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Fig. 1. (a) 3D Visualization of elaTCSF. elaTSCF predicts sensitivity and critical flicker frequency along three dimensions: Eccentricity, Luminance, and Area.

(b) elaTCSF predicts flicker visibility in short-persistence displays, such as VR/AR headsets. The dashed lines indicate the current display capabilities (peak

luminance and o�icial refresh rate). Above the CFF threshold (colored area), flicker is unlikely to be visible.

The perception of �icker has been a prominent concern in illumination and
electronic display �elds for over a century. Traditional approaches often
rely on Critical Flicker Frequency (CFF), primarily suited for high-contrast
(full-on, full-o�) �icker. To tackle varying contrast �icker, the International
Committee for Display Metrology (ICDM) introduced a Temporal Contrast
Sensitivity Function TCSF��"( within the Information Display Measure-
ments Standard (IDMS). Nevertheless, this standard overlooks crucial param-
eters: luminance, eccentricity, and area. Existing models incorporating these
parameters are inadequate for �icker detection, especially at low spatial
frequencies. To address these limitations, we extend the TCSF��"( and
combine it with a new spatial probability summation model to incorpo-
rate the e�ects of luminance, eccentricity, and area (elaTCSF). We train the
elaTCSF on various �icker detection datasets and establish the �rst variable
refresh rate �icker detection dataset for further veri�cation. Additionally,
we contribute to resolving a longstanding debate on whether the �icker is
more visible in peripheral vision. We demonstrate how elaTCSF can be used
to predict �icker due to low-persistence in VR headsets, identify �icker-free
VRR operational ranges, and determine �icker sensitivity in lighting design.

CCS Concepts: • Computing methodologies → Perception;

Additional Key Words and Phrases: �icker detection, variable refresh rate,
contrast sensitivity, visual perception
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1 INTRODUCTION

Flicker, known as temporal light modulation (TLM), has been a sig-
ni�cant concern in illumination engineering for over a century. It
has detrimental e�ects on human physiology, ranging from irritation
to neurological disturbances [Miller et al. 2023]. Flicker has been ob-
served in di�erent technologies such as �uorescent lamps [Eastman
and Campbell 1952] in the 1940s, cathode-ray tubes (CRTs) [Bauer
et al. 1983] in the 1980s, and LED [Lehman et al. 2011].
The Critical Flicker Frequency (CFF) is the best-known �icker

detection standard that has been in use for over a century [Porter
1902], de�ned as the frequency at which a �ickering light becomes
indistinguishable from a steady, non-�ickering light. However, it as-
sumes a high-contrast �icker (light on and o�), which is not always
applicable. For example, �icker found in variable refresh rate (VRR)
displays is caused by slight luminance di�erences at varying refresh
rates, resulting in a low-contrast �icker. To address �icker of various
contrast, Watson proposed a �icker detection metric [Watson and
Ahumada 2011], which relies on the Temporal Contrast Sensitivity
Function (TCSF) equation from [Watson et al. 1986]. This metric
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(TCSF��"(
1) was later incorporated into the information display

measurements standard (IDMS) v1.2 by the International Commit-
tee Display Metrology (ICDM) and was released in 2023. However,
as acknowledged by Watson and Ahumada [2011], other factors
such as luminance, area, and eccentricity also a�ect the shape of
TCSF, yet these parameters have not been integrated into the cur-
rent standard, limiting its applications. Existing Contrast Sensitivity
Functions (CSFs), such as Barten’s [1999], stelaCSF [Mantiuk et al.
2022] and castleCSF [Ashraf et al. 2024] predict sensitivity as a func-
tion of mentioned factors, but (a) do not o�er su�cient accuracy at
high temporal frequencies for modeling �icker; (b) cannot explain
�icker visibility for large sources that span a signi�cant portion of
the visual �eld. This paper aims to extend the TCSF��"( to incorpo-
rate the e�ects of eccentricity, luminance and area (hence elaTCSF),
updating the standard for �icker detection.
A 120-year-long debate persists in �icker detection: Is temporal

sensitivity to �icker higher in the peripheral visual �eld (parafovea)
than in the central (fovea)? The organization of the visual �eld
is topographically represented in the striate cortex, with central
regions receiving a disproportionately larger representation than
peripheral areas [Daniel andWhitteridge 1961]. However, regarding
temporal sensitivity, experimental measurements are con�icting
and puzzling: some researchers observe a rise and fall in CFF with
increasing eccentricity, peaking in the parafovea [Hartmann et al.
1979; Hylkema 1942; Krajancich et al. 2021; Phillips 1933; Porter
1902; Rovamo and Raninen 1984; Tyler 1987], while others contend
that temporal sensitivity peaks at fovea and decreases steadily with
eccentricity [Chapiro et al. 2023; Ross 1936]. Presently, a consensus
remains elusive, although the data from Hartmann et al. [1979]
shows that larger stimulus areas, higher luminances, and higher
contrasts are more likely to elicit peaks in the parafovea. We rely
on those �ndings, including modern functional magnetic resonance
imaging (fMRI) measurements of cortex activity [Himmelberg and
Wade 2019; Horiguchi et al. 2009], and propose a model that can
explain these seemingly con�icting observations.
Larger signal areas generally activate a broader range of retinal

