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Figure 1: To improve the color accuracy of a camera, we capture an object in multiple exposures (between 1 and 3), each time illuminating

the object with a different light spectrum. The spectra are optimized in such a way that a linear combination of captured RGB values can be

transformed into the CIE XYZ tristimulus values. In this example, the color differences are subtle but noticeable. When the Rubik’s cube

is captured under a D65 illuminant and transformed to the standard color space (BT.709), orange is mapped to a bright reddish color. Our

optimized illuminants can correctly reproduce the original colors of the Rubik’s cube. All colors in the paper are reproduced for the sRGB

color space.

Abstract

Cameras cannot capture the same colors as those seen by the human eye because the eye and the cameras’ sensors differ in

their spectral sensitivity. To obtain a plausible approximation of perceived colors, the camera’s Image Signal Processor (ISP)

employs a color correction step. However, even advanced color correction methods cannot solve this underdetermined problem,

and visible color inaccuracies are always present. Here, we explore an approach in which we can capture accurate colors with

a regular camera by optimizing the spectral composition of the illuminant and capturing one or more exposures. We jointly

optimize for the signal-to-noise ratio and for the color accuracy irrespective of the spectral composition of the scene. One or

more images captured under controlled multispectral illuminants are then converted into a color-accurate image as seen under

the standard illuminant of D65. Our optimization allows us to reduce the color error by 20–60% (in terms of CIEDE 2000),

depending on the number of exposures and camera type. The method can be used in applications in which illumination can be

controlled, and high colour accuracy is required, such as product photography or with a multispectral camera flash. The code

is available at https://github.com/gfxdisp/multispectral_color_correction.

CCS Concepts

• Computing methodologies → Computational photography; Image processing; Perception;
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1. Introduction

Even professional photographic cameras are inherently color-

inaccurate. This is because the camera’s color filter design must

balance two opposite requirements — color accuracy, which bene-

fits from spectral transmission akin to the eye’s cone sensitivities,

and camera sensitivity, which benefits from wide spectral transmis-

sion resulting in color that can be transformed into a standard color

space without amplifying noise. Because of that, the design of color

filters in cameras is often a compromise between these two oppos-

ing goals. This poses a serious problem in applications that require

accurate colors, such as material (BRDF/BTF) acquisition or prod-

uct photography.

The requirements for accurate color capture are well under-

stood and known as the Luther condition [Ive15, VL27] — cam-

era spectral sensitivity functions (SSFs) must be linear combina-

tions of color matching functions (CMFs) of the human eye, such

as CIE XYZ 1931 or CIE XYZ/LMS 2006. If this condition is

met, there exists a unique 3 × 3 matrix that can transform sen-

sor triplets to cone responses (XYZ or LMS tristimulus values)

for any light spectra. However, the Luther condition does not hold

for typical cameras, and therefore, color errors are unavoidable

for any 3× 3 color-correction matrix. Color accuracy can be im-

proved either by the better spectral design of camera color fil-

ters [IQRB01,Har04,NA06,XX16,FZ20] or by finding more robust

functions that map camera RGB responses to XYZ tristimulus color

values [Hun93, HLR01, CW02, FMH15]. The former approach re-

quires custom filters that could be difficult to produce and will re-

duce camera sensitivity. The latter approach can optimize colors

only for a limited range of spectral reflectance samples (e.g. 24

patches of the Color Checker) and can never generalize to arbitrary

spectral reflectances.

In this work, we follow the third approach, pioneered by Zhu and

Finlayson [ZF22], where instead of modifying a camera spectral

sensitivity, we optimize the spectral composition of a multispectral

light source illuminating the scene, so that accurate colors can be

captured irrespectively of the material spectral reflectances. This

work is distinct from the previous work in that (a) we explicitly op-

timize for both camera sensitivity (signal-to-noise ratio) and color

accuracy; and (b) we further improve the color accuracy by captur-

ing multiple exposures, each using a different illuminant for each

exposure. We demonstrate that such an approach can drastically re-

duce color errors and improve camera sensitivity. The method is ap-

plicable to reflective materials that do not emit or re-emit light (flu-

orescence), as emission breaks the assumptions of our approach.

2. Related Work

In this section, we review the previous works that improve color

correction transformation and those that design or optimize better

filters or illumination.

2.1. Color Correction Transformation

Cameras record device-dependent sensor triplets that need to be

transformed to a device-independent color space such as CIE XYZ

(before mapping to one of the standard color spaces). Wandell

[Wan87] has shown that image sensor values can be synthesized us-

ing linear models of the surface reflectance and light spectral power

distribution. If the Luther condition is met, a 3 × 3 linear color-

correction (LCC) matrix could accurately map the sensor triplets to

XYZ tristimulus values. In addition, Drew and Funt [DF92] demon-

strated that if the surface reflectance spectra can be represented by a

3-dimensional linear model, then a unique 3× 3 matrix exists that

could perfectly transform RGB values to XYZ values under any

illumination.

