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Abstract
Contrast sensitivity functions (CSFs), which provide estima-

tions of detection thresholds, have far-reaching applications in
digital media processing, rendering, and transmission. There is
a practical interest in obtaining accurate estimations of spatial
and temporal resolution limits from a spatiotemporal CSF model.
However, current spatiotemporal CSFs are inaccurate when pre-
dicting high-frequency limits such as critical flicker frequency
(CFF). To address this problem, we modified two spatiotemporal
CSFs, namely Barten’s CSF and stelaCSF, to better account for
the contrast sensitivity at high temporal frequencies, both in the
fovea and eccentricity. We trained these models using 15 datasets
of spatial and temporal contrast sensitivity measurements from
the literature. Our modifications account for two features ob-
served in CFF measurement: the increase of CFF at medium ec-
centricities (of about 15 deg), and the saturation of CFF at high
luminance values. As a result, the prediction errors for CFF ob-
tained from the modified models improved remarkably.

Introduction
It has been demonstrated that spatiotemporal CSF models

fall short of providing accurate estimations for the psychophysi-
cal measurements of CFF [1]. Our main objective in this study
is to improve the accuracy of CFF estimations derived from spa-
tiotemporal CSF models. We propose several modifications to
two spatiotemporal contrast sensitivity models — Barten’s CSF
and stelaCSF — and assess their effectiveness through compari-
son with experimental measurements of CFF.

The visual system’s performance in detecting light intensity
variations is restricted by the quantum nature of light and neural
noise [2, 3]. Studies in psychophysics have shown that specific
characteristics of a stimulus, such as spatial frequency, temporal
frequency, luminance, area, and visual eccentricity, can signifi-
cantly influence the likelihood of detection. A CSF model can
be used to predict the minimum level of contrast required for de-
tection, defined, for example, as the contrast at which there is a
75 percent chance of detection in a two-alternative forced-choice
experiment.

The measurements of temporal contrast sensitivity function
(TCSF) for flickering discs and spatial contrast sensitivity func-
tion (SCSF) for static Gabor patterns show a bandpass profile in
photopic conditions, implying that the visual system has a sup-
pressed response to slow changes in light but an enhanced re-
sponse to transient changes. Suppression in lower frequencies
is believed to be an evolutionary accommodation to the regulari-
ties found in the natural scenes to use the limited dynamic range
of visual neurons efficiently [4, 5]. The cutoff frequency of a
TCSF curve represents the highest frequency at which a tempo-
rally modulated stimulus will cause a flicker sensation. Beyond

this point, the flicker fuses to a steady field. This cutoff point is
called CFF (see Figure 1). Similarly, the cutoff frequency of an
SCSF curve represents the highest frequency at which a spatially
modulated stimulus would appear as a pattern. Beyond this limit,
the pattern fades into a uniform field. This point is often referred
to as acuity and is constrained by the optics of the eye in fovea
[6].

There has been a long-standing interest in CFF as an experi-
mental measure of temporal resolution [7, 8, 9]. It has been shown
that CFF increases with the logarithm of time-averaged light in-
tensity of the background [10, 11], yielding a straight line in a
semi-logarithmic plot. This relationship is called the Ferry-Porter
law and holds for a substantial range of light intensities. Addi-
tionally, this relationship holds (with varying slopes) for a range
of stimulus parameters, including a range of eccentricities, areas,
and wavelengths [12, 13]. Depending on the flickering stimuli’s
spatial configuration, the CFF variation in the peripheral vision
may not be monotonic [14, 15, 16, 17, 18]. While spatial acu-
ity tends to decrease with greater eccentricity, CFF measurements
reveal an initial rise in higher eccentricities followed by a sub-
sequent decline well below foveal measurements. It has been
shown [1] that existing contrast sensitivity models fail to account
for this non-monotonic trend, which might have implications for
applications such as foveated rendering that may require accu-
rate temporal resolution predictions. Consequently, we argue that
special attention to this issue is needed. A mathematical model
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Figure 1: TCSF curves obtained from stelaCSF [1] for a range
of luminance values. The red crosses on the curves indicate the
temporal cutoff frequency — the point where the TCSF curves
intersect with a horizontal line of sensitivity value 1. This value
is known as CFF or temporal resolution.



that can predict contrast sensitivity measurements has numerous
applications in image/video processing and computer graphics al-
gorithms [19, 20, 21, 22]. There is a practical interest in CFF and
acuity predictions, given that they establish a conservative gamut
of visible signals and can aid in developing hardware and software
technologies tuned toward human perception [23].

