO
fares low on contrast at the lower-frequencies. G-SemTMO
manages to preserve the details on highlights and shadows,
and on high and low frequencies while producing results
overall high in contrast. It must be reiterated that the tradi-
tional TMOs do not allow for training whereas the data-driven
methods are trained on the said dataset.
We acknowledge that cursory observation over a handful
images is insufficient and highly subjective. However, the
objective attributes such as contrast or saturation positively
reinforces our hypothesis that G-SemTMO can produce
favourable results in a no-reference comparison. To reiterate,
the objective to find the best TMO is ill-posed. While other
operators provide a unique ‘best’ representation for a linear
image, G-SemTMO is able to produce as many representa-
tions as the number of styles it is trained on.

VI. LEARNING LOCAL IMAGE ENHANCEMENTS
It can be argued that the tonal adjustments created by the
expert photographers for the FiveK [13] dataset is global in
nature. The photographers had access to limited tools and
sliders from the Adobe Lightroom photo-retouching applica-
tion. Although, the sliders can effect non-linear adjustments,
they are not as local as using brushes and radial/gradual filters
to modify images. It is important to validate the performance
of G-SemTMO in learning local tonal adjustments. Conse-
quently, we present a locally enhanced dataset of HDR im-
ages, LocHDR.We train over our dataset and conduct ablation
studies to confirm whether graph convolution manages to
learn tone modifications closer to the reference.
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FIGURE 10. Metric score distributions for C-PCQI, HyAB, MS-SSIM and PSNR for networks trained over 5 experts individually. The plots show the
histograms of scores along with medians and its 95% confidence intervals.

FIGURE 11. Images from HDR Photographic Survey dataset [38]. Comapring G-SemTMO (trained on expert E) to traditional tone mappers: Display
Adaptive TM, Photographic TM and Photoreceptor TM.

Input-Gamma(2.2) UnCLTMO UnpairedTMO DeepTMO G-SemTMO

FIGURE 12. Images from HDR Photographic Survey dataset [38]. Comapring G-SemTMO (trained on expert E) to data-driven tone mappers: UnCLTMO,
Unpaired TMO and DeepTMO.

A. LOCAL ENHANCEMENT HDR DATASET - LOCHDR

We filter the images from FiveK based on their dynamic
range. We compute dynamic for images from FiveK range
as the logarithm of the ratio of the 99th and 1st percentile
of observed luminance and empirically put a threshold of
2.2 to filter out images. Furthermore, to emphasize on local
changes, we filter images based on the number of semantic
segments and choose images with at least 3 unique semantic
labels. Based on our criteria we compile a subset of 781
HDR images. We hire an expert photo-retoucher (henceforth

referred to as expert I) who is tasked to apply corrections to
the LocHDR dataset using Adobe Lightoom application with
emphasis on using brushes and spatial filters. Only the sliders
in the Tone section — Exposure, Contrast, Highlights, Shad-
ows, Whites and Blacks are used and no auto-enhancement or
colour, noise, detail adjustments are made.

On closer observation and investigation, we uncover that
manual enhancement using local tools leads to tonal enhance-
ment inconsistencies in the LocHDR Dataset. Fig. 13 illus-
trates how local enhancements across and within images for
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FIGURE 13. Inconsistencies in local enhancements. From Left-Right: the
gamma corrected image, chosen semantic class and locally enhanced
image. We can observe noticeable variation of local contrast inside
masked semantic classes Vegetation and Cityscape for images a609 and
a4811. Furthermore, we notice contrast variations across images a4778
and a1831 for the same semantic class Human Subject. Image a4778 has
a high local and global contrast making it the enhancement perceptually
different that image a1831.

the same semantic label vary. On image ‘a0609’ we observe
that parts of the Vegetation segment has received inconsistent
exposure gains. Similarly, parts of the Cityscape segment in
image ‘a4811’ are well exposed whereas parts of the building
are darkened. Comparing the enhanced image ‘a4778’ to
‘a1831’ we observe that the former appears ‘punchy’ with
heightened contrast on the Human Subject.

Learning tone mapping from reference pairs is similar to
learning individual retouching styles. Our expert does not
use the same semantic masks which the G-SemTMO uses
to learn local enhancements. Hence, it becomes challeng-
ing for the network to train over an image dataset if there
are local enhancement inconsistencies. The network fails to
generalize and converge on the style of adjustment. Previous
work on FiveK dataset [13] mentions the inconsistencies in
retouches [15], [16] and the use of data splits such as ‘Random
250’ and ‘High Variance 50’ [14]–[16] for analysis. We also
decide to split our LocHDR based on consistency in style.

B. STYLE-SPECIFIC HIGH CONTRAST ENHANCEMENT -
HC200
To evaluate whether the presence of semantic graphs helps G-
SemTMO learn local enhancements better, we present a final
dataset of High Contrast 200 images. We filter the LocHDR
dataset based on the perceivable contrast effected by expert I
to maintain consistent enhancement in training set.

