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Abstract

Computer vision foundation models, such as DINO or
OpenCLIP, are trained in a self-supervised manner on large
image datasets. Analogously, substantial evidence suggests
that the human visual system (HVS) is influenced by the
statistical distribution of colors and patterns in the natu-
ral world, characteristics also present in the training data
of foundation models. The question we address in this pa-
per is whether foundation models trained on natural images
mimic some of the low-level characteristics of the human
visual system, such as contrast detection, contrast masking,
and contrast constancy. Specifically, we designed a pro-
tocol comprising nine test types to evaluate the image en-
coders of 45 foundation and generative models. Our results
indicate that some foundation models (e.g., DINO, DINOv2,
and OpenCLIP), share some of the characteristics of human
vision, but other models show little resemblance. Founda-
tion models tend to show smaller sensitivity to low contrast
and rather irregular responses to contrast across frequen-
cies. The foundation models show the best agreement with
human data in terms of contrast masking. Our findings sug-
gest that human vision and computer vision may take both
similar and different paths when learning to interpret im-
ages of the real world. Overall, while differences remain,
foundation models trained on vision tasks start to align with
low-level human vision, with DINOv2 showing the clos-
est resemblance. Our code is available on https://
github.com/caiyancheng/VFM_HVS_CVPR2025.

1. Introduction

Computer vision foundation models, such as DINO [9] or
OpenCLIP [22, 33], show exceptional ability to generalize
to different tasks and are becoming cornerstones of many
computer vision methods. They owe their exceptional per-
formance to self-supervised training on very large image
datasets. The human visual system also owes much of its
capability to being able to perceive the world, over many
years from infancy to childhood [6]. A question arises: if
the neural network and the visual system are trained by be-
ing exposed to a large number of images of the world, will
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Figure 1. To determine whether image encoders of foundation
models exhibit a similar low-level characteristic as human vision,
we test them on psychophysical stimuli for which human data is
available. We want to test the alignment of contrast encoding be-
tween human and computational vision models.

they share their low-level vision characteristics? If they do,
we will know that those low-level characteristics arise nat-
urally and likely reflect the statistics of real-world scenes.
If they do not, it means that human low-level vision charac-
teristics are specific to the optical/biological limitations of
human vision rather than natural image statistics. Our anal-
ysis is meant to shed some light on how the vision, either
biological or computational, may develop from observing
samples of the world, taking either the same or different
routes to accomplish their respective tasks.

In particular, we are interested in the characteristics that
are well understood and measured in human vision science
using psychophysical methods: contrast detection [4], con-
trast masking [25] and contrast constancy [18]. Contrast
detection and contrast masking quantify the ability of the vi-
sual system to detect small contrast patterns, either on uni-
form backgrounds (contrast detection) or on backgrounds
with patterns (contrast masking). Contrast detection and
masking capture the “bottlenecks” of the visual system —
the characteristic that may prevent us from detecting pat-
terns that are too dark or too small. Similarly, cameras used
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for computer vision are limited by the MTF of the lens, sen-
sor resolution, photon and sensor noise, and we can expect
that computer vision methods may need to deal with similar
limitations.

Contrast constancy is the term used in vision science
to describe the invariance of the visual system to spatial
frequency [18] and partially luminance [24, 32]. George-
son and Sullivan [18] showed that the perceived magnitude
of the contrast that is well above the detection threshold
(supra-threshold) appears to us the same regardless of spa-
tial frequency. This is a very important characteristic as it
allows us to see contrast (and therefore objects) the same
regardless of the viewing distance; otherwise, the frequen-
cies would change with the viewing distance and hence the
contrast appearance. A partial constancy (invariance) is also
observed across luminance [24, 32], though there is a sig-
nificant deviation from constancy at lower luminance levels,
once the visual system needs to rely on the rod vision. The
invariance is also an important feature of many computer vi-
sion methods. For example in SIFT features [27] have been
designed to be invariant to the changes in contrast, bright-
ness, scale, and rotation. In our experiments, we used the
supra-threshold contrast matching test to assess whether the
models exhibit the characteristic of contrast constancy.

Numerous works on adversarial attacks demonstrated
that the classification performance of deep learning mod-
els can be greatly degraded by visually inconsequential
changes [20]. At the same time, human vision does not suf-
fer from such adversarial vulnerability [44]. This is one of
the most salient arguments put forward to state that deep
architectures are different from human vision. Here, we
propose a different methodology to study this question. We
consider the deep neural network to be a black box and com-
pare its responses to well-understood and measured charac-
teristics of the human visual system. In particular, we want
to check whether the foundation vision models share the
same “bottlenecks” and invariance properties as the visual
system. To achieve this, we test foundation models on ba-
sic vision stimuli, such as Gabor patches and band-limited
noise, and compare the response of those models with the
psychophysical data collected from human observers.

In summary, our contributions are as follows:
• We developed a protocol to evaluate the similarity be-

tween machine vision models and the human visual sys-
tem. This protocol includes contrast detection, contrast
masking, and contrast constancy, subdivided into nine
distinct test types that collectively capture the low-level
fundamental characteristics of human vision.

• We tested the image encoders of 45 foundation and gen-
erative models. The results reveal similarities between
certain foundation models (e.g., DINOv2 and OpenCLIP)
and human vision, particularly in the contrast masking
test. However, differences persist across other tests.

2. Related Work

Since the advent of deep learning, machine vision models
based on foundation models [13, 23, 31] and DNNs [28,
29, 39, 47] have successfully handled numerous ad-
vanced visual tasks. However, researchers have observed
that machine vision operates differently from human vi-
sion. [16] revealed that standard CNNs trained on Ima-
geNet are strongly biased toward texture recognition rather
than shape, which contrasts with human visual patterns.
[44] provided further evidence that deep neural networks
(DNNs) differ significantly from the HVS, demonstrating
poor robustness in object classification under 3D viewpoint
changes and image distortions, and showing vulnerability to
adversarial examples, which are rarely problematic for hu-
mans. [5] pointed out that DNNs performing well in bench-
mark tests share little overlap with biological vision mecha-
nisms and fail to account for many findings in psychological
studies of human vision. This highlights a clear distinction
between machine and human vision, leading to the rise of
interest in domain adaptation [7] and making networks ro-
bust to adversarial attacks [46].