Non-monotonic variation of CFF
There are different views on why CFF varies at different reti-

nal locations. Tyler [24] measured CFF as a function of eccen-
tricity for stimuli of varying sizes and observed an increase in
CFF values with eccentricity. The stimuli were scaled at each ec-
centricity so that the number of ganglion cells involved remained
fixed (M-scaled, see [25]). Tyler assumed that the temporal pa-
rameters of the human visual response are related to anatomical
features: the density of ganglion cells and dimensions of the cone
outer segment. The former was believed to determine the peak
temporal sensitivity, while the latter was related to the response-
time constant of the temporal impulse response that characterizes
the visual system. The response-time constant was estimated to
decrease from 70 milliseconds in the fovea to 35 milliseconds in
the mid-periphery.

An alternative view by Rider et al. [13] suggests that CFF
measurements do not provide much information about the inte-
gration time or speed of temporal processing. Instead, the visual
system’s gain variation regulates the increase of CFF in mid to el-
evated light intensities. Gain, in this context, is a scaling value that
changes the overall response of the visual system regardless of the
temporal frequency. In this view, the variation of CFF as a func-
tion of eccentricity might depend on the changes in gain rather
than integration time. These interpretations stem from a light
adaptation model proposed earlier by the same author [26], com-
prised of a cascade of leaky integrators with feedforward loops.

Rovamo et al. [18] conducted a study to measure CFF and its
variation with eccentricity under different stimulus settings. The
study showed that the CFF increased monotonically at higher ec-
centricities when the stimulus size was M-scaled. Additionally,
decreasing the luminance of the stimulus in higher eccentricities,
inversely proportional to the area of the center of ganglion cell
receptive fields, led to a monotonic decrease in CFF. When both
the stimulus size and luminance were scaled, the CFF remained
constant from the fovea toward the periphery. Consequently, it
was concluded that two counteracting factors determine the non-
monotonic change of CFF for fixed-sized and fixed-luminance
stimuli: the decrease of ganglion cell density towards the periph-
ery reduces CFF, while the increase of receptive field and sum-
mation area enhances CFF. The intuitions behind these measure-
ments came from the observation made by Enroth-Cougell and
Shapley that CFF of ganglion cells correlates with flux defined as
the product of illuminance and receptive field center area [27, 28].

Spatiotemporal models
Barten proposed a contrast sensitivity model that estimates

detection thresholds by considering the contrast energy of stim-
ulus and internal noise [29, 2]. The most well-known version of
his model accounts for the effects of spatial frequency, size, and
luminance [30]. He also described peripheral and temporal vision
extensions by adding eccentricity and flicker frequency parame-
ters to the model [31]. The extended version of the model assumes

that a contrast signal undergoes spatial and temporal filtering as
it travels through the visual pathway and then causes a subtrac-
tive inhibition that faces similar spatial and temporal filtering. To
capture the spatio-temporal interaction, Barten [32] suggested the
following formulation in the frequency domain for monocular vi-
sion:

S(ρ,ω,L,a,e) =
S0(ρ,L,e)T0(ω,L)

(
1−S1(ρ)T1(ω,L)

)
2k mn(X ,Y,T,e,ρ)

, (1)

where ρ is the spatial frequency in cycles per visual degree (cpd),
ω is the temporal frequency in cycles per second, L is luminance
in candela per square meter, e is eccentricity in visual degrees,
S0(ρ,L,e), S1(ρ), T0(ω,L), and T1(ω,L) are spatial filter for pho-
toreceptor response, spatial filter for inhibitory response, temporal
filter for photoreceptor response, and temporal filter for inhibitory
response, respectively. The constant k is signal to noise ratio,
and mn(X ,Y,T,e,ρ) is the average modulation of internal noise,
which is described by:

mn(X ,Y,T,e,ρ) =

√
Φph(L,e)(1−S1(ρ))2 +Φ0(e)

XY T
, (2)

where Φph(L,e) is the spectral density of photon noise, Φ0(e) is
the spectral density of the neural noise, X , Y , and T are the spatial
and temporal dimensions of the stimulus covered with noise. The
amplitude response of spatial filters is based on Gaussian func-
tions:

S0(ρ, l,e) = exp
(
− ρ2

ρc0(L,e)2

)
, (3)

and:

S1(ρ) = 1−

√
1− exp

(
− ρ2

ρ2
c1

)
. (4)

where ρc0(L,e) and ρc1 are photoreceptor and inhibitory spatial
filter cutoff frequencies. The normalized amplitude response of
temporal filters is described by:

Tj(ω, l) =
1(

1+(2πωτ j(L,D))2
) n j

2

, j = [0,1] , (5)

where τ j is the time constant of the filter, and n is the number of
cascaded processing units.