Unfortunately, neither the Luther condition nor the 3-

dimensional reflectance model is satisfied in real situations, so

color error between the ground truth and predicted color values can-

not be entirely removed. However, LCC is still favorable in cam-

eras’ Image Signal Processing (ISP) modules due to its simplicity

and exposure-invariance [KFMA23].

Despite the above advantages, LCC may produce large color er-

rors for some reflectance spectra. To reduce the color error of LCC,

some extensions have been proposed, most notably the polynomial

[HLR01] and root-polynomial [FMH15] color correction. Polyno-

mial color correction (PCC) incorporates a multi-variate polyno-

mial (typically 2nd degree) without constant terms to map sensor

values to the tristimulus XYZ values. Although PCC can signifi-

cantly reduce the mapping error, it does not adhere to the exposure-

invariance property and may produce a large error when the expo-

sure is changed. As an alternative that is exposure-invariant, Fin-

layson et al. [FMH15] proposed the root-polynomial color correc-

tion (RPCC). For the 2nd degree case, the basis are R, G, B,
√

RG,√
GB,

√
BR. Importantly, the root-polynomial expansion was also

shown to generate an independent basis, i.e., given enough terms,

it can always be used to approximate data to within any desired ac-

curacy (being mindful, of course, that a high order fit is unlikely to

generalize to unseen data).

Other color correction methods include 3D Look-Up-Tables

[Hun93], hue-plane preserving color correction [AH05,AC16] and

neural networks [CW02, Xin11, MM21, KFMA22]. Hung [Hun93]

divided the color gamut into many tetrahedrons and performed non-

linear tetrahedral interpolation. A 33× 33× 33 look-up table was

proposed to predict an output color triplet. Anderson and Hard-

eberg [AH05] splitted the device color gamut into multiple hue-

angle delimited subregions defined by the white point and two ad-

jacent chromatic training set colors and applied the same number of

white-point-preserving 3× 3 matrices to the individual subregions

to perform the color correction. Anderson and Connah [AC16]

further improved this method by imposing continuous transitions

between the subregions and optimizing for a better white-point-

preserving matrices. Cheung and Westland [CW02] compared a

2-layer multi-layer perceptron (MLP) and 2nd degree PCC and

claimed that they achieve approximately the same performance.

MacDonald and Mayer [MM21] demonstrated that 3-layer MLP

could reduce the error below 1∆E, which is a just noticeable differ-

ence [HP11], on approximately 50% of the real materials dataset

over a wide range of daylight illuminations.

2.2. Designing Color Filters and Special Illumination

To find the optimal mapping from the sensor triplets to the XYZ

tristimulus values, researchers have been trying to find optimal
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color filters to gather more color information so that higher ac-

curacy transformation from sensor triplets to tristimulus values

could be obtained. Vrhel and Trussell [VT94] built a mathemat-

ical framework of selecting P color filters under K viewing illu-

minants using priori information about the spectral reflectances.

Vora and Trussell [VT97] incorporated constraints of physical re-

alizability into the filter optimization and designed a set of fil-

ters, which may be fabricated in practice. Over the years, many

works [IQRB01, Har04, NA06, XX16, FZ20, Vrh20] continued to

make progress in this direction by producing filters with higher

color accuracy. Instead of designing new spectral sensitivities from

scratch, Finlayson and Zhu [FZ20] formulated a filter optimiza-

tion framework to find a single color filter that is placed in front

of the camera. The filter is optimized so that the product of the

filter and camera spectral sensitivity functions (SSFs) is more lin-

early related to the XYZ color matching functions (CMFs) or the

filtered sensor triplets are more linearly related to the target tris-

timulus values from a data-driven approach. To further improve the

drawbacks of the optimized filter, such as filter smoothness and

limited transmission, constraints were incorporated in the frame-

work [FZ20]. Although the numerical solution presented in their

work indeed achieves a much smaller color error, the filter was not

actually manufactured, and whether the filter could be physically

reproduced accurately still remains unclear.

However, optimizing for color filters is not the only way to

achieve smaller color errors. Zhu and Finlayson [ZF22] tackled

the problem from the illumination perspective by creating the color

filtering effect with a spectrally tunable lighting system that con-

sists of 10 LED channels with adjustable intensities. Their goal

was to find the illumination that made the camera more colori-

metric in terms of the Luther condition. Like their work on filter

design, the theoretical reduction in measurement error was signifi-

cant, resulting in half the measurement error. Experiments on real

results yielded an error reduction of about 1/3 across viewing con-

ditions. Our method builds on their approach and adds two distinct

advancements: a regularization term that minimizes noise in the re-

sulting images and an extension to multiple exposures, which fur-

ther improve color accuracy.

3. Method

We first outline the illumination optimization technique of [ZF22]

(Section 3.1), which we extend to use multiple exposures, each with

a distinct optimized illuminant (Section 3.2). To ensure that the so-

lution is unique, we introduce a regularization on the color cor-

rection matrix (Section 3.3). Then, we formulate the cost function

that maximizes the signal-to-noise ratio of captured images (Sec-

tion 3.4).

