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Abstract
From complete darkness to direct sunlight, real-world dis-

plays operate in various viewing conditions often resulting in a

non-optimal viewing experience. Most existing Image Quality

Assessment (IQA) methods, however, assume ideal environments

and displays, and thus cannot be used when viewing conditions

differ from the standard. In this paper, we investigate the influence

of ambient illumination level and display luminance on human

perception of image quality. We conduct a psychophysical study

to collect a novel dataset of over 10000 image quality preference

judgments performed in illumination conditions ranging from 0 lux

to 20000 lux. We also propose a perceptual IQA framework that

allows most existing image quality metrics (IQM) to accurately

predict image quality for a wide range of illumination conditions

and display parameters1. Our analysis demonstrates strong cor-

relation between human IQA and the predictions of our proposed

framework combined with multiple prominent IQMs and across a

wide range of luminance values.

Introduction
For any display system with the ultimate goal of accurately

communicating visual information to its viewer, image quality and

legibility are key performance metrics that must be assured. This is

especially prominent in safety critical display systems, for instance

those found in the automotive industry. While the exact method-

ology and criteria of objective IQA can vary – one can evaluate

a variety of properties, such as presence of digital degradations,

level of contrast, overall aesthetic quality, content visibility, image

naturalness, etc. - the consensus is to provide an estimate based on

a mathematical metric related to the perceived image quality and

given a standard predefined set of assumptions about the viewer

and the viewing conditions [1]. A reference and a distorted image

are often compared to compute an associated image quality pre-

diction based on some perceptual difference metric between the

two inputs. The underlying content can be compared using various

strategies: mean-squared difference (MSE), signal-to-noise ratio

(PSNR), structural similarity (SSIM [2], MS-SSIM [3], IW-SSIM

[4], TMQI [5]), naturalness statistics and information content (VIF

[6, 7]), contrast visibility (HDR-VDP [8, 9]), low-level feature

similarity (FSIM [10]), visual saliency (VSI [11]), and more. Mul-

tiple recent attempts have also put machine learning (ML) in the

context of IQA [12, 13, 14, 15], a notable example of which is

1Project details can be found at https://github.com/ch-andrei/L-IQA
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Figure 1. Our proposed perceptual IQA framework. We estimate the vi-

sual signal that reaches the observer’s eye given the information about the

environment and the used display system, and apply existing IQA metrics on

the resulting stimuli. A display and degradation model converts digital inputs

from gamma-corrected pixel values to the physical luminance space and sim-

ulates the influence of the ambient illumination level. The resulting signals

are then linearized with perceptually uniform (PU) encoding [17] to account

for luminance masking and, finally, IQA is computed.

LPIPS [16], a perceptual distance metric achieving state-of-the-art

IQA performance.

Although existing computational IQA methods are well cor-

related with human predictions of image quality, they are typically

designed for digital gamma-corrected images assumed to be dis-

played in ideal viewing conditions. Moreover, the major subjective

IQA datasets either use standardized viewing conditions [18] or

are collected in crowdsourcing experiments where conditions are

not controlled [16, 19, 20]. Real world environments, however,

expose the viewer to a wide range of ambient illumination condi-

tions, from nighttime darkness to direct sunlight and everything in

between. The same digital content, which when displayed under

regular office lighting will have good apparent image quality, in

extremely bright or dark conditions, will be less visible to the

viewer and its apparent image quality will be reduced [21]. As

most existing IQA metrics do not model the effect of non-ideal

ambient conditions, they lack the ability to predict the associated

effect on image quality.

It is well documented that the Human Visual System (HVS)

is characterized by visual adaptation based on ambient light levels.

As the perceived illumination level decreases, the HVS shifts from

photopic (daytime) to scotopic (nighttime) vision [22, 23]. With

this comes a decrease in contrast sensitivity and perception of

color; in dark conditions, the human eye thus sees less detail and

colors appear desaturated [21, 24]. Meanwhile, at high ambient



illumination levels, although the contrast sensitivity of the eye does

not vary much, the eye is exposed to stronger reflection and glare

from the environment. The perception of visual content is then

proportionately adversely affected [21, 25].