Measuring the perceptual contrast or how ‘contrasty’ or

‘punchy’ an image appears is a challenging task. Inspired
by multi-level approaches in entropy computation [46] and
structural similarity measures [42], we present our own ap-
proximation of a multi-level contrast measure. Multi-level
contrast follows a multi-grid approach where at each level n,
the full resolution image is divided into a grid of n×n patches
and patch-specific variance of pixel intensity is computed.
The contrast for level n is the square root of themean variance.
The final multi-level contrast measure is computed as the
mean of level-specific contrast scores thereby capturing the
global as well as local contrast variations:

CML =
1

n

n∑
i=1


√∑i2

p=1 Varp
i2

 , (5)

where n is the number of levels, and p is the index of patches
in a level from 1 to n × n. We empirically set n = 5
for our contrast estimation. We choose the 200 images with
highest contrast measure. On visible subjective assessment,
we can confirm that the HC200 subset mostly contains the
high contrast ‘punchy’ images from LocHDR.

C. TRAINING & INFERENCE
We train over the 200 high contrast images using K-fold cross
validation [47] (K = 4) with a training-testing data split
of 150/50. Following observations from previous ablation
studies, we use the ADAMW solver [34] for optimization,
weight decay of 5e− 4 and a scheduled learning rate of 10−3

between epoch 0 − 150, 10−4 after 150th epoch and finally
10−5 after epoch 300.
We trained three networks separately to observe the influ-

ence of graph convolutions and style-specific training data:

- a networkwith local semantic informationwithout graph
convolutions, Local LUT trained over LocHDR dataset.

- a network with local semantic information with
graph convolutions, G-SemTMO trained over LocHDR
dataset.

- a network with local semantic information with graph
convolutions, G-SemTMO trained over style-specific
HC200 dataset.

For comparison, 40 common images are chosen from the
test sets of LocHDR and HC200. Fig. 14 shows the re-
sults of selected test images for assessment. As mentioned
previously, we consider three networks to compare the in-
ference subjectively. For each image in the figure, we see
marked improvement in the inference quality of G-SemTMO
when trained over style-specific HC200. Network trained
over HC200 manages to predict the local contrast in the
images closest to the ground truth. This confirms that it is
essential for neural networks to be trained on image data
with consistent enhancement styles to learn local enhance-
ments better. Previously in Fig. 9, we have shown that G-
SemTMO could learn different retouching styles. The train-
ing on HC200 shows that for datasets with local adjustments
the network can be finetuned by training for specific style
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Gamma Corrected 3D LUT-Local - LocHDR G-SemTMO - LocHDR G-SemTMO - HC200 Ground Truth

a4778 HyAB: 4.30 PSNR: 24.58 HyAB: 4.66 PSNR: 24.98 HyAB: 3.13 PSNR: 26.14

a4866 HyAB: 8.02 PSNR: 19.58 HyAB: 7.81 PSNR: 19.72 HyAB: 4.98 PSNR: 22.86

FIGURE 14. Comparing Inference on HC200 dataset. From left to right: Gamma corrected source image, 3D LUT Local trained on LocHDR, G-SemTMO
trained on LocHDR, G-SemTMO trained on HC200 and Ground truth. HyAB colour distance and PSNR metric scores show significant improvement when
G-SemTMO is trained over the style and contrast-specific HC200 images.
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FIGURE 15. Comparing HyAB and PSNR scores for test images inferred by
G-SemTMO (trained on HC200 and on LocHDR) and 3D Local LUT (trained
on LocHDR). HyAB and PSNR histograms show respective scores over 40
test images common to both testing sets. We observe that G-SemTMO
trained on the specific style of HC200 produces significantly better
inference and colour closeness than others.

variations inside the data-subset. Fig. 15 compares the three
trained networks objectively on the basis of PSNR and HyAB
colour closeness. The HyAB and PSNR histograms for the
three networks are plotted along with their median score with
a confidence interval of 95%. From our experiments, we
observe that by training over the entire LocHDR dataset G-
SemTMO can only marginally improve over the quality of
Local LUT. However, from Fig. 15, we observe significant
improvement in G-SemTMO inference quality when trained
over a specific style.

VII. CONCLUSIONS AND PERSPECTIVES
In our work, we introduced G-SemTMO, a novel local tone
mapping operator, which can learn global and local tonal
transformations from semantic-graph representations of im-
ages and the spatial arrangement of the semantic regions
and LocHDR, a locally tone mapped dataset of HDR images
manually retouched by an expert.

We compare the results obtained using G-SemTMO in our
experiments and ablation studies to the ones tone mapped by
the selected reference TMOs and we can confidently claim
that graph-based learning can better incorporate semantic
awareness in a TMO. We evaluate G-SemTMO in two ways.