But there is also evidence that the gap between neural
network-based machine vision models and human vision
is gradually narrowing. [40] compared vision transformers
(ViT) [13] and CNNs, finding that ViT not only achieves su-
perior task accuracy but also exhibits weaker inductive bi-
ases, with error patterns more consistent with human errors.
[17] discovered that the long-standing robustness gap be-
tween humans and CNNs in handling distortions is shrink-
ing. [10, 19] also demonstrated that foundation models like
DINO [9] and CLIP [34] can generate more accurate and
robust metrics for low-level perceptual similarity.

Most of the aforementioned studies focus on high-level
task performance (e.g., accuracy, consistency, ...), which
may not reveal whether computation models suffer from
the same bottlenecks and rely on the same invariances as
human vision. To that end, [2, 26] have attempted to re-
veal CSF characteristics within pretrained architectures by
training a head with a contrast discrimination classifier. The
problem with this approach is that it introduces a bias by re-
lying on a classifier trained to compare contrast. Such stud-
ies also make an incorrect assumption that CSF explains
both near-threshold and super-threshold vision, while con-
trast constancy results (see Section 4.3) show that this is not
the case. In contrast, we examine networks’ low-level char-
acteristics without additional task-specific training, consid-
ering both near-threshold and supra-threshold vision.

3. Testing framework

We first explain the tested models, testing methods, result
visualization, and the strategy we used to summarize and
quantify our results.



3.1. Tested models and testing methodology
The objective is to evaluate the responses of machine vision
foundation models to stimuli commonly used in human vi-
sion research [3, 8] and to compare these responses with
psychophysical human data. We tested a representative set
of 45 models, encompassing the most influential large vi-
sion foundation models, including the variants of DINO [9],
DINOv2 [12, 31], OpenCLIP [22, 33], SAM [23], SAM-
2 [35], and MAE [21], as well as the encoder used for
the latent space of generative model Stable Diffusion (SD-
VAE, [36]). Additionally, we report the responses of Col-
orVideoVDP [30], which is an image and video quality met-
ric that explicitly models low-level human vision and acts as
a reference for a low-level human vision model. All models
and their variants are listed in Figure 6.

To test these models, we need to compare pairs of im-
ages and assess the “perceived” difference between them.
We adopt a methodology inspired by 2-alternative-forced-
choice (2AFC) psychophysical experiments. For example,
for a pattern detection task, a pair of images could be a Ga-
bor patch (test) and a uniform field (reference), as shown
on the left of Figure 2. As such patterns are calibrated in
physical light units in vision science, we generate these pat-
terns as luminance maps, scaled in physical units of cd/m2.
These luminance maps are then mapped from the linear
space to the sRGB color space using a display model (dis-
play peak luminance of 400 cd/m2) and fed into the im-
age encoder of the foundation model for feature extraction.
Note that the sRGB space is almost universally used to rep-
resent training datasets and is expected input for the tested
encoders. To ensure that models can operate on small con-
trast values, we modified them to accept floating-point val-
ues (instead of 8-bit integers) as input. This was necessary
as the quantization artifacts in 8-bit images are often larger
than the detection thresholds of human vision.

To investigate whether the distances in the feature space
reflect the perceptual detection thresholds and invariances,
we experimented with a series of distance measures, includ-
ing L1 and L2. We found the cosine similarity expressed as
a relative angle (Sac) yielded results most consistent with
the psychophysical data. Sac is defined as:

Sac =
1

π
arccos

(
FT · FR

∥FT∥ ∥FR∥

)
, (1)

where FT and FR are the test and reference feature vectors
(feature maps reshaped into one dimension), and · denotes
the dot product. Sac = 0 indicates two input images are
equivalent, while Sac = 1 indicates large differences.

To compare the encoder responses with psychophysical
data, we need to be able to map the image sampling fre-
quency into the spatial frequency on the retina. For that,
we select the effective resolution of 60 pixels-per-degree,
which is typical for modern monitors. We note, however,
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Figure 2. Pipeline for computing Sac. Generate test and reference
images in the linear luminance space ( cd/m2), transform them
to the sRGB color space using a display model, and input each
into the image encoder. Reshape the output features into one-
dimensional vectors FT and FR, then compute Sac.

that the choice of this parameter is arbitrary and the model
similarity scores can be shifted by a small multiplier along
the spatial frequency axis. The luminance maps are gener-
ated at the resolution of 224×224 pixels, corresponding to
the size of 3.7×3.7 visual degrees. It roughly aligned with
the extend of the human foveal vision, and the stimuli span
across multiple receptive fields of human vision and multi-
ple patches/tokens of a foundation model.

For ColorVideoVDP, it can work directly on linear phys-
ical units, so conversion to sRGB was unnecessary. We di-
rectly use its quality score instead of Sac. Note that the pri-
mary focus of this study is on foundation models, with the
ColorVideoVDP metric used solely as a baseline for com-
parison purposes.

3.2. Model alignment score
Most of our results will be represented as contour plots of
model responses, providing qualitative interpretation. Here,
we explain our measure of model alignment, which pro-
vides quantitative scores.

As an example, we take the leftmost contour plot in row
(a) of Figure 5. Each point on the contour plot corresponds
to Sac between the test image as shown in Figure 3 and a
uniform field of the same mean luminance. The dashed line
represents human contrast detection data, predicted with
castleCSF [3]. A well-aligned model should show one of
the contour lines that follows the dashed castleCSF line. We
cannot directly use the Sac values along the dashed line as
the measure of alignment because some models result in
Sac = 0 for most points near the detection threshold (detect
no difference). Therefore, instead, we rely on the measure
of change in Sac in the neighborhood of the dashed line.

For a well-aligned model, the perceived differences in
the neighborhood of the detection threshold (dashed line)



Figure 3. Gabors with different spatial frequencies (x-axis) and
contrast (y-axis) used as the test images in the contrast detection
tests (Section 4.1). “cpd” denotes cycles per degree. Note that the
high-frequency patterns can be rendered with aliasing artifacts on
the screen or in print — those were not present in our tests.

should increase as the contrast increases (the sensitivity de-
creases), Furthermore, the values should be similar along
the dashed line. The measure these two properties, we sam-
ple the Sac values for the points that are shifted in contrast
(vertical direction) from the dashed line by a multiplier m,
where 0.5≤m≤2 (note the logarithmic scale in the contour
plot in Figure 5). We collect such data for multiple fre-
quencies (or other dimensions) along the dashed line and
calculate the Spearman rank order correlation between the
multipliers m and the Sac values. If the properties men-
tioned above are preserved, the correlation coefficient value
rs should be close to 1.