Many perceptual phenomena influenced by a variety of view-

ing conditions can be predicted by Color Appearance Models

(CAM) [26]. For instance, CIECAM97 [27] and its later revision

CIECAM02 [28] describe the appearance of colored stimuli given

the surrounding environment and the ambient illumination, and cor-

relate multiple aspects of color appearance such as brightness, col-

orfulness, hue, lightness, chroma, and saturation. These methods,

however, have several key limitations: they are designed for small

patches of color and not complex spatially varying stimuli such as

images or video; they lack spatial contrast consideration; and they

operate in predominantly photopic conditions (cone-mediated vi-

sion). The iCAM06 model [29] partially addresses these issues by

considering an extended dynamic range and modelling spatial color

appearance parameters, but it is mainly devised for tone-mapping

of HDR imagery and not predicting colour differences.

Similarly to CAMs, the luminance retargeting (LRT) algo-

rithm proposed in [25] models the appearance of color and contrast

for the full range of real-world luminance values. LRT is presented

as a method of simulation of or compensation for the ambient illu-

mination conditions; the algorithm modifies the perceived contrast

and colors of an image in an attempt to match the appearance of

image content between different luminance levels. This involves

finding an optimal tone-curve and spatial contrast processing to

account for the changes to eye’s contrast sensitivity, as well as

modeling of hue and saturation shifts to ensure similar color per-

ception. One practical application of the LRT algorithm is to

process images intended to be displayed under non-ideal viewing

conditions to match the ideal condition appearance. Such process-

ing techniques are capable of preventing apparent image quality

degradation due to unfavorable viewing conditions [21].

The dynamic range and other relevant parameters of the used

display system also have an effect on the perception of imagery and

hence must be considered when assessing image quality. Plasma

(500 cd/m2) and HDR (3000 cd/m2) display systems were shown

to provide higher overall image quality than the previously typical

CRT displays (100 cd/m2) due to wider luminance range and more

accurate color reproduction [30]. On the other hand, many modern

consumer display systems implement adaptive screen luminance

profiles to reduce energy consumption and lessen eye strain; these

systems are equipped with a light sensor and dim the display to

better match dark ambient illumination conditions. Decreasing

the screen’s maximum luminance modifies its dynamic range (the

ratio between largest and smallest value) and further reduces the

perceived contrast, which often degrades apparent image quality.

In their work on Perceptually Uniform (PU) encoding [17] for

luminance signals, Aydin et al. observed that humans tend to rate

image quality distortions with the same type and magnitude more

harshly when displayed on brighter displays. This is a case of lu-

minance masking: an overall brighter stimuli with higher dynamic

range makes the severity of displayed degradations more easily

observable. Most popular IQA metrics cannot directly predict

this effect; PU encoding was designed as their extension to en-

sure that "the distortion visibility is approximately uniform along

all encoded values". Given display system parameters, gamma-

corrected pixel values are converted to physical luminance space

and then linearized with respect to human perception. With the

PU encoding applied to the inputs, PSNR and SSIM could more

accurately predict the change in human quality preferences for

brighter displays.

The recent broadcasting industry standard for evaluating the

visibility of colour differences between displays is given by the

metric ∆IET P [31]. Suitable for workflows involving display cali-

bration and characterization, this metric is computed using display-

referred stimuli (acquired, for instance, using an imaging colorime-

ter). Color difference visibility between two stimuli is estimated

by computing Euclidean distance in the ICTCP color space, which

is designed as a successor to YCBCR to offer a more perceptu-

ally uniform color representation with improved decorrelation of

saturation, hue, and intensity. The ∆IET P metric, however, has sev-

eral drawbacks: it assumes the most sensitive state of adaptation,

which ensures that it will not under-predict color difference (but

may over-predict them); it requires physically measured (or simu-

lated) display response; and it does not directly consider viewing

conditions.

Our current paper explores the influence of various view-

ing conditions, namely ambient illumination level and display

luminance, on human perception of image quality. In Section Sub-

jective IQA Experiments, we present a novel IQA dataset collected

during our psychophysical study assessing human perception of

image quality as the ambient light level varies from very dark (0

lux) to very bright (20000 lux). The study allowed us to determine

the image quality trend for a wide range of illumination conditions.

Additionally, we investigated how the LRT algorithm influences

perceived image quality in non-ideal viewing conditions, since

conventional IQA methods are incapable of assessing this effect.

