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Abstract
Novel display algorithms such as low-persistence displays,

black frame insertion, and temporal resolution multiplexing in-

troduce temporal change into images at 40-180 Hz, on the bound-

ary of the temporal integration of the visual system. This can

lead to flicker, a highly-objectionable artifact known to induce

viewer discomfort. The critical flicker frequency (CFF) alone

does not model this phenomenon well, as flicker sensitivity varies

with contrast, and spatial frequency; a content-aware model is re-

quired. In this paper, we introduce a visual model for predicting

flicker visibility in temporally changing images. The model per-

forms a multi-scale analysis on the difference between consecu-

tive frames, normalizing values with the spatio-temporal contrast

sensitivity function as approximated by the pyramid of visibility.

The output of the model is a 2D detection probability map. We

ran a subjective flicker marking experiment to fit the model pa-

rameters, then analyze the difference between two display algo-

rithms, black frame insertion and temporal resolution multiplex-

ing, to demonstrate the application of our model.

Introduction
Displays are known to produce temporally changing signals,

relying on the limited integration time of human visual system

which then fuses this into a steady image. Well-established tech-

nologies, such as digital micromirror devices and projector col-

orwheels operate at such high frequencies that the change is in-

deed unperceivable. However, novel algorithms introduce tempo-

ral changes at 40-180 Hz, on the boundary of temporal integration

of the visual system. This can lead to highly-objectionable flicker.

The visibility of flicker is commonly associated with the crit-

ical flicker frequency (CFF). However, many other factors such as

the adaptation luminance and the spatial frequency of the stimulus

have a significant impact. Therefore, a content-dependent model

is needed to produce accurate predictions. Conventional video

quality metrics are designed for lower temporal frequencies, and

hence do not model high-frequency flicker detection accurately.

In this paper, we introduce a visual model for predicting

flicker visibility in temporally changing images. The model per-

forms a multi-scale analysis of the difference image between

consecutive frames of the animation, normalizing contrast val-

ues with the spatio-temporal contrast sensitivity function from the

pyramid of visibility [1]. To calibrate the model parameters, we

conduct a psychophysical experiment, collecting user markings

for a wide range of content across different refresh rates.

The rest of the paper is structured as follows: first, we review

the relevant publications on flicker sensitivity, temporal display

algorithms and quality metrics. Then, we introduce our flicker

model, describe the psychophysical experiment and the parameter

fitting process. Finally, we demonstrate the application of our

model by comparing flicker in two display algorithms.

Flicker sensitivity
Most artificial light sources do not produce a temporally-

stable amount of light; they are known to vary with time [2].

The minimum frequency at which a light is perfectly fused and

is perceived as steady is the flicker fusion threshold, or as also

known: the critical flicker frequency (CFF). CFF depends on mul-

tiple factors: it is known to increase with log-luminance (Ferry-

Porter Law) and angular size; to vary with spatial frequency and

eccentricity – the most sensitive being the para-fovea [3, 2].

CFF is typically measured for stimuli with full-on, full-off

cycles; however, the amplitude of luminance change in display

algorithms is often small. Hence, flicker visibility is better cap-

tured by the spatio-temporal contrast sensitivity function (CSF).

CSF is usually characterized as a function of spatial frequency,

temporal frequency, and background luminance. Studies suggest

that contrast sensitivity across the retina is homogeneous when

the stimulus size increases with the cortical magnification factor

[2, 4]. On the other hand, Peli et al. argues that the contrast

threshold increases exponentially with eccentricity, and the CSF

should be scaled accordingly. In this paper, we assume a worst-

case scenario, a free-viewing set-up with flicker attended by the

most sensitive part of the retina. Sensitivity values can be inter-

preted as the inverse of the contrast thresholds at which flicker is

observed by 50% probability. We use a slightly different defini-

tion of sensitivity, as the inverse of the contrast threshold at which

flicker is observed by 50% of the population. Contrast in this con-

text is commonly defined as Michelson contrast:

C =
Lmax −Lmin

Lmax +Lmin
, (1)

where Lmin and Lmax are the minimum and maximum luminance

values of a periodically changing signal.

The pyramid of visibility [1] offers an approximate model

of the CSF, matching previous foveal measurements for medium-

to-high spatio-temporal frequencies. However, model parameters

were not fully consistent when fitted to different datasets. Further-

more, the pyramid of visibility can explain flicker visibility for

single spatial frequencies, but not necessarily for complex images.