cone and rod cells, enhancing human sensitivity. Some CSF models
like castleCSF [Ashraf et al. 2024] have incorporated area (size) as
a crucial parameter. However, they treat area and eccentricity as
independent parameters. In reality, for stimuli with large areas, a
range of eccentricities is involved, particularly evident in our VRR
�icker dataset, which includes full-screen �icker. Relying solely on
one eccentricity value is evidently insu�cient. In this context, we
propose a spatial probability summation model that can work with
stimuli spanning any portion of the visual �eld.

In summary, our contributions are as follows:

• We introduce elaTCSF with a spatial probability summation
model 2, which accounts for eccentricity, luminance, and area,
extending the industry �icker detection standard TCSF��"( .
We also address past controversies regarding parafovea sen-
sitivity peak.

1TCSF describes human visual sensitivity as a function of temporal frequency, ex-
hibiting diverse forms. TCSF��"( speci�cally denotes the standard proposed by the
International Committee for DisplayMetrology (https://www.sid.org/Standards/ICDM).
2The code for the model and the datasets used to train it can be found on the project
page: https://www.cl.cam.ac.uk/research/rainbow/projects/elaTCSF/.

• We measure the visibility of �icker on a VRR display. The
measurements are combined with publicly available �icker
detection data to calibrate and test elaTCSF. The dataset will
be made publicly available.

• We demonstrate several applications of the model, includ-
ing predicting safe refresh rate ranges for VRR displays, ad-
dressing VR headsets low-persistence �icker, and assisting in
lighting design.

2 RELATED WORK

2.1 Temporal sensitivity and Critical Flicker Frequency

The neurons in the retina, thalamus, and subsequent stages of the
visual pathway are sensitive to temporal variations in the retinal im-
age [Breitmeyer and Julesz 1975; Robson 1966; Rucci et al. 2018]. The
sensitivity of human observers to temporal variations in light inten-
sity has been extensively measured through psychophysical experi-
ments [de Lange Dzn 1958; Hartmann et al. 1979; Kelly 1961; Kong
et al. 2018; Robson 1966; Tyler 1987]. Some researchers [Chapiro et al.
2023; Hartmann et al. 1979; Hecht and Verrijp 1933; Krajancich et al.
2021; Porter 1902] have focused on determining the frequency at
which full-depth temporal modulation fuses to a steady light, known
as CFF. CFF serves as a behavioral measure of temporal resolution
[Donner 2021]. Understanding CFF aids in predicting when the hu-
man visual system becomes insensitive to �icker, crucial for lighting
systems design [Watson et al. 1986]. The Ferry–Porter law [Porter
1902] explains the variation of CFF as a function of luminance and
the Granit–Harper law [Granit and Harper 1930] as the function of
stimulus area.

2.2 Flicker visibility metrics

Watson and Ahumada [2015] extended their prior �icker visibility
metric [Watson and Ahumada 2011] to account for the e�ects of
luminance. They employed a bilinear TCSF model, �tted to the high-
temporal-frequency limbs of the �icker detection measurements
reported by [de Lange Dzn 1958]. Additionally, they assume that
the Ferry-Porter law applies not only to CFF (contrast equal to one)
but also to contrasts lower than one. This metric reports visibility
in terms of Just Noticeable Di�erences (JNDs).
Farrell [1986] proposed a method to predict visible �icker in

displays. It relies on the idea that, in a temporal amplitude sensitivity
plot with double logarithmic axes, curves for di�erent luminance
levels converge to a common high-temporal-frequency asymptote
(see [Kelly 1961], for a critical view, see [Rider et al. 2019]), rendering
CFF independent of adapting luminance. Note that this trend does
not hold for contrast sensitivity curves.

2.3 Variable Refresh Rate Flicker (VRR)

A Graphics Processing Unit (GPU) renders frames at varying rates,
which do not align with a display’s �xed refresh rate. Traditionally, a
GPU used a vertical synchronization signal (VSync) to ensure frames
are displayed only when fully drawn. VSync, however, could cause
skipped frames (stutter) and introduce unnecessary latency. To allow
adaptive frame rate and reduce the latency, NVIDIA introduced VRR
technology in 2013. VRR relies on the display holding pixel intensity
for varying amounts of time, e.g., with capacitors in LCD panels
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the refresh rate change), 30Hz and 120Hz (caused by V-blanks).
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[Slavenburg et al. 2020]. In VRR mode, minor di�erences in display
luminance at various refresh rates create low-frequency components
in the Fourier domain, leading to visible �icker. Such �icker typically
has low contrast and cannot be explained by the CFF models and
data. Our aim is to develop a model that can explain VRR �icker.