Furthermore, we propose an IQA framework that can extend

most existing IQA metrics to predict image quality for custom dis-

play systems and non-ideal viewing conditions (Section Perceptual

IQA Framework). We simulate the physical signal that reaches

the observer’s eye given display system parameters and ambient

illumination level; IQA is then computed using the resulting phys-

ical stimuli as opposed to the original gamma-corrected image

inputs. We test our framework with multiple prominent IQMs,

namely PSNR, SSIM, MS-SSIM, HDR-VDP-2, TMQI, FSIM,

VSI, LPIPS, and MDSI [32], and our evaluation demonstrates the

effectiveness of our method (Section Results and Discussion).

Subjective IQA Experiments
Quantitatively rating image quality is difficult as it requires

training the participants and in general results in higher variance.

To avoid this, we employed a pairwise comparison approach,

whereby we presented the participants with two image stimuli

and tasked them with selecting the one with higher perceived im-

age quality. The two stimuli were physically displayed in two

separate environments with potentially different illumination lev-

els and thus the associated effect on perceived image quality could

be assessed.

We built a ’light-box’ consisting of two isolated compart-

ments each individually illuminated by several remotely control-

lable 5000 lumen LED lights. A single display system was placed

inside the box; we used a Samsung TM-800 tablet with a 260

cd/m2 maximum screen luminance OLED display. As suggested

in [25], to minimize the time required for eye adaptation between

illumination conditions, our setup implemented a haploscopic sep-



aration of the observer’s eyes such that each eye was exposed to

a different stimuli and was adapted to a different luminance level.

The separation on two environments naturally split the display into

two equal halves; lensless binocular goggles were used as a visor

through which the viewer inspected the scenes. We only displayed

one image stimuli at any given time; the viewer toggled which side

displayed the stimuli by tapping on the screen. There was no time

limit, and the viewer could inspect both signals interchangeable

until they decided which stimuli appeared to have higher image

quality. Note that we automatically modified display brightness as

per the ambient viewing conditions in the selected environment,

and displayed a black image on the other side to avoid confusing

the viewer. Further note that we instructed the viewer to keep both

eyes open throughout the experiment.

The study was run in a dark room as per the recommendations

in [18]. The viewer was given about 10 minutes for the initial

adaptation to the dark environment of the room and one minute to

adapt to each of the changing illumination levels inside the light-

box. The viewing distance was 50 cm and the display was angled

perpendicularly to the viewing direction. The observers took about

5-10 seconds to pick the preferred image quality winner, and a

session lasted 30-60 minutes, depending on the subject’s speed.

After the first 30 minutes, we initiated a short intermission to avoid

potential eye fatigue [18], after which the session continued.

Dataset Description
Our dataset contained 12 reference images classified under

three main content categories with distinctive characteristics: i)

natural-indoors (6 images), ii) social media (3 images), and iii)

automotive (3 images). Separation into categories was motivated

by our goal of evaluating image quality for several different real-

world applications of physical display systems. The images had

3:4 aspect ratio, which was required to display several images

simultaneously on the same screen.

Since human perception of light intensity is better approxi-

mated on a logarithmic scale, we considered illumination levels

that roughly double at each step, namely: 0, 20, 50, 100, 250, 500,

1000, 2500, 5000, 10000, 20000 lux, for a total of 11 conditions.

In addition to varying the ambient illumination level, we also in-

cluded a second dimension in our comparison space. We used the

luminance retargeting (LRT) image processing algorithm proposed

in [25] as a means of digital compensation for the ambient illu-

mination level. We wanted to evaluate the effectiveness of LRT
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Figure 2. The comparison space of our experiment. Blue dots are the

conditions, red links imply adjacency and thus a comparison in the context of

our study. For an incomplete study design, given 11 illumination levels and

two image processing types (22 conditions in total), there are 31 adjacent

condition pairs, which corresponds to 31 required comparisons.

processing as well as to verify if the objective IQA metrics were

capable of accurately predicting the associated quality difference.

In our case, we applied LRT processing2 to match the perception

of images displayed in the 11 selected conditions to the assumed

ideal condition.

Our comparison space is thus formulated with two dimen-

sions: illumination level (in lux) and image processing type (un-

processed, processed). For 11 illumination level values and two

processing types, we thus have a total of 22 conditions, as depicted

in Figure 2. Although a full study would test all combinations, this

is impractical; as per the suggestions in [33], we ran an incomplete

study design, omitting comparisons between non-adjacent condi-

tions. The study was run with 25 observers and a total of over

10000 image quality preference judgments were collected, with

approximately 400 judgments carried out by each observer.