We apply this model in a novel way to multiple spatial frequency

bands, refitting the parameters to our proposed application.

Flicker artifacts discussed in this paper are around the detec-

tion threshold, and as such, we focus on their detectability. We

have not conducted extensive studies on long-term fatigue, and

do not consider photosensitive epilepsy [5].

Display algorithms
There are a number of computer graphics and display algo-

rithms that introduce temporal change into images [6, 7, 8, 9, 10],

also referred to as temporal multiplexing algorithms. Commonly
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Figure 1: Overview of the flicker predictor model. The input is a pair of color frames; the result of the model is a 2D probability of

detection (Pdet) map.

these modify a few consecutive frames in order to perceived res-

olution, reduce the computational or transmission cost.

Chen et al. [6] adjusts pairs of frames to reduce motion blur

on a 120 Hz display. Didyk et al. [8] modifies up to three frames

to boost the apparent resolution of moving images. The latter

introduces low-contrast flicker at 40 Hz – well below the CFF;

authors mitigate this with a multi-scale CFF predictor. While

our model is conceptually similar, we rely on a multi-scale CSF

model, with psychophysical calibration for robustness.

Other algorithms introduce temporal change to reduce the

computational cost of image generation. In virtual reality, Asyn-

chronous SpaceWarp (ASW) re-projects every other frame based

on image-space motion information [9]; black frame insertion

(BFI) assumes that every other frame is black, boosting display

luminance to match the target content. More recently, tempo-

ral resolution multiplexing (TRM) produces pairs of blurred and

sharpened frames that are fused on the retina [10]. In the paper

we argued that TRM introduces less flicker than BFI. We now

demonstrate how our flicker model can be utilized for validation.

Image and video metrics
Image and video metrics can be broadly categorized as qual-

ity metrics and visibility metrics. Full-reference quality metrics,

such as PSNR, output a single quality value for the entire image,

whereas visibility metrics, such as VDP, HDR-VDP [11, 12] pro-

duce a distortion map, providing spatial information on the proba-

bility of detecting artifacts. Some metrics, such as SSIM produce

a distortion map, but it is only the mean value over the image that

is shown to correlate with subjective scores [13, 14], SSIM distor-

tion maps are not calibrated to psychophysical data. Our flicker

prediction model is inspired by the visual difference predictors in

the sense that it also outputs psychophysically calibrated detection

probability maps rather than a single quality value.

Video quality is often evaluated by executing an image qual-

ity metric frame-by-frame and pooling quality values over time.

Some video quality metrics, such as VQM and MOVIE [15], an-

alyze temporal changes in videos. However, these metrics are de-

signed for film content with frame rates typically below 50 Hz,

and lack a robust flicker model for >50 Hz content. Further-

more, many novel display algorithms that we target are designed

specifically for real-time computer generated (CG) content. Video

quality metrics are not immediately applicable to CG, as CG con-

tent has a subjective perception unaffected by the well-established

rules of the film industry such as the soap opera effect [16].

Flicker model
Temporal multiplexing algorithms often manipulate pairs of

frames. Let us denote two consecutive frames as Fi and Fi+1

that could be, for instance, the reduced-resolution and sharpened

frames of TRM; or a black frame and a luminance-boosted frame

of BFI. The proposed visual model predicts whether displaying

Fi and Fi+1 alternately at refresh rate R would result in perceiv-

able flicker. The output is a Pdet(x,y) map corresponding to the

percentage of the population detecting flicker at a pixel (x,y).
Our flicker predictor utilizes a spatio-temporal CSF in a

multi-scale model with probability summation along the spatial

frequency bands. For an overview of the pipeline, please see Fig-

ure 1. The model does not distinguish orientation-sensitive bands,

often found in masking models [17]. The model also assumes that

eye movements have been already accounted for in image-space;

i.e., the same pixels on Fi and Fi+1 will correspond to roughly the

same photoreceptors on the retina.

As the source of most flicker is the change in luminance, we

do not consider chromaticity here. First, we compute respective

luminance values (Yi and Yi+1) of consecutive frames (Fi and Fi+1)

based on a calibrated display model. Then, to find contrast, we

compute the difference image:

∆(x,y) = Yi(x,y)−Yi+1(x,y), (2)

where x and y describe pixel location, and Yi(x,y) is the luminance

of pixel (x,y) of the frame Fi. The summed luminance of the

consecutive frames can be similarly defined as:

Y (x,y) = Yi(x,y)+Yi+1(x,y) (3)

As flicker sensitivity varies with spatial frequency, the dif-

ference image (∆(x,y)) is decomposed into a Laplacian pyramid.