3 VRR FLICKER SENSITIVITY EXPERIMENT

To model the visibility of �icker found in VRR displays, we con-
ducted measurements on a VRR-capable (G-Sync) OLED display.
Based on these measurements, we designed a psychophysical �icker
detection experiment to measure human observers’ sensitivity to
VRR �icker under varying conditions.
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Fig. 4. Our VRR Flicker dataset, where each point represents the average

sensitivity across all participants. The error bars indicate the upper and

lower bounds derived from psychometric function fi�ing.

Fig. 5. A photograph of the experimental setup. The experiment was taken

in a dark room. The lights were added to take the photograph and were not

present during the experiment.

Display Equipment. The measurements were conducted on an
LG OLED G1 55" 4K Smart TV, chosen because it represents mod-
ern VRR displays and exhibits VRR �icker at low luminance levels.
Moreover, its size is large enough to support �icker experiments
over a very wide �eld of view. We measured the uniformity of the
display and found the luminance di�erence between the central part
and the edges to be less than 10%.

VRR Flicker Stimuli. The stimuli were discs of varying sizes (0.5,
1, and 16 visual degrees in diameter) and a rectangular uniform
�eld occupying the entire screen (62.7◦ × 37.8◦). The discs were
shown on a black background. To induce �icker, the refresh rate
was switched between 30 and 120Hz in a square-wave pattern (see
Figure 2-bottom-left). The frequency of refresh rate switch (�rrs)
varied between 0.5 and 14.9Hz.

Display calibration and measurements. Since the primary cause
of VRR �icker is the subtle luminance di�erences across varying
refresh rates, these di�erences result in low-frequency components
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in the Fourier domain, causing perceptible �icker. Therefore, �icker
visibility is linked to the average screen luminance. We measured
absolute display luminance levels with the Konica Minolta Chroma
Meter CS-200. Temporal variation in luminance was measured with
the Topcon Luminance Colorimeter RD-80SA, which provides a
fast analog channel response of less than 80 `B . Figure 2-left visu-
alizes some temporal measurement results. The subtle luminance
di�erences between 30Hz and 120Hz produce low-frequency com-
ponents in the Fourier transform frequency domain, as shown in
Figure 2-right. We transform the signal into the frequency domain
to identify the fundamental frequency (matching �rrs). The �icker
contrast is calculated as the ratio of the modulation amplitude at the
fundamental frequency to the mean luminance of the VRR stimulus:
� =

Δ!

!
.

Based on the above measurements, we can model �icker contrast
as the function of display luminance and �rrs, as shown in Figure 3.
The �icker contrast did not depend on the size of the displayed
pattern in our measurements.

Experimental Procedure. Due to the characteristics of VRR �icker,
we cannot directly control its contrast. Instead, we rely on the fact
that the contrast of the �icker increases as we lower the luminance
of the stimulus (see Figure 3). Therefore, the observers directly
adjusted luminance and indirectly contrast in our experiments.

The detection thresholds were measured in two stages. First, the
observers were instructed to adjust the luminance of each VRR stim-
ulus until they could just detect �icker (method-of-adjustment). The
adjusted luminance was then used as a starting point (a prior) for
the 2-interval-forced-choice experiment. In this stage, the observers
were presented with two intervals in random order: one containing
a �xed refresh rate and one with a modulated refresh rate (VRR
�icker). The trials were controlled using the QUEST adaptive sam-
pling method [Watson and Pelli 1983] (40 trails), implemented in
PsychoPy [Peirce et al. 2019]. Responses were �tted to a psychomet-
ric function, and the contrast level at which a 0.75 correct response
probability was reached was selected as the threshold contrast �C
for a speci�c stimulus. The sensitivity ( is then computed as the re-
ciprocal of�C : ( = 1/�C . Figure 5 shows a photograph of a participant
using a chin rest when observing a stimulus on the display.

Participants. We recruited a total of 16 participants, divided into
three groups. The �rst group consisted of 4 participants who com-
pleted experiments for all 8 �rrs frequencies. The second group
comprised 10 participants who only participated in experiments
for the low-frequency range (�rrs = 0.5, 2, 4, 8 Hz), while the third
group consisted of 2 participants who solely took part in exper-
iments for the high-frequency range (�rrs = 10, 11.9, 13.3, 14.9
Hz). Through the t-test examining sensitivity across various tem-
poral frequencies, we demonstrated that there was no signi�cant
deviation between the participants of the second and third groups
(C (3) = 0.0066, ? = 0.9951, B3 = 0.2449). The experiment was ap-
proved by the departmental ethics panel.