The above strategy is used for all contrast detection and
contrast masking experiments. For the contrast matching
experiment, we use the root mean squared error (RMSE)
between the model and human matching data, expressed as
the logarithm of contrast.

4. Experiments

4.1. Contrast detection and CSF
We begin by testing the foundation models’ ability to detect
low-contrast (near-threshold) patterns (e.g., Gabor patches,
band-limited noise) and compare their performance with the
human data. As the reference human data, we rely on the
caslteCSF [3], which is the recent contrast sensitivity func-
tion, modeling contrast detection of both achromatic and
chromatic patterns.

Spatial Frequency Contrast sensitivity of the human eye
is typically associated with the variation across the spatial
frequency. The visual system exhibits a band-pass charac-
teristic, with a peak sensitivity between 2 and 4 cycles per
degree (cpd), depending on the luminance and other param-
eters of the stimulus. The lower sensitivity of the visual sys-
tem at lower frequencies is associated with the mechanism
of lateral inhibition [4], which helps to reduce the influence
of (low-frequency) illumination on the perceived images.
Such invariance to illumination is a desirable property if the
goal is to recognize objects regardless of illumination con-
ditions. The drop in sensitivity at high frequencies is as-
sociated with the limitations of eye optics (achromatic con-
trast) and cone density (chromatic contrast). Here we want
to test whether the computer-vision foundation models pick
up similar traits when trained on natural images.

To test encoder responses across frequencies, we gener-
ated a 2D array of image pairs, in which the reference image
had uniform luminance, and the test image contained a Ga-
bor patch, as shown in Figure 3 (refer to Supplementary for
the visualization of other stimuli). We generate such Gabors
for achromatic (see Figure 4-a) and chromatic modulation
(see Figure 4-c,d). We also tested band-limited noise (see
Figure 4-b). The test patterns had fixed size but varying spa-
tial frequency (x-axis) and contrast (y-axis). Because most
of the contrast detection data are plotted as the function of
sensitivity, we follow this convention and plot the sensitiv-
ity, which is the inverse of the contrast. This corresponds to
the reversal of the axis on the logarithmic plots, which we
use in our analysis. The other parameters of the stimuli are
listed in Table 1. Although we tested multiple variants of
each foundation model, here we show only the variant with
the highest complexity and best performance on its original
high-level tasks. The contour plots for other variants can be
found in the Supplementary.

The contour plots of foundation model responses
are shown together with a contrast sensitivity function
(castleCSF [3]) in rows (a)–(d) of Figure 5. If the foun-
dation models had the same contrast detection characteris-
tics as the human eye, we would expect the smallest differ-
ence (the lowest Sac) contour line to follow the black dashed
curve of castleCSF. This is not the case for any of the tested
foundation models. Some models, and in particular DI-
NOv2 and SD-VAE, show overall band-pass characteristics,
in particular for noise and achromatic Gabors. SD-VAE has
a drop of sensitivity at lower frequencies much larger than
that of the visual system. The responses to chromatic pat-
terns (rows (c) and (d)) tend to be less regular than to achro-
matic patterns and lack the shift toward lower frequencies,
which is observed in the human data. Both OpenCLIP and
SAM-2 show a very inconsistent response across the spatial
frequencies.

From the data, we can conclude that foundation models



(f) Area – Gabor Ach.(e) Luminance – Gabor Ach.

(a)     Spatial Frequency – Gabor Ach. (b)     Spatial Frequency – Noise Ach. (c) Spatial Frequency – Gabor RG (d) Spatial Frequency – Gabor YV

(g)     Phase-Coherent Masking (h)     Phase-Incoherent Masking

Figure 4. Examples of test images for contrast detection and contrast masking. The detailed explanation of the stimuli can be found in the
Supplementary. “Ach.” denotes achromatic.

Table 1. Key parameters for all our tests. Note that “Radius” does not apply when the pattern is not a Gabor.

Test Spatial Frequency (cpd) Luminance ( cd/m2) Radius (degree) Contrast
Spatial Frequency - Gabor Achromatic 0.5 - 32 100 1 0.001 - 1
Spatial Frequency - Noise Achromatic 0.5 - 32 100 - 0.001 - 1

Spatial Frequency - Gabor RG 0.5 - 32 100 1 0.001 - 0.12
Spatial Frequency - Gabor YV 0.5 - 32 100 1 0.001 - 0.8

Luminance - Gabor Achromatic 2 0.1 - 200 1 0.001 - 1
Area - Gabor Achromatic 8 100 0.1 - 1 0.001 - 1
Phase-Coherent Masking 2 (mask) / 2 (test) 32 0.5 (test) 0.005 - 0.5 (mask) / 0.01 - 0.5 (test)

Phase-Incoherent Masking 0 - 12 (mask) / 1.2 (test) 37 0.8 (test) 0.005 - 0.5 (mask) / 0.01 - 0.5 (test)
Contrast Matching 5 (reference) / 0.25 - 25 (test) 10 - 0.005 - 0.629 (reference)

do not follow the sensitivity pattern of the visual system,
but some may show a band-pass characteristic that is asso-
ciated with the CSF. Many models show lower sensitivity
at lower frequencies, which may indicate that those models
obtained some invariance to (low-frequency) illumination
through training.

Luminance The sensitivity of the human eye increases
with the luminance. In dim light, human contrast sensitivity
increases proportionally to the square root of retinal illu-
minance, following the DeVries-Rose law. Conversely, in
bright light, sensitivity follows Weber’s law, remaining in-
dependent of illuminance [38]. In this experiment, we want
to test whether the computer vision models lose sensitivity
at lower luminance levels. Such a loss could be justified by
camera noise, which increases in terms of contrast as the
light intensity decreases [1].

To produce contour plots, we generated a 2D array of
image pairs in a similar manner as for spatial frequency
variations in the section above, but instead of varying spa-
tial frequency, we varied luminance, as shown in Figure 4-
e. As a reminder, we did not pass the absolute lumi-
nance values directly to each model but instead converted

them to display-encoded (gamma-corrected) sRGB space
— the colour space used for training datasets (see Figure 2).
Such an encoding partially compensates for perceptual non-
uniformity of luminance.

The results, shown in row (e) of Figure 5, indicate a
systematic drop in sensitivity with luminance for all tested
models. The drop in sensitivity of those models is faster
than that observed in the human data, in particular for Open-
CLIP.

