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Abstract. This paper addresses the challenge of accurately estimating both the full
illuminant spectral power distribution (SPD) and the per-pixel spectral reflectance from
an RGB image captured with a known camera. Full spectral information allows us to
perform more accurate white balance, or render the scene under another illuminant.
Traditional color constancy methods focus on predicting the illuminant color as a 3-
dimensional projection of the infinite-dimensional illuminant SPD onto the camera spec-
tral sensitivity functions (SSFs) space. Because different illuminants can have the same
projection in the 3-dimensional SSFs space, those traditional methods cannot differenti-
ate between such illuminants (metamers in the camera response space) and hence remove
the color cast resulting from the illumination. We reconstruct the spectral information
using a neural network with two interconnected branches: one branch predicts the illu-
minant SPD, and the other reconstructs the per-pixel spectral reflectance by integrating
the predicted SPD within its intermediate layers. Experimental results demonstrate that
our framework achieves superior performance in estimating both the illuminant SPD and
the per-pixel spectral reflectance compared to the previous approach.

1 Introduction

Spectral information is lost during camera image formation, as the spectral scene radiance—resulting
from the product of the illuminant spectral power distribution (SPD) and object spectral reflectance—is
projected onto the camera’s spectral sensitivity functions (SSFs), yielding a 3-channel RGB value v,

UCZ/AZ(A)S(A) (V) d\, ce{R, G, BY. (1)

where A denotes the wavelength in the visible spectrum; [(A) is the illuminant SPD; s(\) denotes the
spectral reflectance; g.(\) is the SSF for red, green and blue. To remove the color cast caused by varying
illumination and to recover object colors under a canonical light (typically D65), color constancy methods
typically follow a two-stage pipeline. In the first stage, the illuminant color (e,, e4, e;) defined as

e = / I\ qe(\) d),  ce{R, G, B}. @)
A

is estimated from the RGB image. In the second stage, following von Kries—Ives adaptation [9], the white
balanced image value v, is calculated by dividing the illuminant color from the raw value Z—Z in each
color channel. While this procedure yields accurate color reconstruction in typical scenarios, it fails when
distinct illuminant SPDs result in the same projection as defined in Eq. (2). We refer to such a set of
illuminants sharing identical (e,, eq, €5) values as camera metamers, adopting the term from colorimetry,
where metamers denote different spectral colors that appear identical to the human eye.
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Figure 1: Four illuminants plotted in (b) result in the same illuminant color captured by our Sony A7R3
camera. The three metamers, M1 to M3, were optimized using the corresponding CIE illuminants shown
in (a) as initialization. A color chart with 30 patches was synthesized in (c) under the four illuminants
from (b), assuming CIE XYZ 1931 color matching functions. Each patch was subdivided into 2 x 2
parts corresponding to D65 and three metamers. Under the metamer constraint, one can also optimize
illuminants to maximize the mean CIE Delta E 2000 on the color chart. The SPDs and color chart are
shown in (d) and (e), illustrating the limitations of current methods under camera metamerism.

As an example shown in Figure 1b, we optimize camera metamers M1, M2, and M3 for Sony A7R3
camera given the corresponding initial illuminants, i.e. incandescent illuminant A, fluorescent lamp FL1,
and LED-B1, plotted in Figure la. When we while-balance a color chart using Kries-Ives adaptation
model, we end up with consistent colors for gray values, but varying colors for color patches (see red,
pink, and purple patches), as shown in Figure 1b. This is because all four camera metamers result in
the same RGB illuminant color, which cannot account for the differences between the four illuminants.
These inaccuracies become more pronounced when the optimization objective is modified to maximize
CIE Delta E 2000 color differences under the metamer constraint. As illustrated in Figure le, significant
color variations emerge across many patches, highlighting the necessity of estimating the full illuminant
SPD rather than relying solely on the 3-dimensional illuminant color for accurate color reconstruction.

Therefore, this paper addresses the joint estimation of spectral illuminant and surface reflectance
from a single RGB image captured by a known camera. We propose a two-branch neural network
architecture: the first branch predicts the illuminant SPD, while the second branch estimates per-pixel
spectral reflectance using the predicted SPD as a condition.

2 Related Work

Computational color constancy aims to estimate the illuminant color (e,, e,4, ey, see Eq. (2)), which
represents the projection of the illuminant SPD onto the camera’s SSFs subspace. Many statistics-
based color constancy methods have been proposed to improve the accuracy of the estimation, including
the classical Gray-World [5], Max-RGB [16], Shades of Gray (SoG) [8], Gray-Edge [23], optimal method
selection from Weibull parameterization and mixture of Gaussians (MoG) classifiers [11], frequency-based
features using difference of Gaussians and discrete cosine transforms [6], first principal component from
top and bottom pixel projection distances [7]. Bayesian approaches have also been explored [4, 21, 10],
framing illuminant estimation as a posterior inference problem conditioned on image intensities. More
recently, CNN-based methods, including [3, 2, 22, 13, 1], learn color constancy models from large-scale
images and their corresponding ground-truth illumination color.