Results. The results are shown in Figure 4. For signals of any
size, sensitivity to �icker varies with temporal frequency, peaking
around 8Hz. Stimuli with larger areas result in higher sensitivi-
ties. Additionally, for stimuli with small areas, sensitivity decreases

rapidly as temporal frequency exceeds 8Hz, while such a decrease
is much smaller for stimuli with larger areas. Note that due to the
contrast-luminance correlation, the luminance associated with each
data point varies with the reported sensitivity.

4 MODEL

To model �icker visibility, we extend Watson’s TCSF [Watson and
Ahumada 2011] included in the Information Display Measurements
Standard (IDMS). We decided not to extend existing CSFs, such as
Barten’s CSF [Barten 1999] or stelaCSF [Mantiuk et al. 2022], for
three primary reasons. First, CSFs introduce spatial frequency de-
pendency, posing challenges in integrating them into display �icker
modeling [Ashraf et al. 2023]. Second, most sources of �icker tend
to be of low spatial frequency (Table 1). The sensitivity is mostly
the function of stimulus size in the low-frequency range [Savoy
and McCann 1975], and the dependence on the frequency only in-
troduces unnecessary complexity. Furthermore, for high temporal
frequencies that are relevant for �icker, sensitivity is mostly invari-
ant to spatial frequency [Watson et al. 1986] (spatial frequency only
a�ects sensitivity at low temporal frequencies).

The original TCSF��"( only considers temporal frequency l :

(l,IDMS (l) =
��b [(1 + 2iclg)−=1 − Z (1 + 2icl^g)−=2

] �� , (1)

where b = 148.7, g = 0.00267, ^ = 1.834, Z = 0.882, =1 = 15, =2 = 16,
which were �tted to the de Lange Dzn [1958] data. We extend it
to account for three new dimensions: luminance, eccentricity, and
area. The following sections explain how each new dimension is
modeled. Figure 6 summarizes the computational steps.

4.1 Luminance

In dim light, contrast sensitivity increases proportionally to the
square root of retinal illuminance, in accordance with the DeVries-
Rose law. Conversely, in bright light, sensitivity followsWeber’s law,
remaining independent of illuminance [Rovamo et al. 1995]. To in-
corporate those �ndings, we adopt the castleCSF [Ashraf et al. 2024]
equation for the transient channel to model luminance sensitivity:

(L (!) = :1,L

(
1 +

:2,L

!

)−:3,L
, (2)

where :1...3,L are model parameters, which will be �tted.
The increase in luminance not only increases sensitivity but also

shifts the peak of the TCSF towards higher temporal frequencies.
Although not explicitly modeled, this phenomenon has been con-
�rmed in the �tting results of [Ashraf et al. 2024] (Fig. 8 in castleCSF
paper, (b,ii)). It suggests that human sensitivity to high temporal
frequencies increases with higher luminance. This e�ect is modeled
as a modi�cation to the original TCSF��"( function:

(l (l, !) = (l,IDMS

(
l

11,l + :1,l log10!

)
, (3)

where :1,l and 11,l are the model parameter to be �tted.

4.2 Eccentricity

As mentioned in the Introduction, the change of sensitivity with
eccentricity in the �icker detection task has been debated for over
120 years. Despite numerous attempts to explain this phenomenon,
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Table 1. All flicker detection datasets utilized in our experiments.

Dataset
Temporal Frequency

Hz
Spatial Frequency

cpd
Eccentricity

deg
Luminance

cd/m2
Area
deg2

Data
Data
points

Hartmann et al. [1979] 7.77 - 61.18 0 0 - 60.37 0.7 - 70 0.2 - 7.07 CFF 136
de Lange Dzn [1958]A 23.97 - 64.23 0 0 0.16-1617.8 3.14 CFF 7
Krajancich et al. [2021] 23.01 - 94.41 0.01-0.57 0 - 55.04 3 - 190 >4.71 CFF 36
Chapiro et al. [2023] 31.88 - 51.21 0 0 - 20 10 - 8000 0.79 CFF 30
de Lange Dzn [1958]B 1.51 - 66.31 0 0 0.16-1591 3.14 Sensitivity 100

Kelly [1961] 1.6 - 75 0.01 0 0.34 - 4928.7 2827.4 Sensitivity 71
Snowden et al. [1995] 0.76 - 55.72 0.1 - 1 0 0.11 - 236 8.03 Sensitivity 120

VRR Flicker (Ours) 0.5 - 14.9 0 0 0.47 - 4.13 0.2-2369.3 Sensitivity 32

such as Rovamo and Raninen [1984]’s explanation by simultaneous
scaling of stimulus area (M-scaling, retinal magni�cation) and illu-
minance (F-scaling), and Hartmann et al. [1979]’s proposition that
larger area and higher luminance lead to the parafovea peak, there
is still no universally accepted explanation.
Recent fMRI research on the human primary visual cortex sug-

gests that the increase of �icker sensitivity in eccentricity is as-
sociated with the transient channel, which is sensitive to higher
spatial frequencies. Horiguchi et al. [2009] identi�ed distinct spatial
distributions of the sustained and transient channels. The transient
channel exhibits maximal weighting in the parafovea. Himmelberg
andWade [2019] further con�rmed that the peripheral visual �eld is
more sensitive to higher frequency stimuli by analyzing the changes
in a contrast semisaturation point C50