We can conclude that the models trained on sufficiently
large datasets mimic the sensitivity of the visual system
to luminance but with a faster drop in sensitivity. This,
however, may be the result of using sRGB representation
for training datasets, which were presumably mostly well-
exposed and contained relatively little information in darker
image regions.

Area Stimulus area (size) significantly affects sensitivity,
as larger stimuli activate more retinal cells. Sensitivity in-
creases with area up to the saturation point, denoted as the
critical area [37]. The response to stimuli of different sizes
tests the model’s ability to pool information across the vi-
sual field.



Figure 5. Selected representative experimental results. Each row represents a test, and each column corresponds to a model, selected as
the best-performing in their original tasks. (a)-(f): contour plots of contrast detection Sac, with the ground truth castleCSF [3]. (g),(h):
contour plots of contrast masking Sac, with the ground truth from [14] and [15], respectively. Different colored solid lines representing
different Sac values, where purple indicates the minimum difference (Sac → 0). (i): results from the contrast matching experiment, where
different colors represent different Cr values. The dashed lines are human results [18], while the solid lines are model-predicted results
from Equation 2. Results for all models are in the supplementary material.



Figure 6. The quantified similarity error between all 45 models
and HVS under 9 different tests. For the Contrast Detection and
Contrast Masking tasks, Spearman Correlation was used as the
metric, with higher values (closer to 1) indicating greater similar-
ity to human vision. For the Supra-threshold Contrast Matching
task, RMSE was used as the metric, with lower values (closer to
0) indicating better similarity.

In this experiment, we vary the size of the Gaussian en-
velope limiting stimulus size to observe its effect on model
responses. We follow the same procedure as in the two pre-
vious sections and generate pairs with a uniform field and a
Gabor patch (see Figure 4-f). The parameters of the Gabor
patch are listed in Table 1.

The results, shown in row (f) of Figure 5, indicate that
most models show summation across the area (the Sac val-
ues increase with the area) and the rate of the increase varies
across the models; DINO and SAM-2 have a smaller in-

crease, SD-VAR has a higher increase of Sac than the hu-
man data, and only DINOv2 roughly matches human per-
formance. OpenCLIP shows no consistent patterns. We can
conclude that many models show spatial pooling character-
istic that shares the trend observed in human data, though
the actual slope of the increase is typically different.

4.2. Contrast masking

Contrast masking explains the decreased visibility of a sig-
nal (test) due to the presence of a supra-threshold back-
ground (mask). The masking function defines the relation-
ship between the threshold test contrast required for signal
detection and the mask contrast. Put simply, a pattern is
more difficult to detect in the presence of another pattern of
similar spatial frequency and orientation. A typical masking
characteristic of the visual system is shown in rows (g) and
(h) of Figure 5. It consists of a relatively shallow segment
at low mask contrast (near the detection threshold), with the
slope increasing for high mask contrast. The shape of the
curve is influenced by the specific properties of the mask
and test signals [11, 43]. We will consider the case in which
the masker is a sinusoidal grating of the same frequency
as the test pattern (phase-coherent masking, row (g)) and
when the masker is noise (phase-incoherent masking, row
(h)) [11, 14, 15], as shown in Figure 4-g,h.

First, we consider the fundamental form of phase-
coherent masking in which the masker image (reference
in Figure 2) is a sinusoidal grating and the test image is
the masker plus a Gabor patch of the same frequency and
phase as the masker (see Figure 4g). Contrast masking
data, shown as the dashed black curve in row (g) of Fig-
ure 5, shows the smallest contrast of the test Gabor that is
detectable in the presence of the masker of a given con-
trast. As the contrast of the masker increases, the smallest
detectable contrast of the test also needs to increase. How-
ever, such an increase starts only for a masker that has the
contrast sufficiently high to be detected. If the contrast of
the masker is near the detection threshold, we can observe
a dipper effect — the contrast detection is facilitated by a
masker [14, 42, 45]. Such an effect can be only observed in
phase coherent masking.

As an example of phase-incoherent masking, we will
consider a masker with band-limited noise and a test with
a Gabor patch — see Figure 4h. The human detection
thresholds for such masking patterns are similar to those
for phase-coherent masking, except that the dipper effect
disappears [41].

The differences predicted by DINOv2 and OpenCLIP
are surprisingly well-aligned with the human contrast mask-
ing data — their responses roughly match the slopes of
the human data. The alignment is stronger for the phase-
incoherent masking. This is particularly notable for Open-
CLIP, which did not show any consistent trends for contrast



detection. Other models do not show strong alignment with
the human data.

Overall, computational models are better aligned with
human data for contrast masking than for contrast detec-
tion. One possible explanation is that the signals that in-
duce contrast masking are plentiful in natural images, but
contrast detection stimuli, which involve barely noticeable
patterns on uniform backgrounds, are rare. Therefore, com-
putational models are more likely to pick up the character-
istic that is well represented in the training datasets.

4.3. Supra-threshold contrast matching
While contrast detection and contrast masking explain the
just detectable (near-threshold) contrast, most of the vision
tasks, such as detection or recognition, involve well-visible
(supra-threshold) contrast. Supra-threshold human vision
has been studied in contrast-matching experiments in which
the magnitude of one contrast is visually matched to the
magnitude of another contrast of a different frequency [18]
or luminance [24, 32]. One of the most significant findings
of those studies is contrast constancy [18] — the ability of
the visual system to match physical contrast across frequen-
cies and luminance levels. The results of the seminal study
of Georgeson and Sullivan [18] on matching contrast across
frequencies are shown as dashed lines in row (i) of Figure 5.
At small contrast, the dashed lines show a band-pass shape
that follows the contrast sensitivity function. However, as
the contrast is increased, the lines become flat showing lit-
tle influence of frequency on contrast perception. This is
an important property that lets us see objects to have the
same appearance regardless of the viewing distance. Such
a scale invariance is also important for neural networks that
are tasked to detect or recognize objects regardless of their
size.

We followed the experimental setup from [18], where
the reference was a 5 cpd, 10 cd/m2 sinusoidal grating, pre-
sented at eight distinct contrast levels cr. The test stimulus
had the same luminance but a different spatial frequency ρt.
In [18], observers adjusted the test stimulus contrast ct until
its apparent contrast matched that of the reference (contrast
matching). In our experiments, we match contrast encod-
ings of sinusoidal gratings: the (Sac(), eq. (1)), between a
feature vector of a sinusoidal grating, F (ρ, c) of frequency
ρ and contrast c, and a uniform field, U = F (ρt, 0). We find
the test contrast ct that minimizes the expression:

argmin
ct

(Sac(F (ρr, cr), U)− Sac(F (ρt, ct), U))
2
, (2)

where the reference frequency ρr = 5 cpd. The denomina-
tors in the expression are used to normalize contrast across
frequencies. We experimented with other contrast encod-
ings, including a direct comparison of feature vectors, but
the formula above resulted in the best contrast constancy
properties across the models.