In contrast to a 3-dimensional RGB illuminant color, the SPD preserves full spectral information and
is essential in dealing with illumination metamerism. Khan et al. [14] extend the RGB statistics-based
methods into multispectral images and recover the SPD of the input multispectral images. To handle
illuminant estimation for both RGB and multispectral images, Robles-Kelly and Wei [20] exploit image
patches of three different scales and estimate the illumination spectrum using a 5-layer CNN.

Several works attempted to estimate the spectral illumination and reflectance from RGB images.
Nguyen et al. [19] propose a training-based method to reconstruct both illuminant SPD and spectral
reflectance from RGB images. The SoG method [8] is first used to produce white-balanced RGB images,
and the trained radial basis function network is then used to recover the spectral reflectance. The illu-
minant SPD is then estimated using the PCA bases, which are calculated from their collected illuminant
SPDs. In [24], multispectral illumination and reflectance estimation are modeled as a constrained matrix
factorization problem, where the low-rank property of spectral reflectance is exploited to constrain the
separation of illumination and reflectance. Li et al. [17] propose a deep unrolling network to solve the
constrained matrix factorization using alternating direction method of multipliers( ADMM) optimization.
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Figure 2: Our proposed joint estimation network consists of an illuminant SPD branch (red) and a
spectral reflectance branch (blue). The channel dimension is marked next to each feature map. The
applied operators between neighboring feature maps are listed on top of each arrow and the respective
convolution stride (s) and kernel size (k) are listed below the arrow.

3 Our method

3.1 The joint framework

As illustrated in Figure 2, the proposed network consists of an illuminant SPD branch and a spectral
reflectance branch. The SPD branch first extracts shallow features using a convolutional layer followed
by a residual block (ResBlock) [12]. The feature maps are then passed through 2 concatenated ResBlocks
in which the feature map is spatially downsampled by 2 and channel dimension extended by 2. Another
two ResBlocks are applied to capture nonlinear transformations tailored to illuminant estimation. The
resulting feature maps are average pooled to remove spatial dimensions, producing a 1D vector, which is
further transformed into the estimated illuminant SPD using two fully connected layers.

In addition to the SPD branch, the spectral reflectance branch estimates per-pixel reflectance spec-
tra. The first three convolutional layers extract reflectance-relevant features, from which the predicted
SPD is concatenated to condition the spectral reflectance prediction. This formulates an inverse prob-
lem—recovering spectral reflectance from the RGB input and predicted SPD. The concatenated features
are processed through a merging point-wise convolutional layer, two ResBlocks, and another channel-
reduction point-wise convolutional layer to generate the final per-pixel reflectance, where point-wise
convolutions are used to model the inversion process for each pixel, which is independent for each pixel.

For training the network, we apply Mean Squared Error (MSE) loss to both the outputs of SPD and
spectral reflectance branches as follows:

Lapa = I1(N) = IV,
Loer = 723 spN) — 50, (3)

where [(A) and [()\) denote the ground-truth and predicted SPDs and sp(A) and 5,(A) represent the
ground-truth and predicted spectral reflectance at pixel position p. M is the total number of pixels in
the predicted spectral reflectance.

8.2 Illuminant SPD generation

The small size of the available illuminant SPD datasets restricts the effective use of deep neural networks
in modeling the relationship between illuminants and their corresponding RGB values. When using
existing datasets, such as CIE standard illuminants, the network learns to predict one of the SPDs from
the dataset, and it cannot generalize to unseen SPDs. This motivates the need to generate a rich and
diverse set of illuminant SPDs, which could be used for training.

Analysis of CIE standard illuminants, including natural daylights, fluorescent lamps, and LEDs,
reveals distinct spectral characteristics. Natural daylights (e.g., D65 and D50) exhibit balanced spectra,
while fluorescent lamps and LEDs present sharp spectral peaks. Both bell-shaped (LED) and spike-shaped
(fluorescent) SPDs can be approximated using Gaussian functions with varying standard deviations, and
the spectra of natural daylights can be modeled with a series of Gaussian functions at different mean
values. These findings motivate the approximation of illuminant SPDs using a mixture of Gaussian basis
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Figure 3: The comparison between CIE standard illuminants (left 3) and generated SPDs (right 3) for
natural daylight, fluorescents and LEDs.

functions with adaptive location, width, and intensity. Our SPD generation is defined as

_O=ep? c>2

t(\w,e o) sz 20F (4)

where t(A;w, ¢,0) denotes the approximated SPD and N is the number of basis functions. ¢;, o;, and w;
represents the location, width, and intensity for the é-th Gaussian basis. The vector ¢ = [c1, ¢a, .. ., cN],
0 = [01,09,...,0n] and w = [wy,ws,...,wy] are generation parameters. To validate the precision of
Eq. (4) in representing CIE standard illuminants, we can optimize ¢, o, and w for each CIE illuminant.
The optimization objective is formulated as

arg min / (10N = Hsw, 6,0))2 + a AEIN), Hsw, ¢, o))
w,c,o A

()

s.t. )\min <c< )\mawa w > 07 N <7

where {(\) denotes the ground-truth SPD and AFE is CIE Delta E 2000 [18] color difference metric. The
wavelength range is bounded by Amin and Amaez, and « balances the trade-off between L? error and
color accuracy. Theoretically, we could approximate the target with any precision by adding adequate
basis functions, but allowing for an extremely large number of Gaussian basis functions to approximate a
target SPD is not practical for our realistic SPDs generation task. To ensure practical and efficient SPD
generation, we impose a constraint N < 7 where 7 is a small integer.