Recently, Mantiuk et al. proposed stelaCSF [1], a unified
CSF that accounts for all major dimensions of a stimulus: spa-
tial and temporal frequency, luminance, area, and eccentricity.
They combined data from 11 datasets to model the 5-dimensional
space of contrast sensitivity. In the stelaCSF, it is assumed that
two mechanisms (channels) are responsible for temporal process-
ing: one channel encodes low temporal frequencies (sustained,
Rs(ω)), and the other one encodes high temporal frequencies
(transient, Rτ (ω)). For simplicity, instead of cascaded leaky in-
tegrators, generalized exponential functions are used to describe
the amplitude response of temporal channels:

Rs(ω) = exp

(
−ωβs

σs

)
, (6)



and:

Rτ (ω) = exp

(
−
|ωβτ −ω

βτ

0 |2

στ

)
, (7)

where βs, βτ determine the decay slope, and σs, στ control the
bandwidth of sustained and transient channels, respectively. The
spatiotemporal contrast sensitivity in 5-dimensional space is ob-
tained by combining the responses from the channels described
above:

S(ρ,ω,L,a,e) =

Secc(e,ρ)
(
Rs(ω)SA,s(ρ,a,L)+Rτ (ω)SA,τ (ρ,a,L)

)
,

(8)

where a is the area of stimulus expressed in visual degrees,
SA,s(ρ,a,L), and SA,τ (ρ,a,L) are 3-dimensional spatial contrast
sensitivity functions in sustained and transient channels, respec-
tively. The parameter Secc models drop of sensitivity in peripheral
vision.

Critical flicker frequency predictions
In this section, our goal is to obtain an explicit equation that

shows how the CFF values are affected by the various parameters
of the two spatiotemporal CSF models we introduced earlier. We
take advantage of the separability of spatial and temporal sensi-
tivity in high frequencies [33, 34]. Separability here means that
there are no longer any spatiotemporal interactions in higher spa-
tial or temporal frequencies. Hence, changes in the spatial con-
figuration of the stimulus have no impact on temporal sensitivity,
except for a vertical shift and vice versa [35]. This behavior in the
Barten’s CSF would appear in the middle to high temporal fre-
quencies where T1 is low, so (1− S1(ρ)T1(ω,L)) ≈ 1, reducing
the Eq. 1 to the following expression:

S(ρ,ω,L,e)≈ S0(ρ,L,e)T0 (ω,L)
2k mn(X ,Y,T,e,ρ)

. (9)

We assume that CFF is measured for the highest possible con-
trast of 1, which corresponds to the contrast sensitivity equal to
1. Therefore, CFF can be estimated as the temporal frequency at
which CSF crosses the line of sensitivity equal to 1. By introduc-
ing Eq. 5 in Eq. 9, setting the sensitivity to 1, solving for temporal
frequency, and rearranging one obtains:

ωCFF ≈

√(
S0(ρ,L,e)

2k mn(X ,Y,T,e,ρ)

) 2
n0 −1

2π τ0(L,D)
, (10)

the resulting equation exhibits the relationship of CFF with the
various parameters of the Barten’s CSF.

Similar steps can be taken to demonstrate the separability
behavior in stelaCSF. We assume in higher temporal frequencies,
the contribution of the sustained channel is negligible; therefore,
Eq. 8 reduces to the following expression:

S(ρ,ω,L,a,e) = Secc(e,ρ)
(
Rτ (ω)SA,τ (ρ,a,L)

)
. (11)

By introducing Eq. 7 to Eq. 11, setting sensitivity to 1, and solv-
ing for temporal frequency one obtains (ω > ω0):

ωCFF ≈
(√

στ ln(Secc SA,τ )+ω
βτ

0

) 1
βτ

. (12)

Modifications to Barten’s CSF
Barten relied on the variation of on-center parasol cells’ den-

sity to predict the variation in spatial summation and sampling in
the periphery [31]. It has been argued that this assumption may
not be accurate and result in overestimation of the fall of acuity
and sensitivity with eccentricity [36]. Therefore, to address this
issue, we rely on the density of midget cells [37] and local scale
[38] to account for the variation of acuity and peak sensitivity, re-
spectively [36]. We assume that the local scale depends on the
visual meridian (ktemporal , knasal). Aliasing in the periphery is ne-
glected for simplicity.