3 across di�erent time frequen-
cies in the foveal, parafoveal, and peripheral regions of the visual
cortex. Based on these �ndings, we can infer that the sensitivity to
high temporal frequencies should increase with eccentricity. At the
same time, the contrast sensitivity data suggests that the peak of the
CSF decreases with eccentricity. These two trends can be reconciled
only if the TCSF changes its shape with the eccentricity — it be-
comes �atter (slope becomes lower) as we increase the eccentricity
(see Figure 16-(a)).

Eccentricity’s in�uence on sensitivity can be divided into two
aspects: the e�ect of eccentricity on sensitivity, which follows a
simpli�ed formulation of the pyramid of visibility [Watson 2018]:

(ecc (4) = 10−:1,ecc4 , (4)

and the e�ect of the eccentricity on the slope (l :

( ′l (l, !, 4) = (l,IDMS
©­«

l−l?

1+:2,l4
+ l?

11,l + :1,l log10!

ª®¬
, (5)

where :1,ecc and :2,l are the model parameters to be �tted, and
l? = −2Hz is a factor to control the temporal frequency peak shift.
Then, we can construct the base function elTCSF for the subsequent
spatial probability summation model:

(elTCSF (l, !, 4) = (L (!)(ecc (4)(
′
l (l, !, 4) . (6)

3C50 is a measure of contrast sensitivity in the visual cortex, representing the contrast
level at which 50% of the full response is achieved.

4.3 Area and Spatial Probability Summation Model

Stimulus area (size) signi�cantly impacts sensitivity, as larger stim-
uli activate more retinal cells. However, existing methods [Barten
1999; Mantiuk et al. 2022] often treat area as a separate parameter,
assuming that eccentricity and area e�ects on stimuli are indepen-
dent. This assumption becomes unreasonable when dealing with
very large stimuli, such as a full-screen �icker in our VRR dataset,
which covers a signi�cant range of eccentricities. To account for
varying eccentricity across the visual �eld, we use a spatial proba-
bility summation model. Speci�cally, we treat the visual �eld as a
continuous function of contrast and integrate the product of contrast
and sensitivity over the windowF×ℎ (in degrees):

� =

∫ F
2

− F
2

∫ ℎ
2

− ℎ
2

(2 (G,~)( (G,~))V3G 3~, (7)

where V is the probability summation exponent (will be �tted to the
data), 2 (G,~) represents the stimulus contrast, which is independent
of spatial position (2 (G,~) ≡ 2) in all datasets used. Because all
datasets used have su�ciently long durations, we disregard the
impact of duration. For circular stimuli (disks), we can employ polar
coordinates to simplify the spatial probability summation model:

3 (4̂, A , \ ) =
√
4̂2 + A2 + 2 4̂ A cos(\ ), (8)

� (l, !, 4̂, ') = 2V
∫ 2c

0

∫ '

0
(
V

elTCSF
(l, !, 3 (4̂, A , \ )) A 3A 3\, (9)

where 4̂ is the distance between the disk center and the �xation
point (in visual degrees), and ' is the radius (in visual degrees).
When the summation reaches the threshold �CℎA , the �icker can be
detected, thus the complete (elaTCSF = 1/2 can be expressed as:

(elaTCSF (l, !, 4̂, ') =
©­
«
∫ 2c

0

∫ '

0
(
V

elTCSF
(l, !, 3 (4̂, A , \ )) A 3A 3\

�CℎA

ª®
¬

1
V

(10)
where �CℎA is the parameter that is �tted separately per each dataset.

CFF prediction. CFF is the temporal frequency at which the sensi-
tivity is 1. The model from Eq. (10) cannot be analytically inverted
and solved for l . Therefore, to �nd the CFF, we use numerical root
�nding in the range between 8 and 200Hz.
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Fig. 6. The inputs (le�) and computation steps of elaTCSF.

5 MODEL FITTING AND COMPARISON

In this section, we present the optimization process for all parame-
ters of elaTCSF and compare its accuracy with the existing models.