4 Experiment

4.1  Implementation and dataset

All experiments were conducted on the visible spectrum range from 400 to 700 nm. As CIE standard
illuminants are measured at 5 nm intervals, all generated illuminant SPDs and spectral reflectance are 61-
dimensional vectors. We used the KAUST multispectral image dataset [17], which contains 409 reflectance
images of size 256 x 256 with 33 spectral bands from 400 to 720 nm at 10nm intervals. To match our
spectral range, we extracted the data between 400 and 700 nm and resampled it at 5nm intervals using
linear interpolation. The dataset was randomly split into 300 training and 109 testing images.

During training, SPDs representing natural daylight, fluorescent, and LED lighting were dynamically
generated with equal probability and normalized to a vector sum of 100. To reduce GPU memory usage
and accelerate training, the input RGB images for the reflectance branch were downsampled by a factor
of four. The network was trained for 100 epochs with a batch size of 16 using the Adam optimizer [15]
with default parameters. During testing, RGB images were synthesized from 109 test reflectance images
under 48 CIE illuminants, including 5 natural daylights, 1 incandescent, 1 equal-energy, 27 fluorescents,
9 LEDs, and 5 high-pressure lamps.

4.2 Accuracy of SPD generation

We evaluated the effectiveness of the proposed SPD generation method in Eq. (4) by approximating
CIE standard illuminants through the optimization defined in Eq. (5). To initialize the optimization, we
identify all local maxima and convex points in the target SPD, assigning their individual wavelengths to
¢;i. The corresponding w; is initialized as I(¢;), and o; is set inversely proportional to the local curvature.
For practical SPD generation, we set 7 to 10 and perform the optimization using MATLAB’s interior-
point method via the fmincon function. The average CIE Delta E 2000 of our method on all 48 standard
illuminants is 0.28, indicating a relatively accurate approximation. We generate diverse SPDs during



Table 1: Quantitative comparisons between our method and TBSR [19]. MSE-1, MSE-s and MSE-v refers
to the MSE of illuminant SPD, spectral refletance, and reconstructed RGB image, respectively. Angle is
the angular error between the predicted and ground-truth illuminant color.

MSE-l MSE-s MSE-v  Angle
Ours | 1.0674 0.0047 0.3004 2.808
TBSR | 1.3358 0.0052 0.5979  9.445

training by randomly sampling the parameters ¢;, o; and w;. Distinct generation strategies are employed
for natural daylight, fluorescent lamps, and LEDs. Some random examples of the synthesized SPDs are
plotted in Figure 3 along with CIE standard illuminants of the corresponding category.

4.8  Our results

We compared our method with TBSR [19], a leading approach for joint illuminant SPD and spectral re-
flectance estimation. As their model was trained on their collected SPDs, we re-trained their radial basis
networks on our synthesized RGB images from the training reflectance images and 48 CIE illuminants.
Although this comparison favors their method due to the inclusion of the same illuminants in both train-
ing and testing, our approach still achieves superior performance in the quantitative metrics reported in
Table 1. The superior accuracy of our SPD prediction stems from the ability to learn RGB images under
generated illuminant SPDs, whereas TBSR relies only on a 3-dimensional PCA-based representation,
limiting its capacity to handle diverse SPDs. TBSR estimates spectral reflectance from white-balanced
RGB images, hence inevitably introduces errors for the reflectance estimation. In contrast, our reflectance
branch leverages both the predicted SPD and the original RGB image. Visual comparisons for 3 illumi-
nants are presented in Figure 4. While TBSR achieves comparable results under natural daylight D75, its
accuracy degrades under fluorescent FL2 and LED-V1. In contrast, our approach is more robust across
different illuminants and gives much smaller errors.

5 Conclusions and limitations

We propose a network that jointly estimates the illuminant SPD and per-pixel spectral reflectance. Our
SPD generation method supports diverse SPD synthesis, enhancing the network’s capacity to generalize
across varied illumination conditions. Despite its effectiveness, our framework has several limitations.
First, it is trained and evaluated on synthesized RGB images, excluding real-world factors such as sensor
noise and inaccuracies in camera SSF measurements. Second, the current model assumes uniform illu-
mination throughout the image, which is rarely true. Addressing pixel-wise or region-based illuminant
SPD estimation under non-uniform lighting remains a more general yet challenging extension.
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