To account for the variation of CFF with eccentricity in the
Barten spatiotemporal CSF, we modify Eq. 5 by making the time
constant of the temporal filter, τ0(L,D), a function of eccentric-
ity. It is assumed that the variation in the time constant of the
normalized amplitude response abstracts the overall influence of
gain, integration time, and desensitization on the bandwidth of the
temporal CSF curve. Therefore, variation in the time constant of
the temporal filter does not necessarily translate to a change in
the integration time. From Eq. 10, it is evident that there is an
inverse proportionality between CFF and time constant. Hence, a
decrease in the time constant of the temporal filter enhances CFF
values. According to Barten, the time constant of the photorecep-
tor filter changes as a function of stimulus size and illuminance
based on the following expression:

τ0(I,D) =
τ10

1+0.55ln
(
1+ I

3.5 (1+D)0.6
) , (13)

where τ10 is the time constant in the dark, D is the stimulus di-
ameter in visual degrees, and I is the illuminance expressed in
Trolands. We model the influence of eccentricity on the time con-
stant by adding an additional term to the denominator:

τ0(I,D,e) =
τ10

1+0.55ln
(

1+ I
kτ0

(1+D)0.6
(

Srf(e)
Srf(0)

)) , (14)

where kτ0 is a model parameter, Srf(e) is the size of the receptive
field’s center (RF size) as a function of eccentricity, and Srf(0) is
the size of the receptive field at the fovea. The intuition behind
this modification comes from the investigations of Rovamo et al.
[18] that emphasized the role of luminous flux on the variation of
CFF. Therefore, by introducing a normalized RF size term to the
equation, we shift the dependency of τ0(I,D,e) from illuminance
to luminous flux. As mentioned earlier, the luminous flux here
is defined as the product of illuminance and RF size expressed
in [(trolands)(degree)2]. To obtain quantitative estimates of RF
size, we rely on a characteristic feature of ganglion cell mosaics:
the maintenance of constant dendritic overlap across the retina
[39, 40]. This feature implies that the product of ganglion cells’
density and their dendritic field area, commonly referred to as the
dendritic coverage factor in morphological studies [41], is fixed
across the retina:

Cf = dgf(e,k)Srf(e) (15)

where dgf(e,k) is ganglion cells’ receptive field density derived
from Watson’s formula [37], and Cf is the dendritic coverage fac-
tor. It is assumed here that the dendritic field area represents the



RF size. The ganglion cells’ receptive field density is given by the
following expression [37]:

dgf(e,k) =

dgf(0)

(
ak

(
1+

e
e2,k

)−2
+(1−ak)exp

(
− e

er,k

))
,

(16)

where dgf(0) is ganglion cells’ receptive field density in the fovea,
er,k, e2,k, ak are formula’s parameters, and the index k denotes vi-
sual field meridian. These parameters are optimized with anatom-
ical data and their numerical values are reported in [37]. There is
evidence that for certain subsets of human ganglion cells (midget
cells), the coverage factor is one and may not vary across the
retina [40, 42]. However, several other investigations in primates
suggest an increase of coverage factor with eccentricity [43, 44].
Nevertheless, given the limited range of variations observed in
primate studies, we assume the coverage factor does not vary with
eccentricity or meridian. Note that an increased coverage factor
with eccentricity would imply an even larger spatial summation;
therefore, our assumption results in a conservative approximation
of the RF size. Finally, the RF size is obtained by rearrangement
of Eq. 15:

Srf(e) =
Cf

dgf(e,k)
, (17)

note that due to the normalization of Srf(e) with its foveal value
Srf(0), we do not need to assume a value for Cf in Eq. 14.