5.1 Model Fi�ing

We curated numerous existing �icker detection datasets, shown
in Table 1. We excluded the data points with spatial frequencies
exceeding 1 cpd (as elaTCSF is meant for low spatial frequencies)
and those with low luminance (! < 0.1 cd/m2). In total, 8 datasets
were used to train the parameters of our elaTCSF. Our optimization
loss function is:

L =

1

#

∑
3

∑
8

(
log10 (8,3 − B3 log10 (̃8,3

)2
+

_

�

∑
3

(
log10 B3

)2
,

(11)
where 3 = 1...� is the dataset index, 8 is the stimulus index in a
dataset, # is the total number of stimuli, (8,3 and (̃8,3 are the ref-
erence and predicted sensitivity values. B3 is a per-dataset scaling
factor that accounts for the di�erence between the datasets (di�er-
ences in protocols, group of observers, etc.), as explained in stelaCSF
paper[Mantiuk et al. 2022, sec. 6]. In summary, the �rst term of the
loss function is responsible for data �tting, while the second term
ensures that the per-dataset scaling factor B3 remains close to 1. In
all our experiments, we �x B3 = 1 for our VRR dataset. We set _ to
0.001. The quasi-Newton method implemented in Matlab’s fmin-

unc function is used for optimization. The parameters of the �tted
elaTCSF are listed in Table 2.

5.2 Model Comparison

Following the stelaCSF [Mantiuk et al. 2022] validation protocol, we
perform �ve-fold cross-validation within each dataset, utilizing all
datasets for both training and testing. We also follow the approach
of other works [Ahumada et al. 2018; Watson and Ahumada 2005],
reporting results for the entire dataset without a training/testing
split. We report two error measures: root-mean-square-error (RMSE)
of contrast sensitivity in dB units EB (S-RMSE, see [Mantiuk et al.
2022, Eq. 19]) and the RMSE of CFF El (CFF-RMSE) in Hz. In Table 3

Table 2. The fi�ed parameters of elaTCSF.

Part Parameters

TCSF��"(
b = 154.133, g = 0.00292069, ^ = 2.12547,

Z = 0.721095, =1 = 15, =2 = 16

Luminance
:1,L = 1.76801, :2,L = 1.62402, :3,L = 0.533781,

:1,l = 0.222269, 11,l = 0.6678
Eccentricity :1,ecc = 0.0330933, :2,l = 0.0341811

Area �CℎA = 6.52801, V= 3.80022

Table 3. Comparisons. S-RMSE is reported only for datasets using sensitivity

as the evaluationmetric, while CFF-RMSE is reported only for datasets using

CFF as the evaluationmetric. Regular font numbers correspond to the results

of the entire dataset, while small font magenta-colored numbers represent

the results of 5-fold cross-validation, indicating the mean and standard

deviation across all folds. Barten’s CSF (HTF) and stelaCSF (HTF) are the

updated versions from [Bozorgian et al. 2024].

CSF Model S-RMSE EB [dB] CFF-RMSE El

TCSF��"( 10.33 10.38 ± 1.64 13.52 13.93 ± 1.14

Barten’s CSF [Barten 1999] 5.79 6.08 ± 0.68 15.36 16.03 ± 7.77

stelaCSF [Mantiuk et al. 2022] 6.13 6.30 ± 0.36 11.47 11.82 ± 2.09

Barten’s CSF (HTF) 4.58 4.82 ± 0.51 9.06 10.09 ± 1.41

stelaCSF (HTF) 6.05 6.30 ± 0.34 11.75 13.77 ± 2.25

castleCSF [Ashraf et al. 2024] 5.45 5.58 ± 0.55 13.07 14.70 ± 4.53

elaTCSF (ours) 3.50 3.73 ± 0.67 8.95 9.07 ± 1.55

we report S-RMSE results for �icker detection datasets (labelled as
“Sensitivity” in Table 1) 4 and CFF-RMSE results on CFF datasets
(labelled as “CFF” in Table 1).

Overall, elaTCSF outperforms the existing advanced CSF models
for both error metrics. Barten’s CSF (HTF) shows the best perfor-
mance among the current models for the S-RMSE and CFF-RMSE.
We have visualized the resulting �ts in Figures 9–15.

The �tting results of elaTCSF on the de Lange Dzn [1958] (Fig-
ure 10), Kelly [1961] (Figure 11), and our VRR datasets (Figure 15)
demonstrate its accuracy in predicting sensitivity values across
temporal frequencies under varying luminance and stimulus size
conditions. Figure 10 and Figure 11 illustrate that our elaTCSF model
is applicable across a wide range of luminance levels. The results
on our dataset (Figure 15), in particular, validate the e�ectiveness
of our spatial probability summation model, as elaTCSF performs
well in predicting sensitivity for both large and small stimuli.

The plots showing the �ts to the datasets of Hartmann et al.
[1979] (Figure 13) and Krajancich et al. [2021] (Figure 14) demon-
strate that elaTCSF correctly predicts the increase of CFF in the
peripheral visual �eld. Both datasets reveal CFF peaks within the
periphery (eccentricities of 10 to 30 degrees). Although Barten’s
CSF (HTF) [Bozorgian et al. 2024] attempts to model these peaks,
it predicts the peak eccentricities to be much lower than those ob-
served experimentally. In contrast, our elaTCSF accurately models

4Notably, as elaTCSF does not consider spatial frequency, we used [Snowden et al.
1995] dataset exclusively as the training set and excluded it during model comparison.
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Fig. 7. Le�: Measured/simulated contrast of VRR flicker when switching

between 144Hz and given refresh rate (lines). The dashed line is the detec-

tion threshold predicted by elaTCSF for the given display. Right: The pale

green area is the range of refresh rates in which the display can operate

without visible flicker. The lower bound of that range is the intersection

of the contrast lines with the threshold, in the plot on the le�. Note that

higher luminance makes VRR flicker less visible because of the reduced

VRR-flicker contrast.

the parafoveal CFF peaks. While there are deviations at very low
luminance and high eccentricities (Figure 13), the predictions made
by elaTCSF are su�ciently accurate for practical applications.