3.1. Color-Optimal Illuminant

If we had a camera with RGB spectral sensitivity q(λ) that meets

the Luther condition, we would be able to optimize for a 3×3 color-

correction matrix MMML such that the linear combination of camera

sensitivities closely resembles color matching functions p(λ):

argmin
MMML

∑
d∈{X ,Y,Z}

∫
λ

(

∑
c∈{R,G,B}

qc(λ)m
L
c,d − pd(λ)

)2

dλ . (1)

Table 1: Notation and symbols used in the text.

Symbol Description

wl weight for LED channel l of multispectral light source

bl(λ) emission spectrum of LED channel l

t(λ) target light spectrum

e(λ) optimized light spectrum

r(λ) surface reflectance spectrum

qc(λ) camera spectral sensitivity for primary c ∈ {R,G,B}
pd(λ) CIE XYZ color matching functions, d ∈ {X ,Y,Z}
MMM 3×3 color-correction matrix with elements mc,d

vvv a row vector with RAW linear RGB color values

uuu a row vector with CIE 1931 XYZ tristimulus values

In this work, p(λ) will represent CIE 1931 color matching func-

tions. The notation used throughout the paper is listed in Table 1.

The problem is that most cameras do not meet the Luther con-

dition, and the linear combination of camera spectral sensitivities

does not match the CIE XYZ color matching functions. We cannot

easily modify camera spectral sensitivity q(λ). However, Zhu and

Finlayson [ZF22] noted that we can find the spectrum of an illumi-

nant e(λ) for the scene that modulates q(λ) in such a way that its

linear combination can reproduce color matching functions under a

target illuminant t(λ) (e.g., D65):

argmin
MMM,e(λ)

∑
d∈{X ,Y,Z}

∫
λ

(

e(λ) ∑
c∈{R,G,B}

qc(λ)mc,d − t(λ)pd(λ)

)2

dλ

s.t. 0 ≤ e(λ)≤ emax .

(2)

The crux of the method is to illuminate a scene with an artificial

(optimized) illuminant e(λ) so that the captured RGB values can

be later transformed to color-accurate XYZ tristimulus values, as

seen under the target illuminant t(λ) (e.g., D65).

It is easy to show that when we find suitable e(λ), our camera

will capture accurate colors regardless of the reflectance spectrum

in the scene. If we have a surface with the spectral reflectance r(λ),
illuminated by D65 light t(λ), its CIE XYZ tristimulus responses

are:

ud =
∫

λ
r(λ) t(λ) pd(λ)dλ, d∈{X ,Y,Z} . (3)

If a camera captures the same surface but under the optimized illu-

minant e(λ), the captured RGB values are:

vc =
∫

λ
r(λ)e(λ)qc(λ)dλ, c∈{R,G,B} . (4)

If the optimization from Eq. (2) is successful, then:

e(λ) ∑
c∈{R,G,B}

qc(λ)mc,d ≈ t(λ)pd(λ), d∈{X ,Y,Z} (5)

r(λ)e(λ) ∑
c∈{R,G,B}

qc(λ)mc,d ≈ r(λ) t(λ)pd(λ), d∈{X ,Y,Z}

(6)

and, from Eq. (3) and Eq. (4), we get:

vvvMMM ≈ uuu , (7)
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regardless of the surface reflectance spectrum r(λ).

Because we cannot generate an arbitrary illuminant e(λ) with

our spectrally tunable lights, we are restricted to a space of spectra

that is formed by the linear combination of the spectral channels

bl(λ) of our multispectral light:

e(λ) =
L

∑
l=1

wl bl(λ) (8)

where wl are weights of the LED channels. Therefore, in practice,

in Eq. (2) we optimize for weights wl rather than for e(λ).

3.2. Multiple Illuminants

The optimization from Eq. (2) was originally proposed for a single

illuminant. Here, we show that the color accuracy and signal-to-

noise ratio can be significantly improved by taking multiple expo-

sures, each under a different illuminant. In that case, our optimiza-

tion problem becomes:

argmin
MMM(k),www(k)

∑
d∈{X ,Y,Z}

∫
λ

(

K

∑
k=1

(

e
(k)(λ) ∑

c∈{R,G,B}

qc(λ)m
(k)
c,d

)

− t(λ)pd(λ)

)2

dλ

s.t. 0 ≤ w
(k)
l

≤ 1 k = 1, . . . ,K ,

(9)

where K is the number of exposures/illuminants, e(k)(λ) is k-th il-

luminant given by Eq. (8), www(k) are LED channel weights for k-th

illuminant, and MMM(k) is the color-correction matrix for k-th expo-

sure.

3.3. Color-Correction Matrix Regularizer

The optimization from Eq. (9) is still under-constrained. Assuming

the LED weights wl do not reach the maximum intensity for all the

elements, if we multiply www by a factor, we could get the same objec-

tive function value if we divide MMM by the same factor. A small www is

not ideal because a dim light requires either a longer exposure time

or a higher gain (ISO). At the same time, a MMM with large elements

is also undesirable as they amplify sensor values and thus noise. To

address this problem, we introduce a regularization term:

ϵR = β
K

∑
k=1

∑
d∈{X ,Y,Z}

∑
c∈{R,G,B}

(

m
(k)
c,d

)2
(10)

which biases color-correction matrices towards smaller magni-

tudes. Although this regularizer improves the color correction nu-

merical stability, it constrains the capacity of the color-correction

matrix towards a more accurate color correction. β is the impor-

tance of this term, and we explore the effect of β in Section 4.2.