Modifications to stelaCSF
Measurements of CFF in bright conditions have revealed a

plateau in the Ferry-Porter plots, indicating that CFF’s increase
slows down and ultimately ceases beyond a certain light intensity
[45, 46]. This saturation effect resembles the plateau and subse-
quent sensitivity decline observed in the SCSF measurements of
static (0 Hz) Gabor stimuli [47]. However, the luminance range
at which these effects occur in SCSF and CFF varies, offering
the involvement of distinct underlying visual mechanisms. Un-
like Barten’s CSF, stelaCSF operates on two separate temporal
channels, allowing for two distinct luminance sensitivity func-
tions based on the temporal frequency regime that stimuli reside
in. In the original version of stelaCSF, the variation of peak sen-
sitivity for the transient channel is modeled as a linear increase in
a double logarithm plot (see Figure 5 in [1]). To account for the
effect of saturation in CFF, we propose the following alternative
expression:

Sm,τ (L) = ks1,τ

(
1+

ks2,τ

L

)−ks3,τ

, (18)

where ks1,τ , ks2,τ , ks2,τ are model parameters , and L is luminance
in candela per square meter. From the Eq. 12, a directly propor-
tional relationship between the bandwidth of the transient chan-
nel, στ , and CFF is evident. To account for the non-monotonic
course of the CFF in peripheral regions, we propose to control the
bandwidth of the transient channels (see Eq. 7) as follows:

στ (e) = στ

(
1+ kσ ,1 ekσ ,1

)
, (19)

where kσ ,1, kσ ,2 are model parameters, and e is eccentricity in
visual degrees. All model parameters are optimized based on the
experimental measurements.

Table 1: The fitted parameters for original and modified versions
of spatiotemporal CSF models. The HTF name extension stands
for ”high temporal frequency” and denotes modified models. For
a detailed description of the parameters for stelaCSF and Barten’s
CSF, refer to [1] and [31], respectively.

Models Parameters

stelaCSF ka,s = 0.0601, kb,s = 0.0002197, ka,τ = 0.0002726,
kb,τ = 2.47976, βs = 1.331, σs = 5.3266, βτ = 0.1898,
στ = 0.129405, ks1,s = 57.6634, ks2,s = 90.5523,
ks3,s = 0.17030, ks4,s = 8.36556e−7, ks5,s = 6.9238e9,
kρ1,s = 1.54334, kρ2,s = 11.5343, kρ3,s = 0.281654,
ks1,τ = 0.4378, ks2,τ = 216.51, kρ,τ = 0.00199, ke1 =

0.01552, ke2 = 0.0196, ke1,nasal = 0.00916, ke2,nasal =

0.01615

stelaCSF-
HTF

ka,s = 0.0517, kb,s = 0.00022, ka,τ = 0.0002718, kb,τ =

2.9898, βs = 1.331, σs = 2.16508, βτ = 0.1898,
στ = 0.1176, ks1,s = 69.20, ks2,s = 144.74, ks3,s =

0.1555, ks4,s = 7.097e − 7, ks5,s = 7.917e9, kρ1,s =

1.51, kρ2,s = 9.4, kρ3,s = 0.2874, ks1,τ = 20825.9,
ks2,τ = 168.77, ks3,τ = 0.58755, kρ,τ = 9.6569e− 5,
ke1 = 0.02578, ke2 = 0.01864, ke1,nasal = 0.01545,
ke2,nasal = 0.01563, kσ ,1 = 0.00001, kσ ,2 = 94.80

Barten’s
CSF

k = 1.44, σ0 = 0.72, ρc1 = 14.99, τ10 = 0.03663, τ20 =

0.01117

Barten’s
CSF-HTF

k = 7.13, σ0 = 0.38, ρc1 = 2.45, τ10 = 0.03666, τ20 =

0.09171, knasal = 0.2, ktemporal = 0.53, kτ0 = 1

Model Fitting and Performance
This section will describe the fitting procedure for the mod-

els. To ensure proper training and adequate evaluation of the
model, we rely on 15 datasets of contrast sensitivity and CFF
measurements. We consider a per-dataset sensitivity adjustment
factor to provide a simultaneous fit to all datasets using the same
set of model parameters. This factor accounts for variations in ex-
perimental methodology and stimulus features not explained by
the model’s parameters. The fitting procedure and loss function
are identical to those used for calibrating stelaCSF [1]. We rely on
the ”fminunc” function in Matlab software to optimize the free pa-
rameters of both models. Table 1 lists the set of optimized param-
eter values for each model. Note that in the case of the Barten’s
CSF, we limited both the training and evaluation to the photopic
range, as this model is not valid for scotopic vision and results in
large prediction errors [31]. The parameters in Barten’s CSF that
are not listed in Table 1 are not trained on the datasets mentioned
here, and the typical values reported in [31] are used for them.