First, we show that G-SemTMO can learn global enhance-
ments from MIT Adobe FiveK dataset [13] and reconstruct
reference images better than selected traditional and data-
driven TMOs. It performs equally well on the HDR Photo-
graphic Survey dataset [38] without reference. Second, fol-
lowing our novel dataset of locally tone mapped HDR images
we show that G-SemTMO can learn local enhancements by
letting the graph convolutional network leverage the spatial
arrangement of semantic regions. When comparing over data
from MIT FiveK dataset, our results show that our network
can produce images closer to the versions manually retouched
by expert photographer E than the other methods. When
comparing over data from the LocHDR and HC200 dataset,
we observe that the presence of graph convolutions help
even further in learning local enhancements with consistent
tonal modifications in the training image set in comparison to
networks without graph convolutions.

However, in the process of developing G-SemTMO, we
identify some limitations as well. First, our algorithm is re-
liant on the semantic segmentation of the images to create
a graph of their spatial arrangement of the segments and
applying tonal enhancement locally.We observe several cases
where the label annotations are improper. Image a1824 in
Fig. 2 contains a segment city, which should clearly belong
to the segment water. Fig. 16 further demonstrates how the
segmentation algorithm falsely annotates the foreground as
a combination of vegetation, terrain and others. False clas-
sification results in improper tonal enhancement and visible
artifacts. Handling improper labels are more challenging with
fine grained semantic labelling. Merging labels to coarser
segments helps reduce improper annotation to an extent but
the requirement for a segmentation algorithm and annotated
dataset with labels fit for the use case of photography still
remains. This can reduce not just improper labelling but also
introduce labels that are closer to an expert photographers’
impression of a scene. Second, G-SemTMO is unable to
learn colour shifts, white-balance adjustments or tonal rela-
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FIGURE 16. Limitation - Improper segmentation. Bandon Sunset from
HDR Photographic Survey tone mapped by G-SemTMO (left) and its
segmentation mask shows inconsistency in the semantic labels.

FIGURE 17. Limitation - Colour shifts. G-SemTMO is unable to learn white
balance adjustments and resulting hue shifts. a4904 from FiveK dataset
retouched by expert E (left) shows the magenta hue for underwater image
which G-SemTMO (right) finds challenging to reproduce.

tionships which are isolated or sparse in the training dataset.
Fig. 17 shows the expert modified image (left) compared to
that tone mapped by G-SemTMO (right). Both figures 16 and
17 demonstrate cases which G-SemTMO finds challenging
and reflects their poor subjective and objective qualities.

Finally, G-SemTMO in its current state treats all the neigh-
bor semantic segments equally while predicting the latent
semantic hints. However, in many cases, semantic segments
occupy low percentage of pixels. Image a5000 in Fig. 7
(bottom) has a very small proportion of pixels annotated as
human but it impacts the tonal adjustment of its neighbor label
vegetation equally as the label sky. One approach to address
this would be to have edge-weighted learning where the GCN
considers the edge adjacency along with the edge weight into
account based on the size of the semantic segment.

Furthermore, while learning global enhancements from
FiveK dataset [13] we observe that our networks trained over
the 5 experts learn tone mapping specific to the expert but do
not learn any distinct structural modifications. G-SemTMO
does not perform local structural modifications (e.g. sharp-
ening) and it focuses instead on color and contrast trans-
formations. Additionally, it must be noted that our network
trains on input images with as-shot camera white balance.
So, it is unable to reproduce occasional custom white balance
modifications made by the expert.

Our LocHDR and HC200 locally tone mapped image
datasets provide a valuable contribution for development of
data-driven TMOs. G-SemTMO has shown that it can learn
local enhancements from the dataset and get closer to ground
truth compared to networks without graph convolutions. It
can learn better when trained over data with specific style.
However, we acknowledge that LocHDR has limitations with
inconsistency in enhancements and representation of node

permutations owing to relatively low number of images. We
look forward to improving the dataset with larger number of
tone mapped image pairs with more consistent tonal adjust-
ment and wider representation of semantic graphs.
We acknowledge that conducting psycho-physical exper-

iments [48] or forced-choice preference experiments [49]
to evaluate tone mapping quality is a robust methodology.
However, we emphasize that the goal of finding the best
TMO based on subjective preference is ill-posed. Hence, we
reformulate the problem as learning a semantic-aware en-
hancement specific to an expert’s style. Our goal is to produce
results that are close to those of an expert photographer rather
than to produce the most preferred results. Hence, we do not
perform a formal subjective comparison of the results.We aim
to learn and generalise enhancement set as reference ground-
truth and evaluate the performance based on full reference
metrics. We find the existing full-reference objective metrics
sufficient for evaluation of that goal. However, we also use
our network trained on expert E to tone map images from the
HDRPhotographic Survey dataset to show that our results can
be generalised for unsupervised cases to produce aesthetically
pleasing results.
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