The matching contrast predictions for foundation mod-
els are visualized as continuous lines in row (i) of Figure 5.
The plots show that only DINOv2 and OpenCLIP roughly
follow the dashed contrast constancy lines. Both models
show less attenuation (more constancy) at the highest spa-
tial frequencies, which could be advantageous when the
model needs to work with small-scale features. Both mod-
els show attenuation of low frequencies (below 1 cpd), sug-
gesting worse contrast constancy in that frequency range.
Other models, including DINO and SAM-2, suffer from
large instability across frequencies, or very heavy attenua-
tion of low frequencies in the case of SD-VAE. To conclude,
we can observe only partial contrast constancy for selected
models.

4.4. Model alignment scores

As the analysis of all 45 variants of the models is infeasible
in the scope of this paper, we prepared quantitative results
according to the method explained in Section 3.2 and sum-
marized them in Figure 6. Those let us make three observa-
tions:

First, ColorVideoVDP, which is a visual metric that
models human low-level vision, is better aligned with the
human data in almost all contrast detection tasks and in
terms of contrast constancy, as expected. However, certain
variants of OpenCLIP and DINOv2 can match or surpass
the ColorVideoVDP alignment in terms of contrast mask-
ing. Second, the alignment scores of different foundation
model variants (e.g., OpenCLIP) show significant variations
and alignment scores appear unrelated to the complexity of
the variants or their performance on higher-level tasks. Fi-
nally, DINOv2 variants, which have been trained to solve
vision tasks, show the greatest alignment with the human
data among all foundation models.

5. Conclusions

If we believe that the goal of both biological and computa-
tional low-level vision is to efficiently encode visual infor-
mation, we can expect that computational models trained
on large natural image datasets will share similarities with
human vision. In this work, we find that selected compu-
tational models, e.g., variants of DINOv2 and OpenCLIP,
show surprisingly high alignment with supra-threshold hu-
man contrast masking and contrast matching data, but little
alignment with the near-threshold contrast detection. This
means that computation models do not have the same “bot-
tlenecks” as human vision, but, through training, they attain
invariance and efficient contrast coding that resembles that
of the visual system. We hope that our testing protocol with
basic psychophysical stimuli will provide a useful tool for
examining future computational models of vision.
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This supplementary material provides detailed informa-
tion on the following: (1) the formulas and examples of
the experimental stimuli tested; (2) some further practical
implications of our work; and (3) the detailed formula for
model alignment scores, along with the model alignment
scores for all models across all tests.

Please open webpage/index.html for the complete
set of the results.

1. Test images
The achromatic Gabor patches used for tests are defined as:

G(x, y) = Lb

(
1 + c sin

(
2π

ρx

ppd

)
e

(
− x2+y2

2ppd2R2

))
, (1)

where Lb denotes the background/mean luminance in
cd/m2, c represents the contrast, R is the Gabor radius in
visual degree, and ρ is the spatial frequency in cycles-per-
degree (cpd). x and y represent the image coordinates,
where x ∈ [−W

2 , W
2 ] and y ∈ [−H

2 ,
H
2 ]; W = 224 and

H = 224 denote the image width and height, respectively.
To generate chromatic (RG and YV) Gabor stimuli, a

single-channel Gabor patch is first created, the color direc-
tion is set, then converted to DKL color space, transformed
to LMS color space, and finally converted back to RGB to
check for gamut constraints. Note that the RGB channel
values here are still represented in cd/m2 units.

The luminance values, G(x, y), were converted to RGB
values using the sRGB display model, assuming the peak
luminance of 400 cd/m2. The pixels-per-degree (ppd) was
set to 60, which approximates the ppd value for a typical hu-
man observer viewing an Ultra HD display (3840 × 2160).
The resolution of all test and reference images was set to
224 × 224. Except for Supra-threshold Contrast Match-
ing (Section 1.3), the references for all other eight exper-
iments are uniform achromatic images with a luminance of
100 cd/m2.

1.1. Contrast detection
Spatial Frequency - Achromatic - Gabor The ra-
dius was set to 1◦, and the background luminance was
100 cd/m2. Test examples are shown in Figure 1.

Spatial Frequency - Achromatic - Band-limited Noise
The background luminance was 100 cd/m2. Test examples
are shown in Figure 2.

Spatial Frequency - Chromatic (RG) - Gabor The ra-
dius was set to 1◦, and the background luminance was
100 cd/m2. Test examples are shown in Figure 3.

Spatial Frequency - Chromatic (YV) - Gabor The ra-
dius was set to 1◦, and the background luminance was
100 cd/m2. Test examples are shown in Figure 4.

Luminance The radius was set to 1◦, and the spatial fre-
quency was 2 cpd. Test examples are shown in Figure 5.

Area The background luminance was 100 cd/m2, and the
spatial frequency was 8 cycles per degree (cpd). Test exam-
ples are shown in Figure 6.

1.2. Contrast masking
Phase-Coherent Masking The test images contained Ga-
bor patches with a spatial frequency of 2 cpd and a radius of
0.5◦, while the masks were sinusoidal gratings at the same
spatial frequency of 2 cpd. The background luminance was
32 cd/m2, following the parameters established in [1]. Test
examples are shown in Figure 7.

Phase-Incoherent Masking The test images contained
Gabor patches with a spatial frequency of 1.2 cpd and a ra-
dius of 0.8◦, and the masks contained random noise with a
frequency spectrum extending up to 12 cpd. The following
equations outline the process of generating the noise mask
Imask ∈ RW×H :

First, Gaussian noise N(x, y) is generated:

N(x, y) ∼ N (0, 1), x ∈ [0,W ], y ∈ [0, H]. (2)

Next, a two-dimensional Fast Fourier Transform (FFT)
is applied to obtain the frequency domain representation
Nf (u, v):

Nf (u, v) = F{N(x, y)}, u ∈ [0,W ], v ∈ [0, H]. (3)
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Subsequently, frequency filtering is performed:

Nfiltered
f (u, v) =

{
Nf (u, v), ρ(u, v) ≤ 12 cpd
0, ρ(u, v) > 12 cpd

, (4)

ρ(u, v) =
√
(Ku)2 + (Kv)2, (5)

Ku = 2 ρnyquist

(
mod

(
1

2
+

u

W
, 1

)
− 1

2

)
, (6)

Kv = 2 ρnyquist

(
mod

(
1

2
+

v

H
, 1

)
− 1

2

)
, (7)

where ρnyquist =
ppd
2 . The noise in the spatial domain is then

obtained using the inverse Fourier transform:

Nbp(x, y) = F−1{Nfiltered
f (u, v)}. (8)

Finally, the noise mask Imask is generated:

Imask(x, y) = Lb

(
1 + cmask

Nbp(x, y)

σNbp

)
, (9)

where cmask is the mask contrast, σNbp represents the stan-
dard deviation of Nbp. The background luminance Lb was
37 cd/m2, consistent with the conditions in [2]. Test exam-
ples are shown in Figure 8.