Our analysis includes four CFF datasets, which we refer to
by the first author’s name for concision: Hecht [45], Delange [55],
Krajancich [23], and Chapiro [46]. The stimuli in Hecht, Delange,
and Chapiro datasets were discs, while in Krajancich dataset were
Gabor patches with spatial frequencies ranging from 0 to 2 cpd.
The size of the discs used in these experiments was less than 2
visual degrees, while the standard deviations of the Gaussian en-
velopes used in the Krajancich study were inversely proportional
to the spatial frequency of the Gabor patch. Hecht and Chapiro



Table 2: RMSE for prediction per dataset. The small font num-
bers in the last row denote the average and standard deviations
resulting from 5-fold cross-validation analysis. It is important to
note that the stelaCSF and Barten’s CSF models were fitted to
different portions of the dataset, with Barten’s CSF only model-
ing photopic vision. Therefore, it is not possible to compare the
results of both models. For the sake of brevity, datasets are re-
ferred to by their first author’s names.

stelaCSF stelaCSF-
HTF

Barten’s
CSF

Barten’s
CSF-HTF

Modelfest [48] 4.74 4.41 7.46 3.09

HDR-VDP [49] 3.26 3.29 7.20 3.89

HDR-CSF [47] 3.65 3.55 4.22 3.94

Rovamo [50] 2.70 2.73 5.10 3.97

Robson [33] 3.06 3.15 3.71 2.72

Laird [51] 5.92 6.30 8.14 7.47

Snowden [52] 5.41 5.35 7.47 6.03

Virsu [25] 6.60 5.71 8.44 3.75

Virsu [53] 4.75 4.25 10.45 4.50

Wright [54] 2.79 3.04 6.06 4.50

Anderson [6] 8.15 7.30 11.40 9.61

Krajancich [23] 10.24 7.42 23.14 5.53

Hecht [45] 4.89 3.52 6.17 4.95

Chapiro [46] 4.64 3.61 10.33 4.32

Delange [55] 3.33 2.56 2.50 4.44

Average
Average testing

4.74
5.30±0.17

4.41
4.87±0.13

8.05
9.22±0.23

4.98
5.37±0.48

datasets had limited or no surround, while in Delange and Kra-
jancich’s experiment, there was an extensive surround with an in-
tensity set to the time-average intensity of the flickering stimuli.
Two datasets from Hecht and Chapiro included measurements in
high luminance values (above 1000 cd/m2). In our analysis, we
excluded CFF measurements in low luminance conditions (below
1 cd/m2) for both models due to the possibility of rod intrusion in
flicker detection (see appendix in [26]).

A challenge when estimating the contrast sensitivity of discs
in a spatiotemporal model is determining an effective value for
the spatial frequency parameter. It is not possible to set the spatial
frequency of a uniform disc to zero as the spatial configuration of
the disc affects temporal sensitivity by determining the strength
of inhibitory signals [31]. To estimate the contrast sensitivity of
flickering discs using the stelaCSF, we relied on the peak sensi-
tivity of spatial CSF (see [56] for an evaluation of different ap-
proaches). On the other hand, when using the Barten’s CSF, we
follow his approach by setting S0 to 1 and calculating the spatial
frequency of the fundamental wave using ρ = (π D)−1, where D
is the diameter of the flickering disc expressed in visual degrees.
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Figure 2: CFF predictions from original (solid lines) and modified
(dashed lines) stelaCSF for Krajancich (circles) dataset [23]. The
left panel shows the Ferry-Porter lines in different eccentricities.
The right panel shows the variation of CFF as a function of eccen-
tricity under different light intensities. In both panels, the spatial
frequency of the stimuli is 0.57 cpd.

Psychophysical experiments designed for the measurement
of CSF and CFF are usually time-consuming. As a result, most of
the available datasets only examine a few sets of stimulus parame-
ters. Due to this restriction, it is not possible to divide the datasets
into test/train splits, as test errors for a specific dataset will not be
representative of the overall performance of a model [1]. There-
fore, we use the entire dataset for training and rely on the fitting
error to measure performance. Additionally, we conduct a five-
fold cross-validation analysis for each dataset and report the av-
erage testing errors along with their standard deviations. The pre-
diction errors are measured in root-mean-squared error (RMSE)
and expressed in decibel units.