The datasets of de Lange Dzn [1958] (Figure 9) and Chapiro et al.
[2023] (Figure 12) demonstrate the relationship between CFF and
luminance, including very high luminance levels (up to 8000 cd/m2),
which is bene�cial for HDR display design. While elaTCSF outper-
forms existing models, it is inconsistent with the dataset of Chapiro
et al. [2023]. According to their data, the CFF values at fovea (0 de-
gree) are higher than those in the parafoveal regions (10, 20 degrees),
which is inconsistent with the trends observed in the datasets of
Krajancich et al. [2021] and Hartmann et al. [1979]. The factors that
could cause this inconsistency between the datasets are unknown
and, consequently, cannot be modeled.

6 APPLICATIONS

The primary application elaTCSF addresses is VRR �icker, which
we measured and then validated our model on. Below in Section 6.1
we demonstrate how VRR �icker can be mitigated in practice. We
also show how elaTSCF can be used to predict �icker in VR/AR
headsets (Section 6.2), and how it can serve as a better �icker model
for lighting design (Section 6.3). The latter two application, however,
are not valiated.

6.1 Prediction of Frame Rate Range for VRR Displays

A common method to mitigate VRR �icker is to limit the operational
range of frame rates when VRR is enabled. For instance, even if the
monitor supports the range from 24Hz to 144Hz, it is restricted to
40Hz to 144Hz in the VRRmode using low frame rate compensation
(LFC). This approach reduces �icker visibility by minimizing poten-
tial luminance di�erences between frame rates. Currently, without
a robust model, engineers manually adjust the refresh rate range
until the �icker cannot be noticed.
Our elaTCSF can calculate the �icker-free refresh rate range for

VRR displays at di�erent luminance levels. In this example, we will
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Fig. 8. Comparison of relative flicker sensitivity functions from the IEC

Light-flickermeter and [Bodington et al. 2016] with the predictions of

elaTCSF model at (a) various luminance levels for a foveal visual field of

1000 degrees2, and (b) fovea and di�erent peripheral eccentricities for visual

fields of 100 degrees2 and 1000 cd/m2. The model predictions are normalised

with respect to the maximum sensitivity from 1000 cd/m2condition for plot

(a), and the foveal condition for plot (b).

simulate a 27-inch 24–144Hz display. First, following our procedure
from Section 3, we need to measure for each luminance level the
contrast introduced by switching from the 144Hz (maximum) to any
other frame rate. Such contrast for our simulated display is shown
as lines in Figure 7. Then, we use elaTCSF to �nd the detection
threshold for the display across the luminance range, shown as a
dashed line in Figure 7-left. We use the maximum sensitivity across
all temporal frequencies to ensure conservative thresholds. The
intersection of the VRR-�icker contrast lines with the threshold
gives us the lower bound of the refresh rate, shown as the green line
in Figure 7-right. The pale green area indicates the range of refresh
rates in which VRR can operate without introducing visible �icker.

6.2 Low persistence flicker in VR headsets

VR headsets display world-locked content that can move rapidly
with head motion. Because of that, they are prone to hold-type
blur [Rao et al. 2024]. Such blur can be much reduced using a low-
persistence display, which keeps the image on for a fraction of the
frame duration (e.g., 2ms for a 7ms frame) and the display remains
black for the remaining time. This introduces the stroboscopic e�ect,
making the image appear sharper, but it can introduce visible and
uncomfortable high-contrast �icker. Currently, VR manufacturers
rely solely on empirical evidence to set the lower limit for refresh
rates, such as Meta’s assertion [Rao et al. 2024] that 90Hz is the
minimum refresh rate for a comfortable user experience.
As our elaTCSF accounts for all relevant factors, we can predict

the minimum refresh rate of a VR headset that ensures the low-
persistence �icker remains invisible. Based on publicly available
data regarding device’s FoV, we predicted CFF for three headsets:
Apple Vision Pro, Microsoft HoloLens 2 and Meta Quest 3. We plot
CFF as the function of luminance in the Figure 1-right. The predicted
values assume that the display is showing a uniform �eld of a given
luminance. If the display’s refresh rate is above the CFF line, the
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low-persistence �icker is unlikely to be visible. The plots show
how much the refresh rate would need to increase if we wanted to
increase the display peak luminance without introducing �icker.