The regularization term ϵR is then added to the objective function

in Eq. (2) or Eq. (9).

3.4. Signal-to-Noise Ratio

An illuminant that is optimized for higher color accuracy may re-

sult in lower signal-to-noise ratio. Here, we want to find the best

balance between the two — the aspect that has not be addressed in

the previous works.

We want to maximize the SNR of the resulting image in the tar-

get color space (XYZ, after transformation via color-correction ma-

trix). Let Ud be random variables explaining pixel values in that tar-

get space, separately for each channel d. Then, the signal-to-noise

ratio for each channel is given by:

rd(vvv) = log10

E
2(Ud)

V(Ud)
d∈{X ,Y,Z} , (11)

where E is the expected value and V is the variance operator. vvv is

the sensor RAW RGB triplet, explained below.

A camera’s noise can be well modeled in the camera’s na-

tive color space (linear RGB, or RAW values) as the sum of

the Poisson distribution, explaining the photon shot noise, and

the normal distribution, explaining the readout and ADC noise

[FTKE08, HZM20]:

Vc ∼ ac Pois(ψc)+N (0,σ2
c) c∈{R,G,B} , (12)

where per-color channel parameter ac and variance σ2
c vary be-

tween cameras and across the camera’s gain settings. In our ex-

periments, we use the noise parameters measured by Hanji et al.

[HZM20]. ψc is the effective number of photons reaching the sen-

sor. Since E(Vc) = ac ψc = vc, we get ψc = vc/ac, where vc is the

RAW sensor value (RGB). When the camera’s native RGB color

values are transformed to the target XYZ color space via a color-

correction matrix MMM, the noise distribution will be similarly trans-

formed:

E(Ud) = mR,d E(VR)+mG,d E(VG)+mB,d E(VB)

= mR,daRψR +mG,daGψG +mB,daBψB,

V(Ud) = m
2
R,d V(VR)+m

2
G,d V(VG)+m

2
B,d V(VB)

= m
2
R,d(a

2
RψR +σ2

R)+m
2
G,d(a

2
GψG +σ2

G)+m
2
B,d(a

2
BψB +σ2

B) ,

(13)

where mc,d are the individual components of the color-correction

matrix MMM. Eq. (13) brings a few interesting observations. First,

the noise in the target color space becomes correlated across color

channels; all color channels in the input color space contribute to

the noise in the target color space. Second, the elements of the

color-correction matrix mc,d can be both positive and negative.

When mc,d is negative, it will reduce signal (E(Ud)), but it will

increase the noise V(Ud) because of the squares in the equation.

Therefore, the optimization will bias the solution towards positive

coefficients in the color-correction matrix.

With the noise properly modeled, we can introduce the signal-

to-noise regularization term into our optimization:

ϵSNR =− γ

N

N

∑
i=1

r(vvvi) (14)

where γ is the importance of this term (explored in Section 4.2).

Note that the amount of noise depends on the sensor RAW val-

ues. Therefore, vvvi represents the triplet of RAW RGB sensor val-

ues, drawn from the unit RGB color cube sampled in the range

[0.0001,1] with the logarithmic spacing. N is the number of color
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samples. The regularization term ϵSNR is then added together with

ϵSNR from Eq. (10) to the objective function in Eq. (2) or Eq. (9).

3.5. Optimization

We use MATLAB’s interior-point non-linear constrained optimiza-

tion method (fmincon function) to solve for the optimal LED

channel weights and color-correction matrix. We initialize all the

parameters with random values between 0 to 1. To avoid local min-

ima, we ran the optimization using 10 different seeds and picked

the one that resulted in the smallest values of the objective function.

The optimization for three illuminants takes around 48 seconds on

Intel Core i7-7700 CPU. Note that this optimization needs to be

done only once per camera.

3.6. Fine-tuning of color correction matrix

The optimization problem in Eq. (9) jointly solves for the illumi-

nants e(k)(λ) and color correction matrices MMM(k), assuming that the

measured camera spectral sensitivities and the optimized illumi-

nants are accurate. However, small inaccuracies in camera sensi-

tivity measurements or deviations in light emitted from the spec-

trally tunable LEDs may result in degraded color accuracy. To com-

pensate for such inaccuracies, we introduce an optional fine-tuning

step in which we refit the color correction matrices MMM(k). For each

patch in a color checker, we capture RGB pixel values under the

optimized illuminants e(k)(λ) and then measure the corresponding

XYZ under the target illuminant t(λ) (D65). Then, we optimize:

argmin
MMM

∥
K

∑
k=1

vvv
(k)

MMM
(k)−uuu∥2 . (15)

Such optimization can compensate for the inaccuracies in measure-

ments, but it can also overfit to the color checker spectra. Therefore,

we compare results with and without this additional step in the re-

sults section below.