Results and Discussion
The RMSE prediction errors for the original and modified

spatiotemporal models for all datasets are provided in Table 2.
The last row reports the average testing errors from a 5-fold cross-
validation analysis.

In Table 2, it is evident that the modified models outperform
the original models in terms of average prediction errors. The im-
provement in Barten CSF’s performance is especially remarkable
after modification. In 14 out of 15 datasets, the modified Barten
model consistently produces lower prediction errors. Among all
models tested, the modified version of stelaCSF yields the lowest
prediction error. One significant advantage of the stelaCSF model
over the Barten’s CSF model is its capability to handle a broad
range of luminance values, even in scotopic conditions.

Out of all the CFF datasets, predictions for the Krajancich
dataset [23] show the most significant improvement after modi-
fication. This dataset measures CFF values based on spatial fre-
quency, eccentricity, and luminance. When comparing stelaCSF’s
predictions to the Krajancich dataset (shown in Figure 2), the orig-



inal version resulted in a linear decrease of CFF values, which
doesn’t match CFF measurements. However, the modified version
shows a non-monotonic variation in higher eccentricities. This is
due to a modification applied to the transient channel’s bandwidth
(see Eq. 19), causing an initial increase. Additionally, there are
improvements in predicting foveal CFF after the modification.

Figure 3 compares the predictions of Barten’s CSF for
the Krajancich dataset. The original Barten, like the original
stelaCSF, cannot capture the non-monotonic variation of CFF and
exhibits a quick drop in eccentricity, resulting in significant pre-
diction errors. However, both foveal and peripheral predictions
have improved after adjusting for luminous flux and modifying
Equation 14. Interestingly, the modified Barten model delivers the
lowest prediction error for the Krajancich dataset. Nevertheless,
modified stelaCSF follows the overall data trend more accurately
despite larger errors. The initial increase in modified Barten’s pe-
ripheral predictions appears steeper than the experimental data.
Still, it isn’t easy to draw a definitive conclusion due to the sparse
sampling of the experimental data along the eccentricity dimen-
sion. Both models have larger errors for the lowest light intensity,
which may be due to rod intrusion [26].

The Ferry-Porter lines from modified stelaCSF tend to have
steeper slopes at higher eccentricity values. This trend was pre-
viously noted by Tyler and Hamer through a series of peripheral
CFF measurements, where they reported a more than twofold in-
crease in the slope of Ferry-Porter lines from 0 to 35 visual de-
grees [12, 57]. This trend is also evident in the measurements
of Krajancich et al. [23], but the sampling along the luminance
dimension is quite limited.

Figure 4 shows the predictions made by models for the De-
lange, Hecht, and Chapiro datasets. All datasets exhibit an almost
linear increase of CFF values up to 1000 cd/m2 as the logarithm
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Figure 3: CFF predictions from original (solid lines) and modified
(dashed lines) Barten’s CSF for Krajancich (circles) dataset [23].
The left panel shows the Ferry-Porter lines in different eccentric-
ities. The right panel shows the variation of CFF as a function of
eccentricity under different light intensities. In both panels, the
spatial frequency of the stimuli is 0.57 cpd.

of luminance increases, which follows the well-known Ferry-
Porter law previously discussed. The modified stelaCSF model
indicates a slower increase in CFF at the luminance value above
1000 cd/m2. The prediction errors of the stelaCSF decreased for
all three datasets after modification to the peak sensitivity func-
tion in the transient channel (refer to Eq. 18).

A limitation in our analysis and model fitting is the absence
of explicit consideration for the impact of the surrounding field.
The majority of CFF measurements are conducted in a dark set-
ting, but some, like Delange, Krajancich, and Hartmann [17],
have conducted them in a surrounding field with an intensity
matching the time-averaged intensity of the flicker. Barten has
suggested modeling the impact of the surrounding field by adjust-
ing the effective field size of the disk to the surrounding area [31].

Conclusions
We introduced several modifications to Barten’s CSF and

stelaCSF to enhance the accuracy of CFF predictions. Our com-
parison to psychophysical measurements from 15 datasets re-
vealed qualitative improvements in following the characteristic
trends in data and quantitative enhancements in prediction errors.
Specifically, the modified version of stelaCSF resulted in the least
average RMSE values across all datasets. The stelaCSF’s dual-
channel mechanism was particularly useful in explaining the sat-
uration of CFF measurements at high luminance values.
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