Acquiring Quality Scores
In order to obtain relative IQA scores from the pairwise com-

parisons, we used the pwcmp scaling software [34] to perform

psychometric re-scaling of the collected data. This approach is

warranted by the analysis done in [33], which shows that pairwise

comparison data can be effectively reinterpreted via psychometric

re-scaling to obtain quality scores with a strong linear relation

to Mean Opinion Score (MOS). The pwcmp algorithm builds

a statistical model treating preference judgments as noisy sam-

ples of an underlying quality difference distributions, and trans-

forms these into relative quality scores q̂ in Just-Objectionable-

Differences (JOD) units. JOD is a unit of probabilistic measure of

preference, similar to the difference-mean-opinion-score (DMOS),

which quantifies the difference between a test signal and some

reference. A difference of 1 JOD unit implies that 75% of the ob-

servers prefer one stimuli over the other; increasing difference in

JODs represents asymptotically higher probability of preference.

We applied the pwcmp scaling algorithm on a per-image

basis, i.e. our data is treated and scaled separately for each of the 12

images in our dataset. This essentially lowers the accuracy of each

scaling, as it limits the amount of data each computation operates

with, but better captures content dependency of human IQA, as

each image is treated separately and thus no averaging across

content occurs. For illustrative purposes, instead of presenting 12

different quality trends, we also applied pwcmp on the entirety of

our data as depicted in Figure 3. While specific content-dependent

image quality particularities are not observed in the combined plot,

this illustration is a good summary of the results of our experiment.

For all images, humans give preference to the illumination

range near the "ideal" conditions around 200-600 lux, where the

display luminance is near its maximum and the effects of environ-

mental glare and reflection are not as strong; image quality falls

off as the illumination level deviates from the "ideal". Contrast

distortions seem to be the most prevalent source of image quality

degradation as ambient illumination level differs from the ideal.

Under dim illumination, lower display luminance and the visual

adaptation of the HVS result in decreased perceived contrast and

color sensitivity of the eye; in bright conditions, ambient light

reflection lower the physical contrast of the observed image. In

this way, non-ideal viewing conditions result in poor visibility and

2We used an existing implementation of the LRT algorithm described
in [21].
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Figure 3. Image quality trends obtained by psychometric scaling of the pairwise comparison data acquired in our study. On the left, quality trend for unprocessed

and processed images, Qunproc and Qproc, respectively; on the right, the difference in quality between unprocessed and processed, Qdelta = Qproc −Qunproc. Error

bars represent confidence intervals as reported by the scaling software.

a decrease of the perceived image quality. Lastly, our subjects

perceived the quality of processed images to be higher, thus Qdelta

is nearly always positive. Note that there is essentially no visual

difference due to LRT processing around the ideal conditions as

that illumination range is the target of compensation (in theory,

this implies that Qdelta should be minimal for that illumination,

which is captured in our results).

Perceptual IQA Framework
We propose a generic IQA framework (see Figure 1 for a

block-diagram) that can extend most existing IQA metrics to a

wider range of luminance values, supporting a variety of display

systems and illumination conditions. We accomplish this by incor-

porating a display and degradation simulation in the IQA pipeline

to estimate the visual stimuli that physically reaches the viewer’s

eye. A physical comparison space for the reference and the test

images involved in IQA is depicted in Figure 4. In order to assess

the image quality degradation associated with displaying an image

in particular viewing conditions, i.e. including the adversary effect

of non-ideal illumination level, we estimate the difference between

the reference image displayed in ideal conditions and the refer-
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Figure 4. Different combinations of physical image pairs result in different

IQA interpretations. In the above, six physical image pairs are generated

by our DDM; we focus on the comparison shown in red, where a physical

reference image simulated in ideal conditions is compared to the physical

reference or test images simulated in test conditions. Comparing these pairs

will assess the perceptual difference between how the image should appear

in ideal conditions and how it truly appears in non-ideal conditions; the asso-

ciated image quality degradation can thus be evaluated.

ence (or test) image content displayed in test conditions. While

our current work mainly focuses on the comparison shown in red,

Figure 4 presents other image pairs for which IQA can be com-

puted. Each pair has a different interpretation for IQA since the

reference and test images are defined differently; for instance, both

the reference and the test images can be simulated in equivalent

viewing conditions.