1.3. Supra-threshold contrast matching
We followed the experimental setup from [3], where the ref-
erence was a sinusoidal grating with a spatial frequency of
5 cpd and a luminance of 10 cd/m2, presented at eight dis-
tinct contrast levels cr. The test stimulus was also a sinu-
soidal grating with a luminance of 10 cd/m2, but presented
at various spatial frequencies ρt. Examples are shown
in Figure 9.

2. Practical implications
We checked whether our alignment scores (Fig. 6 in the
paper) can indicate how well a model can perform on com-
puter vision tasks. In Figure 10, we show scatter plots of
the alignment scores and different performance indicators
for DINO, DINOv2, and OpenCLIP (data were not avail-
able for other models). The correlations (absolute value
0.55–0.8) suggest that good alignment with the contrast
masking/matching characteristic can improve model’s per-
formance. Such results were consistent for the alignment
of contrast masking and contrast matching, less so for de-
tection (as expected). We did not find a strong correlation
between alignment scores and the parameters of the model
architecture (model size, number of parameters) or com-
putational GFlops. We hope that future work can provide
stronger evidence for the benefits of model-HVS alignment
and spark interest in using low-level human vision models
to introduce invariances or constraints into the training of
the foundation models (via architectural changes, loss func-
tions, or data augmentation).

3. Model alignment scores
Section 3.2 in the main text briefly describes the compu-
tation of Spearman rank-order correlation coefficients for
model alignment scores. This section provides further de-
tails and formulas.

Specifically, for each contour plot, N points were se-
lected along the x-axis X1...N , where X represents dimen-
sions such as area, luminance, or mask contrast. Based
on the predictions of castleCSF, we obtain the ground truth
Y1...N , where Y represents sensitivity in contrast detection
and test contrast in contrast masking.

We then scaled each Yj(j = 1 . . . N) by multipliers
mi(i = 1 . . .M):

mi = 10log10(0.5)+
i−1
M−1 ·log10( 2

0.5 ), (10)

Y ′
ij = miYj , (11)

producing Y ′
1...NM and their respective S1...NM (Sac)1.

Given that psychometric functions near the threshold typ-
ically exhibit uniform shapes across all conditions in psy-
chophysical experiments, we hypothesized that the trend of
scaled scores would remain consistent across all Y1..N . The
Spearman’s rank correlation coefficient rs was calculated as
the similarity metric:

rs =
cov(R(m1...NM ),R(S1...NM ))

σR(m1...NM )σR(S1...NM )
, (12)

where m1...NM =
⋃N

k=1 m1...M , R(∗) denotes ranked data,
cov(∗) represents covariance, and σ(∗) stands for standard
deviation. For all models and tests, higher rs (closer to 1)
reflects a greater model alignment. In the contrast detection
experiment, N = 20,M = 10. In the contrast masking ex-
periment, M = 10 and N is equal to the number of human
data points.

In the main text, we presented the experimental results
for all models in the form of bar charts. To provide higher
decimal precision, the results are presented in Table 1.
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Figure 1. Achromatic Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast detection
tests. “cpd” denotes cycles per degree. High-frequency patterns may introduce aliasing artifacts on screens or prints, so we display up to
16 cpd here (no such artifacts were present in our tests). Observations indicate that the human eye is indeed most sensitive to achromatic
Gabor patterns with spatial frequencies around 2–4 cpd.

Figure 2. Achromatic band-limited noise signals with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in
the contrast detection tests. Human observers were most sensitive to frequencies in the 2–4 cpd range.



Figure 3. Red-Green (RG) Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast
detection tests. Due to gamut limitations, the maximum achievable contrast is capped at 0.2. It was observed that, compared to achromatic
Gabor patterns, humans are more sensitive to low frequencies when viewing red-green Gabor patterns.

Figure 4. Yellow-Violet (YV) Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast
detection tests. Due to gamut limitations, the maximum achievable contrast is capped at 0.2. Similar to RG Gabors, humans are also more
sensitive to low-frequency YV Gabors.



Figure 5. Achromatic Gabor patches with different background luminance (x-axis) and contrasts (y-axis) used as the test images in the
contrast detection tests. Note that very low luminance levels cannot be displayed; therefore, a minimum of 1 cd/m2is used here. In the
experiment, this limitation is not present as we use floating-point inputs.

Figure 6. Achromatic Gabor patches with different area (radius) (x-axis) and contrasts (y-axis) used as the test images in the contrast
detection tests. In this experiment, we selected a higher spatial frequency (8 cpd); otherwise, it would be impossible to observe a complete
Gabor signal within small areas.



Figure 7. Images from the Phase-Coherent Masking experiment with varying Contrast Mask (x-axis) and Contrast Test (y-axis). The masks
are sinusoidal gratings, while the test stimuli are Gabor patterns, set against a background luminance of 32 cd/m2.

Figure 8. Images from the Phase-Incoherent Masking experiment with varying Contrast Mask (x-axis) and Contrast Test (y-axis). The
masks consist of random noise with a frequency spectrum extending up to 12 cpd, while the test stimuli are Gabor patches, presented
against a background luminance of 37 cd/m2.



Figure 9. Example images from the Contrast Matching experiment. The first column on the left displays the references, which are sinusoidal
gratings at 5 cycles per degree (cpd) with varying reference contrasts. The remaining images on the right are tests with different spatial
frequencies matched to the references. Note that the contrast levels of the references, as well as the contrasts and spatial frequencies of the
tests, are based on the experimental results in [3]. Following the experimental conditions outlined in [3], the background luminance is set
to 10 cd/m2.
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Figure 10. The performance of DINO/DINOv2/OpenCLIP on their classification tasks (from their GitHub repo) shows a potential correla-
tion with the alignment scores in our masking/matching tests.