Each layer of the pyramid is half the spatial resolution of the

one above; the bottom layer capturing 2 cycles per visual de-

gree (cpd) resolution or just below – e.g. for a 52 pixel-per-

degree image the mid points of the spatial frequency bands are

Si = {26,13,6.5,3.25,1.625} cpd. We use an undecimated pyra-

mid, in which each band has the same resolution.

In each layer, Michelson contrast can be then computed as:

C(x,y, l) =
|∆(x,y, l)|

Y (x,y)
, (4)

where l is the Laplacian pyramid layer. To account for contrast

sensitivity, we normalize contrast at each layer by a the spatio-



temporal CSF (ρ). We use the pyramid of visibility, as it is para-

metric, and has been shown to provide a good fit to previous CSF

measurements.

ρ(W,F,L) = exp(c0 + cWW + cF F + cL logY ), (5)

where W and F are the spatial and temporal frequencies as in

the original paper, Y is the adapting luminance, and (c0, cW , cF ,

cL) are parameters that we keep as free variables in our model.

We assume that the mean fused image 0.5Y (x,y) provides a good

estimate of the local adapting luminance. The normalized contrast

is then:

Ĉ(x,y, l) =C(x,y, l)ρ(R/2,Sl ,0.5Y (x,y)), (6)

where Sl is the spatial frequency of the layer, and R is the display

refresh rate. We use R/2 to sample the temporal dimension of

the CSF, as when modifying pairs of frames, this is the highest

temporal frequency according to the Nyquist limit.

Next, to transform the normalized contrast into probabilities

of detection, we use a Weibull psychometric function:

P(x,y, l) = 1−
exp(Ĉβ (x,y, l)

2
, (7)

where β controls the slope of the psychometric function, a free

parameter in our model. In order to pool the probabilities across

all layers, we use probability summation:

P(x,y) = 1−∏
l

(1−P(x,y, l)). (8)

Finally, to account for spatial pooling, we further convolve

the probability map with a small Gaussian filter:

Pdet(x,y) = P(x,y)∗Gσsp
, (9)

where ∗ denotes convolution, and Gσsp
is a Gaussian kernel with

σsp being a free parameter in our model.

Flicker marking experiment
To tune the model parameters, ground-truth data is required

on flicker perception in complex images. As flicker is often per-

ceived in multiple parts of the image, and location information is

crucial for Pdet(x,y), we designed a marking experiment. Such ex-

periments have been utilized to calibrate similar metrics for image

difference predictors [18, 19].

Participants

Nineteen participants aged 18-40 with normal or corrected-

to-normal vision took part in the experiment. As the frequency of

flicker was above 3 Hz, we ensured that no participant reported a

history of photosensitive epilepsy. Informed consent was acquired

before the beginning of the experiment, which involved briefing

participants on the aim, the procedure, and potential risks of the

experiment both verbally and in writing. Participants were offered

a small financial compensation in the form of gift cards.

Figure 2: Pool of reference images used for the flicker marking

experiment with a range of content.

Setup
Participants were shown a 512×512 pixel flickering pho-

tograph in the center of a G-Sync capable ASUS ROG Swift

PG279Q 28” monitor. The viewing distance was fixed at 65 cm,

yielding an angular resolution of 52 pixels per degree (ppd). Im-

ages hence had a field of view of 9.85◦; the rest of the monitor was

filled with a gray background of 36 cd/m2. Accurate refresh rates

were achieved with custom C++/OpenGL software and G-Sync.

Stimuli
Eighteen stimuli were created by flickering twelve color pho-

tographs (see Figure 2). The photographs provided a range of

content from primitive zebra stripes, photographs of birds, build-

ings and people. For each trial, a spatially band-limited flicker

was introduced at temporal frequency R. This was achieved by

displaying a pair of images (Fi and Fi+1) alternating at R Hz such

that,

Fi(x,y) = Fref(x,y)∗gσ (x,y), (10)

where Fref denotes the original reference image in gamma-

compressed rgb color space (rec.709 primaries), ∗ stands for 2D

convolution, and gσ (x,y) is an isotropic Gaussian blur kernel with

a standard deviation of σ . Inspired by the temporal resolution

multiplexing algorithm [10], Fi+1 was computed as

Fi+1(x,y) = ξ−1
(

2ξ (Fref(x,y))−ξ (Fi(x,y))
)

, (11)