Display and Degradation Simulation
Our simulation approach closely follows the Gamma-Gain-

Offset [35] display model with an extension accounting for ambient

light as described in [36]; we will refer to this as Display and

Degradation Model (DDM). We simulate adaptive brightness of

the display by controlling the maximum luminance parameter

according to the ambient illumination level. Given an input image

as gamma-corrected pixel values, the parameters of the display,

and the ambient illumination level, we simulate the signal that

reaches the observer’s eye as physical luminance in photometric

units of cd/m2 as per Equation 1:

L(V ) = (Lmax −Lblk)V
γ +Lblk +Lre f l (1)

In the above, Lmax corresponds to the maximum display lu-

minance in cd/m2, Lblk is the display’s black level luminance in

cd/m2, V is the input signal luma in the range 0-1, and Lre f l is the

reflected luminance approximated as shown in Equation 2, where k

is the reflectivity factor (typically 0.01-0.05 for common displays)

and Eamb is the ambient illumination level in lux. Our Display and

Degradation Model (DDM) thus consists of two components: i)

an internal change in the display’s light emission parameters via

an adaptive screen dimming profile controlled by Lmax, and ii) an

external influence via injected reflection in the form of Lre f l .

Lre f l =
k

π
Eamb (2)

We simulate adaptive brightness by varying maximum screen

luminance Lmax as a function of ambient illumination conditions

and as per device characteristics. Various devices have different

schemes and displays; such profiles can be empirically determined

or specified by the manufacturer. For example, a typical mobile de-

vice display can operate at Lmax between 2 cd/m2 in dark ambiance
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Figure 5. Display and degradation model (DDM) output range in varying

illumination conditions for a display with Lmax ranging between 2 to 400 cd/m2,

physical contrast ratio of 1000:1, and some sample image content. In red, we

show the range for minimum and maximum output values; in blue, we plot

the associated observed contrast ratio (maximum / minimum). The change

in the range is due to i) display dimming, and ii) ambient reflection; these two

effects vary with ambient illumination level. The same digital image content

will be reproduced and observed differently based on the ambient conditions.

to 400 cd/m2 in bright conditions, while its Lblk is determined

according to the desired physical contrast ratio. As a result of adap-

tive brightness, the physical dynamic range of the images that are

displayed in significantly different illumination conditions often

is largely distinct. For instance, when comparing conditions of 0

lux versus 1000 lux, the resulting display simulations will produce

values with a difference of several orders of magnitude (see Figure

5 for a graphical illustration). This is even more pronounced for

HDR displays with larger Lmax.

Display and Illumination Aware IQA

We begin with the assumption that both images are displayed

on the same screen, but in different illumination conditions. For

most common displays, the display brightness is typically nearing

its maximum for ambient conditions above 500 lux; this illumina-

tion level nears the typical recommendation for office room lighting

and is usually considered to be the ideal viewing condition. As

such, we simulate the physical reference image displayed in ideal

viewing conditions with no degradations: we approximate this

by computing the DDM (see Equation 1) with maximum display

brightness (given display parameters) and minimal environmental

reflection (Lre f l is set to 0, or simulated normally for the ideal

illumination level). The physical test image, on the other hand, is

simulated using Lmax and Lre f l terms computed as per the queried

illumination level.

In the quality assessment stage that follows, a given IQA

metric is used on the PU-encoded DDM outputs to provide the

final image quality prediction. It must be emphasized that PU

encoding is a critical component of our model, as it linearizes the

physical luminance values from our DDM with respect to human

perception and accounts for luminance masking. PU encoding

was designed to account for luminance masking as signal strength

varies; we exploit this to allow IQA metrics to operate on a wider

range of luminance values.

Lastly, since our DDM converts RGB inputs to the luminance

domain, the inputs to the final IQA stage are "grayscale" and do

not have a color component - for metrics enforcing RGB inputs,

we stack the PU-encoded luminance in three channels. While this

results in a possible loss of overall performance for metrics that

rely on chromaticity, we do not, as of writing this, have a proven

combination of the display model and PU encoding that operates

with RGB channels separately.