Table 1. The model alignment scores for all 45 models across nine test types. Spearman’s rank correlation coefficient rs is used as
the evaluation metric for the contrast detection and contrast masking experiments, with higher values (approaching 1) indicating greater
similarity between the model and the human visual system. For the contrast matching experiment, Root Mean Square Error (RMSE) is
employed as the metric, where lower values (approaching 0) signify a closer match to the human visual system. For each model series, its
best score on each test has been highlighted in bold.

Models Architecture
Training
dataset

Spatial Freq.
Gabor Ach.

rs↑

Spatial Freq.
Noise Ach.

rs↑

Spatial Freq.
Gabor RG

rs↑

Spatial Freq.
Gabor YV

rs↑

Luminance
Gabor Ach.

rs↑

Area
Gabor Ach.

rs↑

Phase
Coherent
Masking
rs↑

Phase
Incoherent
Masking
rs↑

Contrast
Matching
RMSE↓

No Encoder - - 0.4688 0.4594 0.5235 0.6582 0.4188 0.8981 0.5057 0.6746 0.2657

DINO

ResNet-50 ImageNet 0.3428 0.2506 0.2795 0.3359 0.5623 0.9610 0.3716 0.8913 0.6803
ViT-S/16 ImageNet 0.4769 0.4951 0.5316 0.4517 0.4260 0.9686 0.4556 0.8844 0.3238
ViT-S/8 ImageNet 0.4129 0.4248 0.4211 0.4114 0.4048 0.9358 0.3504 0.6262 0.4178

ViT-B/16 ImageNet 0.5281 0.4883 0.6148 0.4699 0.4554 0.9584 0.4246 0.6351 0.4264
ViT-B/8 ImageNet 0.4213 0.4446 0.4398 0.4184 0.3655 0.8929 0.4039 0.4761 0.4283

Xcit-S-12/16 ImageNet 0.5721 0.4783 0.5312 0.4315 0.4436 0.9418 0.5431 0.7120 0.3239
Xcit-S-12/8 ImageNet 0.4337 0.3961 0.3862 0.3064 0.4373 0.8409 0.4250 0.7618 0.5117

Xcit-M-24/16 ImageNet 0.5424 0.4848 0.4651 0.4330 0.4916 0.9408 0.4576 0.6458 0.3238
Xcit-M-24/8 ImageNet 0.4852 0.3848 0.3742 0.4030 0.5172 0.8149 0.5034 0.8028 0.4187

DINOv2

ViT-S/14 LVD-142M 0.3976 0.4348 0.4114 0.5207 0.4865 0.7071 0.8288 0.9593 0.3271
ViT-B/14 LVD-142M 0.4286 0.5032 0.4898 0.7148 0.5580 0.9216 0.8955 0.8514 0.3255
ViT-L/14 LVD-142M 0.5256 0.4843 0.5152 0.4934 0.5363 0.9493 0.7902 0.7968 0.3803
ViT-g/14 LVD-142M 0.4304 0.5198 0.5277 0.6687 0.4935 0.7856 0.8530 0.8846 0.3127

ViT-S/14 + reg LVD-142M 0.4508 0.4484 0.4254 0.4252 0.5201 0.6942 0.8484 0.9254 0.3415
ViT-B/14 + reg LVD-142M 0.4408 0.5180 0.4837 0.6488 0.5705 0.4752 0.9549 0.9539 0.2714
ViT-L/14 + reg LVD-142M 0.4423 0.5645 0.4799 0.7996 0.5167 0.5289 0.8439 0.9814 0.2595
ViT-g/14 + reg LVD-142M 0.4351 0.5732 0.4518 0.6670 0.5168 0.5600 0.7214 0.9295 0.2663

OpenCLIP

ResNet-50 OpenAI 0.3499 0.2903 0.2972 0.3310 0.5703 0.6855 0.4981 0.7349 0.6505
ResNet-50 YFCC-15M 0.3604 0.2562 0.3206 0.2729 0.5629 0.9671 0.4506 0.6802 0.7208
ResNet-101 OpenAI 0.4130 0.3001 0.3403 0.3530 0.5070 0.9568 0.4031 0.5697 0.6542
ResNet-101 YFCC-15M 0.3414 0.2275 0.3620 0.3479 0.4569 0.9046 0.5136 0.8588 0.5853

ConvNext-B-w LAION-2B 0.3957 0.2787 0.3772 0.4233 0.4802 0.9590 0.3461 0.6583 0.6752
ConvNext-B-w LAION-2B+ 0.4649 0.3487 0.4458 0.5648 0.3854 0.7026 0.4887 0.5971 0.4820
ConvNext-L-d LAION-2B+ 0.3419 0.2835 0.3911 0.6443 0.1530 0.7690 0.4919 0.4983 0.5803

ConvNext-XXL LAION-2B+ 0.4136 0.3642 0.3890 0.6212 0.1112 0.8422 0.4699 0.4586 0.4535
ViT-B/32 OpenAI 0.4132 0.5696 0.3748 0.7197 0.1772 0.9434 0.4047 0.7736 0.5484
ViT-B/32 LAION-2B 0.5108 0.6556 0.3146 0.4108 0.3063 0.8673 0.8837 0.9620 0.3517
ViT-B/16 OpenAI 0.4798 0.5429 0.4138 0.7141 0.2655 0.7887 0.4321 0.6451 0.4382
ViT-B/16 LAION-2B 0.4654 0.5740 0.4144 0.6922 0.4242 0.7869 0.5235 0.7725 0.4709
ViT-L/14 OpenAI 0.4625 0.5026 0.4357 0.6229 0.4585 0.8892 0.5496 0.7050 0.4789
ViT-L/14 LAION-2B 0.5917 0.5240 0.4801 0.7338 0.3084 0.6430 0.7678 0.8799 0.3490

SAM
ViT-B-SAM SA-1B 0.3545 0.3287 0.3577 0.3617 0.3074 0.9714 0.4144 0.4353 0.5877
ViT-L-SAM SA-1B 0.3061 0.2769 0.3160 0.3140 0.3090 0.9598 0.4077 0.3787 0.6354
ViT-H-SAM SA-1B 0.3651 0.3234 0.3316 0.3863 0.5243 0.9533 0.3983 0.5105 0.5489