(a) original reference (b) Fi (c) Fi+1

Figure 3: Example stimulus pair. Reference frame is low-pass

filtered (Fi), and sharpened (Fi+1) to produce band-limited flicker.

where ξ () is a gain-offset-gamma display model [20] transform-

ing gamma-compressed rgb to linear rgb values. For stimulus

generation we used a crude approximation of the display model

of the ASUS monitor with

r′(x,y) = 0.99917r(x,y)2.15 +0.000825, (12)

where r is the red channel. The same formula was applied to all

color channels. For an example image pair, see Figure 3. Note

that we do not use an accurate display model here, neither do we

account for the limited dynamic range and color gamut of the dis-

play. This might introduce some spatial artifacts to the viewer, but

this experiment did not attempt to establish overall visual quality,

and such artifacts did not impede flicker detection. For a summary

of the stimuli images, σ and R values, refer to Figure 4.

For model calibration, specifically for the first step of conver-

sion to luminance, we measured a more accurate display model

with a Specbos 1211 spectroradiometer.

Task
Participants were asked to “mark (or paint) any part of the

image where flicker is visible” – quoted from the briefing form.

Flickering areas could be marked by holding down the left mouse

button and moving the pointer around. Previous markings could

be deleted with the right mouse button in a similar fashion. A cir-

cular mouse pointer was used with the diameter adjustable from

0.15◦ (8 pixels) to 2◦ (104 pixels) using the mouse wheel. Any

marked area was highlighted and immediately stopped flickering.

At the beginning of each trial, the mask was cleared. Partici-

pants were specifically asked to first mark (and hence remove)

the strongest flicker first to minimize the effect of masking. Dur-

ing briefing and training it was highlighted that flicker might be

more visible in the parafoveal area of vision, and hence looking at

objects slightly off-center might reveal more flicker. This was to

ensure that all participants utilize the free-viewing setup equally.

Each participant created a marking map for each stimulus

three times, yielding 54 trials in total. The order of the trials was

randomized.

Results
Figure 4 shows the flicker marking maps averaged over nine-

teen observers and three repetitions. As expected, flicker percep-

tion degrades with increasing refresh rates and increases with the

blur σ . The markings, however, cannot be considered ground

truth data for two reasons: (1) participants might make mistakes

producing mis-markings, and (2) the finite size of the brush allows

for limited precision.

Following the analysis in [18], markings can be consid-

ered the output of a stochastic process, where observers attend

to a distortion with Patt, and mis-mark a pixel with probability

Pmis = 0.01. Due to the small image size (9.85◦ ×9.85◦), and the

characteristics of temporal sensitivity, we assumed Patt = 1 for

this experiment.

For each image in each of the 57 marking maps each (x,y)
pixel takes a binary {0,1} value depending on whether the partic-

ipant marked it with the mouse. Assuming a detection probability

Pdet(x,y), the data can be modeled as a binomial distribution. Ac-

counting for the mis-markings, the likelihood of observing the

collected data given a model is:

Λ(x,y) =Pmis+(1−Pmis)

(

n

k

)

Pdet(x,y)
k[1−Pdet(x,y)]

n−k, (13)

where n= 57 is the number of all collected markings for an image,

k is the number of trials where the pixel is marked to flicker, and

Pdet(x,y) is the predicted detection probability of the model.

Parameter fitting
We posed the task of finding the best model parameters as

a non-linear optimization problem, maximizing the average log-

likelihood over the images. However, we observed that the ef-

fects of spatial pooling were masked by the finite paint brush size;

therefore we decided to fix this parameter to a value comparable

to the brush sizes (σ = 0.36◦). Variable slope values in the psy-

chometric function were also expected to create a range of local

minima, hence we selected a single likely candidate β = 2. The

remaining parameters are parameters from the pyramid of visi-

bility which we restricted to physically sensible ranges (cW < 0

for decreasing sensitivity with temporal frequency; cF < 0 for de-

creasing sensitivity with spatial frequency; cL > 0 for increasing

sensitivity with background luminance).

Our results are summarized in Table 1. When refitting the

parameters from the original pyramid of visibility, the mean log-

likelihood increases, as expected. Parameters show some devia-

tion from the values fitted to the Robson measurements. While c0

is comparable, increasing temporal frequencies attenuate sensitiv-

ity faster (lower cW values), increasing spatial frequencies atten-

uate sensitivity slower, and luminance amplifies sensitivity faster.

Such deviations are to be expected due to the significantly more

complex nature of the task presented in the marking experiment.