Results and Discussion
We evaluated our proposed IQA framework in combination

with various prominent IQA metrics, namely PSNR, SSIM, MS-

SSIM, HDR-VDP-2, TMQI, LPIPS, FSIM, VSI, and MDSI. The

performance was validated against our own subjective study. We

used four common performance metrics to evaluate the predictions

of our model. To assess the level of correlation between subjective

and predicted IQA, we computed Spearman rank-order correlation

coefficient (SROCC) and Kendall rank-order correlation coefficient

(KROCC). We also evaluated linear correlation between the two

trends by computing Pearson linear correlation coefficient (PLCC)

and root mean squared error (RMSE). Note that, as recommended

in [37], we pass the scores through a logistic non-linearity before

computing PLCC and RMSE.

For a more fair comparison, we employed five fold cross-

validation across the available data. The logarithmic fitting was

optimized using the training set, while the performance scores

were computed on the test sets after logarithmic remapping was

applied. This procedure was performed 100 times to minimize

bias from randomized splitting of the data. The results across runs

were then averaged (see Table 1); Figure 6 shows the tested IQA

metrics ranked by their performance. We observe that many of the

common IQA metrics can be effectively extended to operate in a

wider range of luminance values using our proposed perceptual

IQA framework. Strong correlations between the data from our

subjective study and our model’s prediction are observed across the

entirety of the considered illumination range. Among the tested

metrics, we notice that LPIPS, HDR-VDP-2, FSIM, VSI, and

MDSI are the most effective at predicting the overall quality trend.

Furthermore, the aforementioned assess the difference between

content - the difference in image quality between unprocessed and

processed images - the most effectively. While the overall trend

along the considered illumination range for most metrics matches

well with the human predictions, the difference between processed

and unprocessed content is often not accurately predicted. For

instance, SSIM and PSNR yield very poor performance for this

type of image difference. Curiously, TMQI fails for the overall

trend but is accurate in predicting content difference.

Conclusion
In this paper, we investigated the effect of ambient illumina-

tion level on human perception of image quality and introduced

a new IQA dataset consisting of human IQA in various non-ideal

illumination conditions, ranging from very dark to bright bright.

We also proposed a novel perceptual framework for image quality

assessment, extending most common IQA metrics to non-ideal

illumination levels and to a wider luminance range than originally

intended. Our approach is based on simulating the physical visual

signal that reaches the human eye and performing IQA on the re-

sulting stimuli as opposed to the originally strictly digital content;

we implemented a display and degradation simulation and thus

modelled the adverse effect associated with physically displaying

visual content in non-ideal viewing conditions. We evaluated mul-



Table 1: Performance evaluation of our IQA framework with various popular IQA metrics on our subjective study. The scores

represent the average of 100 runs of randomized five-fold cross-validation. Correlation and goodness of fit measures between

subjective and objective IQA are shown for a) the overall quality trends (Qunproc. and Qproc.), b) IQA prediction difference (Qdelta)

between unprocessed and processed images. Best scores are emphasized in bold.

Label Metric PSNR SSIM MSSSIM TMQI HDRVDP2 LPIPS FSIM VSI MDSI

SROCC 0.6846 0.6291 0.8695 0.4857 0.8638 0.9057 0.9071 0.9211 0.9233

a) KROCC 0.4927 0.4507 0.6829 0.3444 0.6716 0.7325 0.7351 0.7596 0.7633

Quality Trend PLCC 0.6905 0.6547 0.8806 0.4424 0.8712 0.9124 0.9117 0.9267 0.9291

RMSE 0.2332 0.2583 0.1494 0.3038 0.1536 0.1289 0.1329 0.1257 0.1162

SROCC 0.0243 0.0467 0.4922 0.6109 0.5358 0.5435 0.6245 0.5819 0.5923

b) KROCC 0.0126 0.0285 0.3573 0.4390 0.3826 0.3958 0.4534 0.4188 0.4232

Quality Delta PLCC 0.0230 0.0455 0.3667 0.5739 0.5207 0.4929 0.5787 0.5496 0.5660

RMSE 0.4006 0.4679 0.3639 0.2899 0.2841 0.3221 0.3039 0.2875 0.2730
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Figure 6. Tested IQA metrics ranked by correlation and goodness of fit measures between subjective and objective IQA for the overall quality trends (Qunproc.

and Qproc.; top row) and IQA prediction difference (Qdelta) between unprocessed and processed images (bottom row). The scores represent the average of 100

runs of five-fold cross-validation results and the error bars depict the associated standard error. Note that the IQMs are color coded.

tiple IQA metrics in combination with our model and determined

that the corresponding IQA predictions strongly correlate with

human judgments of image quality across a wide spectrum of illu-

mination conditions and for multiple display configurations. Our

framework can be extended to more applications, for instance more

complex comparison schemes in the proposed physical photomet-

ric space. The individual components of the framework can also be

customized; any IQA metric can be plugged in and its performance

verified against our dataset; a more advanced simulation of the

display and degradation can also be implemented. A version of

our framework supporting chromaticity is also desirable as many

modern IQA methods rely on color information.