6.3 Application in lighting design

Flicker in lighting systems has long been a concern, initially identi-
�ed with old incandescent bulbs. While advances in lighting technol-
ogy, particularly with LEDs, have mitigated some �icker issues, they
have not been completely resolved. Modern LED lights use a range
of driver circuits to manage voltage �uctuations and �icker can still
be present due to the type of LED driver used and its handling of
voltage �uctuations [Collin et al. 2019]. Changes in voltage supply
can still produce perceptible �icker, especially with less e�cient
driver circuits. LED products can also exhibit �icker at dim light
levels or during transitions between dimming states [Poplawski
and Miller 2013]. The current standards for estimating the �icker
index of light sources, such as those set by the International Elec-
trotechnical Commission (IEC), rely on human contrast sensitivity
measurements developed for incandescent lighting. These standards
do not fully account for the di�erences in �icker sensitivity under
varying lighting conditions [IEC 2010, 2020]. Our elaTCSF model,
supported by recent measurements can be used to update the cur-
rent standards. A recent work by [Kukačka et al. 2023] highlighted
the importance of incorporating human TCSF measurements in the
light �icker index (LFI) for di�erent light sources.

Figure 8 shows the prediction of our model versus the �lter used
in the IEC standard and from another TCSF measurement [Boding-
ton et al. 2016]. The �lter used in IEC standard is from [Drápela
and Šlezingr 2010] and the measurements from [Bodington et al.
2016] have been used in a recommendation to update the current
lighting standards [ASSIST 2015]. Both TCSF measurements from
the literature do not show any variation with luminance, eccen-
tricity, etc., whereas our model is able to predict changes in �icker
sensitivity with di�erent viewing conditions. This capability can be
used to update lighting �icker index measurements for di�erent con-
ditions, providing a more comprehensive and perceptually-accurate
framework for assessing �icker in modern lighting systems.

7 CONCLUSIONS

A �ickering light source, such as a display or lighting, can be very
annoying, cause eye strain and headaches, and is a main concern in
display and lighting design. A certain amount of �icker is unavoid-
able. Therefore, the main question is what is the largest contrast
or the smallest temporal frequency at which the �icker becomes
invisible. To that end, we proposed elaTCSF, which can predict both.
It accounts for all main factors that in�uence �icker perception:
temporal frequency, luminance, eccentricity and size. This is a sig-
ni�cant improvement over existing models, which cannot predict
the threshold contrast (e.g., CFFs), do not account for all relevant
factors (e.g., IDMS TCSF), or do not o�er su�cient accuracy (e.g.,
stelaCSF). elaTCSF is �tted to and tested against 8 di�erent datasets
with both CFF and sensitivity measurements, one of which we col-
lected speci�cally to address the prominent issue of �icker in VRR
displays. elaTCSF is built on established psychophysical models,
such as Watson’s TCSF, or the spatial probability summation. This

choice was made to avoid over�tting given the sparsity of available
psychophysical data. Even if a better �t can be found with a poly-
nomial function or a neural network, such a function is unlikely to
generalize to the conditions outside the training dataset.

The main limitation of elaTCSF is that it can only predict �icker
for low-spatial-frequency or large patterns, as it does not account
for spatial frequency. We found that this compromise was necessary
to achieve both good quantitative and qualitative predictions, and
because the previous attempts to extend more complex CSFs were
not fully successful [Bozorgian et al. 2024]. elaTCSF is trained and
validated on VRR �icker data as this is the focus of our work. The
model is yet to be validated on other applications, including �icker
of low-persistence displays and �icker in lighting design.
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Fig. 9. Predictions for [de Lange Dzn 1958] dataset (CFF). Continuous lines:

elaTCSF; dashed lines: Barten’s CSF (HTF).
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Fig. 10. Predictions for [de Lange Dzn 1958] dataset (Sensitivity). Continu-

ous lines: elaTCSF; dashed lines: Barten’s CSF (HTF).
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Fig. 11. Predictions for [Kelly 1961] dataset. Continuous lines: elaTCSF;

dashed lines: Barten’s CSF (HTF).

   10   100  1000 10000
Luminance [cd/m2]

25

30

35

40

45

50

55

60

C
FF

 [H
z]

0 deg
10 deg
20 deg

Fig. 12. Predictions for [Chapiro et al. 2023] dataset. Continuous lines:

elaTCSF; dashed lines: Barten’s CSF (HTF).
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Fig. 13. Predictions for [Hartmann et al. 1979] dataset. Continuous lines:

elaTCSF; dashed lines: Barten’s CSF (HTF).
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Fig. 14. Predictions for [Krajancich et al. 2021] dataset. Continuous lines:

elaTCSF; dashed lines: Barten’s CSF (HTF).
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Fig. 16. The sensitivity (first row) and critical flicker frequency (second row) computed for elaTCSF under di�erent conditions.
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