To analyze the possibility of over-fitting the model parame-

ters to our dataset, we also executed a 3-fold cross-validation. For

this, the dataset was randomly split into three 6-element groups.

The models was fit to each two groups (training), then perfor-

mance was evaluated on the third groups (test). Results in Table 1

indicate that the training and test likelihoods were comparable,

and the optimum parameters did not differ significantly from the

scenario when all 18 images were included in the training dataset.

Qualitatively we observed that model predictions for the ex-

periment stimuli capture the flickering details well. The user-

produced and the predicted markings are as shown in Figure 4.

Application
To demonstrate the utility of our model, we analyze the

amount of flicker introduced by two state-of-the-art display algo-

rithms: temporal resolution multiplexing (TRM) and black frame

insertion (BFI). For TRM we assume the worst-case scenario and

ignore the residual buffer (for full details, see [10]). For black



training test c0 cW cF cL

Pyramid of visibility - -3.204 2.1900 -0.0600 -0.0650 0.3880

Fit to all -2.849 - 1.9993 -0.1059 -0.0242 0.9102

cross 1 -2.829 -2.933 2.1946 -0.1025 -0.0362 0.8581

cross 2 -2.903 -2.779 1.9982 -0.1146 -0.0113 0.9782

cross 3 -2.782 -3.009 1.5741 -0.1006 -0.0128 0.9265

Table 1: Parameters, training and test fitness (measured as mean log-likelihood). Pyramid of visibility (first row) uses the parameters

from the Robson fit from [1]. When fitting to our dataset, the log likelihood increases (Fit to all). Cross # are indicate results of the 3-fold

cross-validation.
Probability of detection

0% 25% 50% 75% 100%

0.25◦ 70 Hz

Data Pdet

1.02◦ 80 Hz

Data Pdet

0.41◦ 60 Hz

Data Pdet

0.76◦ 72 Hz 1.52◦ 84 Hz 1.02◦ 80 Hz

1.02◦ 120 Hz 0.1◦ 62 Hz 2.03◦ 90 Hz

1.02◦ 85 Hz 0.25◦ 70 Hz 0.46◦ 70 Hz

2.03◦ 90 Hz 1.02◦ 80 Hz 1.02◦ 88 Hz

1.02◦ 90 Hz 2.03◦ 90 Hz 1.52◦ 90 Hz

Figure 4: Flicker markings (Data) and model predictions (Pdet) overlaid on the 18 reference images. Blue indicates no flicker (Pdet ≈ 0),

green to orange indicates strong perceivable flicker (Pdet → 1). Sub-captions state the standard deviation of the Gaussian kernel (in visual

degrees), and the refresh rate at which Fi and Fi+1 were alternated (in Hz).



TRM

BFI

TRM

BFI

TRM

BFI

60 Hz 75 Hz 90 Hz 120 Hz

Table 2: Analysis of flicker artifacts in black frame insertion (BFI) and temporal resolution multiplexing (TRM) across refresh rates. Red

regions indicate that BFI produces noticeable flicker artifacts at bright regions of the image even on 120 Hz. TRM, on the other hand,

does not flicker above 90 Hz on the analyzed content for our display with 156 cd/m2 peak luminance.

frame insertion we assume that Fi is completely black, while Fi+1

is boosted to double the luminance. For representative content we

selected three computer-generated images.

Our model can be used to establish the minimum refresh rate

at which flicker is no longer perceivable when using either tem-

poral techniques. As shown in Table 2, TRM generally requires

lower refresh rates; it is unlikely to be perceived as flickery on

90 Hz, while BFI causes minor distortions even on 120 Hz. This

is consistent with previous observations [10].

Conclusion

We presented a multi-scale visual model for predicting

flicker, one of the most objectionable artifacts in display algo-

rithms that introduce temporal change. Specifically, we assumed

that such algorithms produce consecutive frames that are fused

on the retina. Our model takes spatio-temporal sensitivity into

account to predict if perfect fusion is be possible, and outputs a

detection probability map showing a 2D image of flicker visibility.

Model parameters were fitted to the results of a subjective mark-

ing experiment. Our model provided a good fit to the observed

data. We demonstrate how the model can be utilized to analyze

existing multiplexing algorithms: temporal resolution multiplex-

ing, and black frame insertion. The main limitation of the current

model is the lack of masking effects, including cross-channel spa-

tial sensitivity masking and motion masking. In future work we

wish to collect further data to address these issues.
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