4. Experiments

4.1. Hardware setup

4.1.1. Spectrally Tunable Light Module

The spectrally tunable light module iQ-LED (Image Engineering)

consists of 41 high-power LEDs separated into 20 channels on a

10×10 cm board. Each LED channel peaks at different wavelength

and its intensity is tunable. By adjusting the intensity of individual

LED channels, we could generate our desired light spectrum such

as D65 or other specially designed light spectra.

In order to mix the light produced by individual LEDs located

at different positions on the circuit, we made an elbow-shaped

wooden case with iQ-LED lights directed towards the elbow (see

Figure 2). The interior of the elbow was lined with white paper. We

put the light source on top of a small desk so that objects under

the desk are illuminated properly, as shown in Figure 2b. To mea-

sure the light spectrum, we put a patch of white diffuse reflectance

standard (Labsphere’s Spectralon has uniform spectral reflectance

of about 91%) under the desk and position our spectroradiometer

Sony A7R3
IDS 
U3-3800CP-C-HQ

Spectroradiometer

Color Chart

iQ-LED
spectrally
tuneable
light

(a)

Color Checker

Spectrally Tunable Light

Spectroradiometer

or Camera

(b)

Figure 2: A photograph (a) and a diagram (b) of our image cap-

ture setup with the multispectral light, color checker, two cameras,

and a spectroradiometer. To avoid inconsistency in illumination, the

color checker was manually shifted to capture the color at the same

spatial location (indicated by the red laser pointer of the spectrora-

diometer).

(JETI Specbos 1211) approximately 60 cm away from the Spec-

tralon. Since the reflectance spectrum of the Spectralon is approxi-

mated flat within the visible spectrum, we can obtain the illuminant

spectral power distribution (SPD) by measuring the reflected spec-

trum on the Spectralon. To measure and record the LED channel

response, we illuminate one channel at a time and record the in-

dividual channel response at full intensity. As plotted in Figure 3,

the peak wavelength of all 20 LED channels ranges from 405 nm to

810 nm. In this paper, we work on the wavelength range between

390 nm to 780 nm, which covers the human visible spectrum, so

we only use the first 18 LED channels to generate our desired light

spectrum.

The channel responses of iQ-LED, shown in Figure 3, are unfor-

tunately not perfectly linear, and therefore, a linear combination of
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Figure 3: 20 channel responses of iQ-LED spectrally tunable light.
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Figure 4: Calculated camera spectral sensitivity functions for Sony

A7R3 (left) and IDS U3-3800CP-C-HQ (right).

channels may not give the desired light spectrum. For that reason,

we had to optimize channel driving values with spectroradiometer

in the loop to obtain the desired light spectra. The starting point of

such an optimization is found by optimizing channel values www to

match the desired spectrum t(λ) and minimize color difference:

argmin
www

∫
λ
(e(λ)− t(λ))2 +α∆E00(e(λ), t(λ)) s.t. 0 ≤www ≤ 1

(16)

where t(λ) is given in Eq. (8), and ∆E00 is CIEDE2000 color dif-

ference [LCR01].

Despite our best attempt to mix individual channels of iQ-LED

using the elbow construction, the resulting light could be still spa-

tially non-uniform (have slightly different spectra on the illumi-

nated surface). To improve the accuracy, all our measurements are

performed at a single spatial location (see the red laser point in Fig-

ure 2a). That is, to measure different patches of a color checker, we

manually shifted the color checker.

4.1.2. Color Chart

To validate the effectiveness of our method, we need a reflectance

dataset where we can associate the numerical integration values to

pixel values in the real image. We use the 30-color Preferred Mem-

ory Colour Chart—PMCC (THOUSLITE), which consists of 18

“memory” colors, 6 unitary hue colors and 6 neutral scale colors.

With the spectrally tunable light illumination on top of the PMCC,

the reflected spectrum of each color patch is the product of the illu-

minant SPD shining on the patch and its surface reflectance spec-

trum, so the surface reflectance spectrum of each color patch could

be calculated by dividing the reflected spectrum by the illuminant

SPD. We first put the Spectralon at the position of the red laser

point and illuminate the scene using our approximated D65. Af-

ter the spectroradiometer measurement, we replace the Spectralon

with the PMCC and measure the color patch reflected spectrum one

by one. By dividing the D65 spectroradiometer measurement from

the spectroradiometer measurement of individual color patch, we

can easily obtain the reflectance of each color patch.

4.1.3. Cameras

Our technique requires the knowledge of camera spectral sensitiv-

ity functions (SSFs), and we will discuss our approach to estimating

the SSFs qc(λ) in the following part.