SAM-2

SAM2.1-hiera-tiny SA-V 0.4058 0.3483 0.4315 0.4693 0.4966 0.9660 0.4137 0.4646 0.4805
SAM2.1-hiera-S SA-V 0.4544 0.3705 0.3936 0.4608 0.5389 0.9533 0.398 0.4941 0.4472

SAM2.1-hiera-B+ SA-V 0.3728 0.3195 0.4949 0.4993 0.5396 0.9296 0.4062 0.4882 0.4852
SAM2.1-hiera-L SA-V 0.3872 0.3259 0.3695 0.4935 0.5631 0.9431 0.4613 0.7361 0.4686

MAE
ViT-B-MAE ImageNet 0.4471 0.4903 0.4410 0.5008 0.5812 0.9036 0.5446 0.7277 0.4223
ViT-L-MAE ImageNet 0.4284 0.4560 0.4126 0.4803 0.5647 0.8874 0.6849 0.7043 0.4344
ViT-H-MAE ImageNet 0.4250 0.3969 0.3995 0.4737 0.6335 0.6466 0.5003 0.6088 0.4964

SD-VAE
SD-v1-5 LAION-5B 0.3527 0.4226 0.8447 0.8051 0.4993 0.8402 0.5394 0.5579 0.4177

SD-xl-base-1.0 LAION-5B 0.2465 0.1662 0.3811 0.3132 0.4273 0.3561 0.4996 0.4962 0.6727

ColorVideoVDP HVS-based XR-DAVID+ 0.5545 0.7817 0.7455 0.9339 0.9020 0.8937 0.7418 0.7626 0.2604
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We are very grateful for the constructive feedback provided001
by the reviewers. We agree with the majority of the com-002
ments and will introduce the changes to improve the exposi-003
tion and clarity of the work. We hope our work, demonstrat-004
ing alignment between foundation models and low-level hu-005
man vision, will spark interest and research into similarities006
and differences between human and machine vision.007

[Ykt8] Linear colors vs. sRGB in ColorVideoVDP Col-008
orVideoVDP natively operates on linear color values, and009
if supplied with images in the sRGB space, it will convert010
them to a linear space (CIE XYZ). Therefore, conversion to011
sRGB was unnecessary.012

[Ykt8] ColorVideoVDP as a baseline Please note that we013
rely on psychophysical data or models (castleCSF) rather014
than ColorVideoVDP when evaluating the alignment of the015
foundation models. ColorVideoVDP serves only as a base-016
line that we selected as it explicitly models low-level human017
vision characteristic. We did not include other visual met-018
ric (e.g., HDR-VDP) because they do not model chromatic019
vision and would further complicate the analysis.020

[Ykt8] Variation in the alignment scores (Figure 6) There021
is a variation in the alignment scores (Spearman rs, RMSE)022
across different variants of each foundation model because023
each variant represents a distinct model with a unique ar-024
chitecture and potentially trained on different datasets. We025
could not discuss all 45 variants in the paper, but their026
complete results are shown in the supplementary materi-027
als (webpage/index.html). The results (contour plots)028
are consistent with the summary presented in Figure 6.029

[KF6N] Clarifying Methodology The methodology is in-030
spired by 2-alternative-forced-choice (2AFC) psychophysi-031
cal experiments, in which a pair of test and reference stim-032
uli is presented to an observer to measure their response.033
Similarly, as shown in Figure 2, we input a pair of images034
(test and reference) into identical image encoders and com-035
pute Sac in the feature space to quantify the response of the036
model (to the contrast between the pair of images).037

[KF6N] Psychophysical data We selected classic measure-038
ment results from seminal studies on contrast masking [Fo-039
ley’94; Gegenfurtner’92] and contrast constancy [George-040
son & Sullivan’75]. Later studies replicated those results.041
Contrast detection experiments rely on castleCSF as it dis-042
tills data from 18 representative studies.043

[KF6N][6W3d] Reasons for Model-HVS alignment We044
cannot be certain what causes good or bad alignment with045
the visual system, but we provide our conjectures in the046
last paragraph of the corresponding section, e.g., explain-047
ing poor alignment at low luminance (line 354), or the rea-048
son for the better alignment with contrast masking data (line049
431). We agree with the reviewers that finding such causes050
would be very insightful, but our approach can only indicate051
correlations, it cannot be used to find causality.052

[Ykt8][KF6N][6W3d] Practical implications Our paper053
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Figure 1. The performance of DINO/DINOv2/OpenCLIP on their
classification tasks (from their GitHub repo) shows a potential cor-
relation with the alignment scores in our masking/matching tests.

answers the question of whether foundation models exhibit 054
low-level characteristics of the HVS, but it does not ad- 055
dress the question of whether they should. Intrigued by 056
the reviewers’ comments, we checked whether our align- 057
ment scores (Fig. 6 in the paper) can indicate how well 058
a model can perform on computer vision tasks. In Fig. 1, 059
we show scatter plots of the alignment scores and different 060
performance indicators for DINO, DINOv2, and OpenCLIP 061
(data were not available for other models). The correlations 062
(absolute value 0.55–0.8) suggest that good alignment with 063
the contrast masking/matching characteristic can improve 064
model’s performance. Such results were consistent for the 065
alignment of contrast masking and contrast matching, less 066
so for detection (as expected). We did not find a strong 067
correlation between alignment scores and the parameters 068
of the model architecture (model size, number of parame- 069
ters) or computational GFlops. We hope that future work 070
can provide stronger evidence for the benefits of model- 071
HVS alignment and spark interest in using low-level hu- 072
man vision models to introduce invariances or constraints 073
into the training of the foundation models (via architectural 074
changes, loss functions, or data augmentation). 075
[KF6N][6W3d] Figure 5 (a)–(h) are contour plots of Sac 076
(Eq. 1), with different colored solid lines representing dif- 077
ferent Sac values, where purple indicates the minimum dif- 078
ference (Sac → 0). We will improve the legend and caption 079
for better clarity. 080
[6W3d] Scope of study We will adjust the title and writing. 081
[6W3d] Experimental setup, image size The image reso- 082
lution of 224×224 corresponds to the crop size used to train 083
DINO and DINOv2 (sec. 6.6 in [29]). This corresponds to 084
a visual angle of approximately 3.7◦×3.7◦, roughly aligned 085
with the extend of the foveal vision. The stimuli were ex- 086
actly as those used in psychophysical experiments. Such 087
stimuli span across multiple receptive fields of human vi- 088
sion and multiple patches/tokens of a foundation model. 089
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