References
[1] Z. Wang and A. Bovik. Modern Image Quality Assessment. Morgan

& Claypool Publishers, 1st edition, 2006.

[2] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image

quality assessment: from error visibility to structural similarity. IEEE

Transactions on Image Processing, 13(4):600–612, April 2004.

[3] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural

similarity for image quality assessment. In The Thrity-Seventh Asilo-

mar Conference on Signals, Systems Computers, 2003, volume 2,

pages 1398–1402 Vol.2, Nov 2003.

[4] Z. Wang and Q. Li. Information content weighting for perceptual

image quality assessment. IEEE Transactions on Image Processing,

20(5):1185–1198, May 2011.

[5] H. Yeganeh and Z. Wang. Objective quality assessment of tone-

mapped images. IEEE Transactions on Image Processing, 22(2):657–

667, Feb 2013.

[6] H. R. Sheikh, A. C. Bovik, and G. de Veciana. An information fidelity

criterion for image quality assessment using natural scene statistics.

IEEE Transactions on Image Processing, 14(12):2117–2128, Dec

2005.

[7] H. R. Sheikh and A. C. Bovik. Image information and visual quality.

IEEE Transactions on Image Processing, 15(2):430–444, Feb 2006.

[8] R.K. Mantiuk, S. J. Daly, K. Myszkowski, and H.-P. Seidel. Predict-

ing visible differences in high dynamic range images: model and its

calibration, 2005.



[9] R. K. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich. HDR-

VDP-2: A calibrated visual metric for visibility and quality predic-

tions in all luminance conditions. ACM Trans. Graph., 30(4):40:1–

40:14, July 2011.

[10] L. Zhang, L. Zhang, X. Mou, and D. Zhang. FSIM: A feature

similarity index for image quality assessment. IEEE Transactions on

Image Processing, 20(8):2378–2386, Aug 2011.

[11] L. Zhang, Y. Shen, and H. Li. VSI: A visual saliency-induced index

for perceptual image quality assessment. IEEE Transactions on

Image Processing, 23(10):4270–4281, Oct 2014.

[12] S. Bosse, D. Maniry, T. Wiegand, and W. Samek. A deep neural

network for image quality assessment. In 2016 IEEE International

Conference on Image Processing (ICIP), pages 3773–3777, Sep.

2016.

[13] W. Xue, L. Zhang, and X. Mou. Learning without human scores

for blind image quality assessment. In 2013 IEEE Conference on

Computer Vision and Pattern Recognition, pages 995–1002, June

2013.

[14] K.-Y. Lin and G. Wang. Hallucinated-IQA: No-reference image

quality assessment via adversarial learning. CoRR, abs/1804.01681,

2018.

[15] H. T. Esfandarani and P. Milanfar. NIMA: neural image assessment.

CoRR, abs/1709.05424, 2017.

[16] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The

unreasonable effectiveness of deep features as a perceptual metric.

In 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 586–595, June 2018.

[17] T. O. Aydın, R. K. Mantiuk, and H.-P. Seidel. Extending quality met-

rics to full luminance range images. In Human Vision and Electronic

Imaging, pages 68060B–10. Spie, 2008.

[18] Recommendation 500-13: Methodology for the subjective assess-

ment of the quality of television pictures. ITU-R Rec. BT.500, 2012.

[19] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli,

and F. Battisti. TID2008 - a database for evaluation of full-reference

visual quality assessment metrics. Advances of Modern Radioelec-

tronics, 10:30–45, 01 2009.

[20] N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian,

J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, and C.-C. Jay

Kuo. Image database TID2013: Peculiarities, results and perspectives.

Signal Processing: Image Communication, 30:57 – 77, 2015.

[21] T. Akhavan, H. Yoo, and A. Chubarau. Solving challenges and

improving the performance of automotive displays. Information

Display, 35(1):13–27, 2019.

[22] B. A. Wandell. Foundations of Vision. Sinauer Associates, 1995.