As we use vector-matrix representations in the optimization, the

1 × 3 vector of sensor value triplet vc defined in Eq. (3) can be

calculated as the element-wise vector product

vc = e · s ·qc, c ∈ {r,g,b} (17)

where qc is the camera SSF vector with red, green and blue; s is

the vector of the surface reflectance spectrum; e is the vector of il-

luminant SPD. According to Eq. 17, we could construct a matrix

equation for solving qc by iterating a 3-step procedure for n known

illuminants onto one color patch: shining one illuminant onto the

color patch, capturing the scene with the target camera, and tak-

ing the image mean value of the central area on the color patch as

vc. By placing each of the 30 color patches under the fixed posi-

tion, we can accumulate 30n equations for solving the SSFs. Let D

denote the matrix where we put the element-wise product of each

illuminant SPD ei and color patch reflectance spectrum s j in each

column, so

D = [e1 · s1,e1 · s2, ...e1 · s30,e2 · s1, ...en · s30] . (18)

For channel c (c ∈ {r,g,b}), the sensor value vector ν can be con-

structed from the mean value of each cropped color patch arranged

in the same order as D

ν = [ν1,1,ν1,2, ...ν1,30,ν2,1, ...νn,30] (19)

where νi, j corresponds to the image value of color patch s j under

illuminant SPD ei. The optimization equation for single channel

SSF µ can be formulated as the summation of a data term ∥DT µ−
νc∥2

2 and a smoothness term ∥∇µ∥2
2 weighted by α

argmin
µ

∥D
T

µ−νT∥2
2 +α∥∇µ∥2

2 s.t. 0 ≤ µ ≤ 1 (20)

where the SSF vector µ should be greater than or equal to 0 as the

sensor does not produce any negative response. When we plug ν

for red, green and blue values into the equation, we could obtain

the SSFs for all three channels.

To construct matrix D in Eq. (20), we generated 24 illuminants,

namely 18 single channel LED responses and 6 typical illuminants

such as D65. Sequential quadratic programming is employed to

solve our objective equation and we set α to 0.001. In our exper-

iments, we used two cameras: Sony A7R3 photographic camera

with a Sony 35 mm/F1.8 lens and IDS U3-3800CP-C-HQ computer

vision camera with Kowa 25 mm/F1.8 lens (LM25FC24M). The

estimated SSFs between 390 nm to 780 nm of the two cameras are

shown in Figure 4.
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Figure 5: SNR and CIEDE2000 values of Sony A7R3 (first row) and IDS U3-3800CP-C-HQ (second row) across the range of the regular-

ization term γ. The higher γ, the larger the influence of the SNR term is. The plots correspond to the cases with 1, 2, and 3 illuminants.

4.2. Regularization of Hyper-Parameters

To find the optimal illuminants, we need to select the right val-

ues for our regularization hyper-parameters γ (Eq. (14), SNR reg-

ularizer) and β (Eq. (10), color-correction matrix regularizer). We

explore the range of hyper-parameters by finding the optimum so-

lution for a range of their values. To find suitable γ, we set β = 0

and plot SNR and ∆E for the two cameras in Figure 5. The plots

show a trade-off between SNR and ∆E, with different γ needed for a

different number of illuminants. The plots also show that the SNR

regularization is essential when taking multiple exposures, as the

lack of such regularization results in very low SNR (see the left-

most point in Figure 5-c). We select γ = 0.1 for both cameras as a

compromise.

To find suitable β, we plot SNR and ∆E of the optimal solution

for the two cameras similarly and put the figure in Figure 6. The

plots show that when β is too large, ∆E increases rapidly. But when

it is too small, we do not gain the benefit of increased SNR with

multiple exposures. We choose β = 1.0 for Sony A7R3 and β = 0.2
for the IDS camera.

4.3. Optimal Illuminants and Transformed Camera SSFs

The optimized illuminants for Sony A7R3 and the IDS camera are

shown in the top row of Figure 8 and Figure 9. The bottom row of

the corresponding figures shows how well the camera SSFs, modu-

lated by the illuminants and transformed by the color-correction

matrix, align with the CIE 1931 color matching functions. The

match becomes better as we increase the number of illuminants.

4.4. Validation on Color Chart

We test the color accuracy and SNR on the PMCC in four different

configurations: in simulation, to eliminate all potential sources of

inaccuracy and estimate the lower limit of the color accuracy, and

based on actual images captured with our cameras. Then, each of

those is tested with and without the optional color correction fine-

tuning step (Section 3.6). Our simulation assumes that camera SSFs

from Figure 4, measured spectral reflectances of the color patches,

and the optimized illuminants are accurate. The simulated camera

values are computed according to Eq. (3). The real-image results

are based on RGB pixel values read from the camera’s RAW files.

We used the Python rawpy library for decoding the RAW files (be-

fore demosaicing) for the A7R3 camera and used the APIs to obtain

RAW images from the IDS camera. The black level was subtracted

from the RAW values in the A7R3 images. The results for both

cameras are listed in Table 2, and the comparison of captured col-

ors is shown in Figure 12.

First, we can observe that the real-image and simulated color

error values are very close to each other, confirming the accuracy

of our measurements. The only exception here is the 1-illuminant

real-image case without the color correction fine-tuning step for the

IDS camera (2.38 average ∆E00 error). This error was likely caused

by the inaccuracy in the estimated IDS SSFs and it was corrected

by the fine-tuning step.

Second, we can observe that the fine-tuning step improved the

color accuracy in almost all cases and, therefore, we recommend

it for the pipeline. Our further analysis focuses on the results with

the fine-tuning step. Note that this step was not part of the method

proposed in [ZF22].

Third, we can observe an improvement in color accuracy as we
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Figure 6: SNR and ∆E values of Sony A7R3 (first row) and IDS U3-3800CP-C-HQ (second row) across the value of the regularization term

β. The higher β, the smaller is the norm of the color-correction matrix. The plots correspond to the cases with 1, 2 and 3 illuminants.

switch from the standard D65 illuminant, to 1, 2 or 3 optimized illu-

minants. The average errors are very small, often much below one

CIEDE2000 unit. However, in practical applications, we are even

more interested in the worst-case scenario, here represented as the

maximum error and listed in parenthesis. We can reduce the max-

imum error for Sony camera (with the fine-tuning step) from 2.46

to 0.67 ∆E00 units, and from 3.17 to 1.91 ∆E00 units for the IDS

camera. This is a very substantial reduction of error that is rarely

achieved with RGB cameras. We can also notice diminishing gains

as we switch from 2 to 3 illuminants, suggesting that further im-

provements are difficult to achieve. The average errors are compa-

rable across both cameras, however, the maximum errors for real

images are smaller for Sony A7R3.

To demonstrate that the technique generalizes to other illumi-

nants (different from D65), we show in Table 4 simulation results

for illuminants D50, A and LED-RGB1 whose SPDs are plotted

in Figure 7. The results indicate that both illuminant A and LED-

RGB1 pose a challenge for accurate color reproduction, especially

for Sony A7R3 camera. The large color errors for these illuminants

can be reduced by a factor of 2 or 3 when taking multiple exposures

under optimized illuminants.

4.5. Validation on the SFU dataset

The validation performed on the PMCC let us conveniently analyze

all aspects of the method, but it introduces two problems. First,

the PMCC is not representative of the range of reflectance spec-

tra found in the real world. Second, we train and test on the same

data, risking overfitting. To overcome these problems, we test the

method on the widely-used SFU dataset [BMFC02], consisting of

1995 relectance spectra.
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Figure 7: Spectral power distributions (SPDs) of D50, A and LED-

RGB1.

The validation on the SFU dataset is straightforward to perform

in simulation, however, as we do not have physical samples of the

materials to capture camera images. Therefore, instead, we employ

the approach proposed in [ZF22] and use a linear combination of

reflectance (and RGB) values of the PMCC as a proxy for that

dataset. Zhu and Finlayson [ZF22] observed that the majority of

spectra found in the SFU dataset can be well approximated by a

linear combination of four reflectances of their color chart:

argmin
α

∫
λ

(

rSFU(λ)−
25

∑
i=1

αiri(λ)

)2

dλ s.t.∥α∥0 = 4 . (21)

where rSFU(λ) is a reflectance spectrum from the SFU dataset, α

is a 25-dimensional weight vector and ri(λ) is one of the 25 source

spectra from the PMCC. From the 30 source patches in PMCC, we

remove 5 gray-scale patches (but keep white) so in total we have
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Figure 8: Top: Optimized illuminant(s) of Sony A7R3 for 1, 2 and 3 exposures. Bottom: The product of the optimized illuminant(s) and

camera sensitivity transformed via color-correction matrix vs. the product of D65 and CIE 1931 color matching functions. The closer the

solid line to the dashed lines of color matching functions is, the more accurate the color is.
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Figure 9: Top: Optimized illuminant(s) of IDS U3-3800CP-C-HQ for 1, 2 and 3 exposures. Bottom: The product of the optimized illumi-

nant(s) and camera sensitivity transformed via the color-correction matrix vs. the product of D65 and CIE 1931 color matching functions.

The closer the solid line to the dashed lines of color matching functions is, the more accurate the color is.

25 linearly independent source spectra to build our approximation

for the SFU dataset. Once we know the linear combination of the

reflectance spectra, we can predict the linear RGB values captured

by the camera for this reflectance as

vvvSFU =
25

∑
i=1

αivvvi(λ) , (22)
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where vvvi is the linear RGB pixel value captured for the PMCC patch

i.
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Figure 10: Reflectance in the SFU dataset and their linear recon-

struction. The ∆E00 (CIEDE2000) between the original spectra and

its reconstruction is listed in the caption.

According to our spectrum reconstruction results of Eq. (21), the

mean error is 1.53% and the maximum error is 2.74%. From all the

SFU linear approximations, we select those with reflectance strictly

in the range [0,1] and CIEDE2000 smaller than 1 to guarantee that

the linear approximation is physically possible and accurate. In to-

tal, 1079 out of 1995 spectra are selected as our SFU validation

dataset. Two examples of well-approximated reflectance spectra are

plotted in the top row of Figure 10. By contrast, two spectra that

cannot be well approximated are shown in the bottom row of Fig-

ure 10 — the linear combination either drops below 0 or differs

from the original spectra by a large margin. We test the selected

1079 validation spectra using the linear combination of the PMCC

linear RGB values and summarize the results as the “Approximated

camera” part in Table 3. For completeness, we also report the re-

sults for the entire SFU dataset in the “Simulation” part of Table 3,

following the simulation approach from Section 4.4.