[23] D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele. Rod contributions to

color perception: Linear with rod contrast. Vision Research, 48:2586–

2592, 11 2008.

[24] P. G. J. Barten. Contrast sensitivity of the human eye and its effects

on image quality. 1999.

[25] R. Wanat and R. K. Mantiuk. Simulating and compensating changes

in appearance between day and night vision. ACM Trans. Graph.,

33(4):147:1–147:12, July 2014.

[26] M.D. Fairchild. Color Appearance Models. The Wiley-IS&T Series

in Imaging Science and Technology. Wiley, 2013.

[27] The CIE 1997 interim colour appearance model (simple version),

CIECAM97s, cie 131-1998. Color Research & Application,

23(6):431–431, 1998.

[28] N. Moroney, M. Fairchild, R. Hunt, L. Changjun, M. Luo, and T. New-

man. The CIECAM02 color appearance model. volume 10, pages

23–27, 01 2002.

[29] J. Kuang, G. M. Johnson, and M. D. Fairchild. iCAM06: A re-

fined image appearance model for HDR image rendering. J. Visual

Communication and Image Representation, 18(5):406–414, 2007.

[30] A. Choudhury and S. Daly. HDR display quality evaluation by

incorporating perceptual component models into a machine learning

framework. Signal Processing: Image Communication, 74:201 – 217,

2019.

[31] Recommendation 2124-0: Objective metric for the assessment of the

potential visibility of colour differences in television. ITU-R Rec.

BT.2124, 2019.

[32] H. Z. Nafchi, A. Shahkolaei, R. Hedjam, and M/ Cheriet. Mean

deviation similarity index: Efficient and reliable full-reference image

quality evaluator. CoRR, abs/1608.07433, 2016.

[33] E. Zerman, V. Hulusic, G. Valenzise, R. K. Mantiuk, and F. Du-

faux. The relation between MOS and pairwise comparisons and the

importance of cross-content comparisons. 01 2018.

[34] M. Pérez-Ortiz and R. K. Mantiuk. A practical guide and software

for analysing pairwise comparison experiments. 12 2017.

[35] R. S. Berns. Methods for characterizing CRT displays. Displays,

16(4):173 – 182, 1996. To Achieve WYSIWYG Colour.

[36] R. K. Mantiuk, K. Myszkowski, and H.-P. Seidel. High Dynamic

Range Imaging, pages 1–42. American Cancer Society, 2015.

[37] H. R. Sheikh, M. F. Sabir, and A. C. Bovik. A statistical evaluation

of recent full reference image quality assessment algorithms. IEEE

Transactions on Image Processing, 15(11):3440–3451, Nov 2006.

Author Biography
Andrei Chubarau holds a bachelor’s degree in computer and soft-

ware engineering and is currently a second year PhD student at McGill

University. His research interests include image quality assessment, visual

perception, and computational vision.

Tara Akhavan is the founder and CTO of IRYStec Software Inc. She

holds a bachelor’s degree in computer engineering, a master’s degree

in artificial intelligence, and a Ph.D. in image processing and computer

vision from the Vienna University of Technology in Austria. Akhavan is

vice chair of marketing for the Society of Information Display.

Hyunjin Yoo is a senior research engineer and team lead at IRYStec

Software Inc. She received an M.S. in information and communications

and a Ph.D. in information and mechatronics from Gwangju Institute of

Science and Tech-nology in Gwangju, South Korea.

Rafał K. Mantiuk is Reader (Associate Professor) at the Department

of Computer Science and Technology, University of Cambridge (UK).

He received PhD from the Max-Planck-Institute for Computer Science

(Germany). His recent interests focus on computational displays, novel

display technologies, rendering and imaging algorithms that adapt to

human visual performance and viewing conditions in order to deliver the

best images given limited resources.

James Clark received his BASc and PhD in Electrical Engineering

from the University of British Columbia (1980,85). From 1985-1994 he

was with the Division of Applied Sciences at Harvard University, and

from 1994-96 was a visiting scientist at Nissan Cambridge Basic Research.

Since then he has been with the department of Electrical and Computer

Engineering at McGill University. His work has focused on computer

vision and image processing. He is a senior member of IEEE.



Indoors-Natural

Social Media

Automotive

Figure 7. The reference images that were used in our subjective study. The dataset contains 12 images split across three categories: Natural-Indoors, Social

Media, and Automotive.
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