The results in Table 3 confirm the trends observed in Table 2. We

can observe substantial improvement up to 2 optimized illuminants

for the Sony camera, and further reduction of error for 3 illuminants

for the IDS camera. The mean errors are comparable to those ob-

served for the PMCC. The additional fine-tuning step (“with CC”

columns) shows significant improvement, indicating that the opti-

mization does not overfit to the color chart. It should be noted that

the table reports the 95th percentile in the parenthesis rather than

the maximum error as this dataset is much larger. Those results

confirm that the method can generalized to any spectra and achieve

very high color accuracy with ∆E00 below 1, even for a computer

vision camera. In the top row of Figure 11, we plot examples of

two SFU spectra resulting in large color errors when captured un-

der D65. The bottom row of that figure shows that the color cor-
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Figure 11: Top: SFU reflectance spectra that result in large color

errors when captured with Sony A7R3 under D65. Bottom: The

reconstructed colours for D65 illuminant and our optimized triplet

of illuminates. The values show ∆E00 (CIEDE2000) error.

rection for our optimized three illuminants results in imperceptible

color differences.

4.6. Real-Camera Captures

We also captured a Rubik’s cube with Sony A7R3 using the opti-

mized illuminants and D65 as shown in Figure 1. Although we do

not have reference colors for those objects, the figures demonstrate

that the images produced with optimized illuminants give colors

that are close to reality.

5. Conclusions

Capturing multiple exposures is widely used to reduce noise (im-

prove camera sensitivity) or expand dynamic range. Here, we show

that capturing multiple exposures can also be used to improve the

camera’s color accuracy. We optimize a spectral composition of

light so that when one or more images are captured under the opti-

mized light spectra, the linear combination of captured RGB val-

ues can be transformed into CIE XYZ tristimulus color values.

This let us radically improve color accuracy (∆E00 below 1) while

maintaining or improving the signal-to-noise ratio and without any

modification to the camera. In this project, we employ a spectrally

tuneable LED light module (iQ-LED), which offers a practical so-

lution for studio photography or scanning (e.g., material acquisi-

tion). However, we foresee that the technique can be adapted to a

multi-spectral flash in the future.
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Table 2: Simulation and real image results of PMCC on both cameras. The “without CC” columns correspond to matching spectral responses

alone, and “with CC” corresponds to fine-tuning the color correction matrix MMM on the PMCC patches (Section 3.6). The numbers in brackets

represent the maximum ∆E00 (CIEDE2000).

A7R3 IDS

without CC (∆E00) with CC (∆E00) SNR [dB] without CC (∆E00) with CC (∆E00) SNR [dB]

Simulation

D65 2.16 (5.00) 0.90 (2.72) N.A. 1.92 (3.38) 1.05 (2.54) N.A.

1 illuminant 1.58 (4.19) 0.51 (1.76) 39.12 1.16 (2.68) 0.57 (1.85) 39.91

2 illuminants 0.31 (0.60) 0.22 (0.53) 39.34 0.84 (2.17) 0.22 (0.48) 39.56

3 illuminants 0.25 (0.50) 0.22 (0.52) 42.04 0.34 (0.91) 0.22 (0.50) 42.37

Real image

D65 2.13 (5.12) 0.93 (2.46) 36.02 1.95 (3.74) 1.19 (3.17) 31.98

1 illuminant 1.68 (4.30) 0.65 (1.68) 35.99 2.38 (4.50) 0.90 (2.57) 32.11

2 illuminants 1.03 (3.18) 0.28 (0.62) 36.33 1.54 (2.52) 0.44 (1.68) 32.00

3 illuminants 0.96 (2.24) 0.25 (0.67) 37.86 1.28 (2.49) 0.39 (1.91) 31.81

Table 3: The ∆E00 (CIEDE2000) results for the SFU dataset for both cameras. The 95th percentile ∆E00 of the dataset is also listed in the

brackets. The results for the 1079 spectra approximated by a linear combination of PMCC patches (see the text) are listed in the left half of

the table. The right half shows the simulation results for all spectra in the SFU dataset.

Approximated camera Simulation

A7R3 IDS A7R3 IDS

without CC with CC without CC with CC without CC with CC without CC with CC

D65 2.26 (4.06) 0.86 (2.19) 1.93 (3.38) 1.01 (2.38) 2.10 (3.83) 1.06 (3.03) 2.01 (3.37) 1.05 (2.57)

1 illuminant 1.63 (3.59) 0.73 (1.67) 2.42 (4.48) 1.13 (2.66) 1.70 (3.91) 0.54 (3.33) 1.22 (2.57) 0.63 (3.99)
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Figure 12: The visualization of 30 patches of the PMCC, captured

with both cameras. For each color patch, the bottom part is the ref-

erence color as measured with the spectroradiometer. The top half

is horizontally split into 3 regions — left: the color captured under

the approximated D65; center: color captured under 1 optimized

illuminant; right: color obtained after merging information from 3

exposures, each captured under a different illuminant. The results

are reported for real-image captures and with the color-correction

fine-tuning step. Note that the cyan color (row 4 and column 6) is

clipped in the figure because it is outside the sRGB (BT.709) color

gamut.
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