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Fig. 1. Result of our denoiser compared to noisy input generated with 4 samples per pixel (spp), a reference image generated using 6144 spp, and a

state-of-the-art ONNDmethod (OptiX) [Nvidia 2022b]. Our solution produces better image quality in significantly less time. Bistro © 2023 Amazon Lumberyard

Recent advancements in hardware-accelerated raytracing made it possible
to achieve interactive framerates even for algorithms previously considered
offline, such as path tracing. Interactive path tracing pipelines rely heavily on
spatiotemporal denoising to produce a high-quality output from low-sample-
count renderings. Such denoising is typically implemented as multiscale-
kernel-based filters driven by lightweight U-Nets operating on pixels, and
encoders operating on samples. In this work, we present a novel kernel
architecture in the line of low-pass pyramid filters. Our architecture avoids
the issues with the low-frequency response of previous such filters, resolving
ringing, blotchiness, and box-shaped artefacts while improving overall detail.
Instead of using classical downsampling and upsampling approaches, which
are prone to aliasing, we let our weight predictor networks learn to partition
the input radiance between pyramidal layers, predict kernels for denoising
each partitioned and downscaled image, and then guide the upsampling
process when combining layers. We present failure cases of pyramidal scale-
composition in previous work and, through Fourier analysis, show how our
method resolves them. Finally, we demonstrate state-of-the-art denoising
performance.

CCS Concepts: • Computing methodologies → Image processing; Ray
tracing.
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1 INTRODUCTION

Path tracing, despite its high computational cost, has become the
primary algorithm used for physically-based rendering through-
out the animation and visual effects industry due to its accuracy
and flexibility. Current GPUs can produce noisy low-sample-count
renderings at interactive rates thanks to hardware-accelerated ray-
tracing and reconstruct clean images using neural denoising filters,
also accelerated using linear algebra hardware. While such efficient
pipelines have enormous potential to improve creative workflows
and unlock new applications of path tracing in the real-time domain,
the quality of spatiotemporal denoisers remains a bottleneck.

Many recent works in neural denoising rely on kernel prediction;
instead of predicting an output image directly, they map the final
activations of their neural networks to local, per-pixel filtering
kernels. Then, they compute their output by applying these kernels
to the noisy input image. Kernel-predicting methods have proven to
hold some significant advantages; they are more robust, train faster
and offer improved performance [Bako et al. 2017].
Denoising benefits from larger kernels as weighing and averag-

ing more pixels reduces variance. If the variance is sufficiently low,
larger kernels can be more selective, only picking pixels that form
local structures, thereby preserving details. Unfortunately, enlarg-
ing kernels quickly becomes impractical as the computational cost
of kernel prediction and application scales quadratically with the
kernel size. Hierarchical pyramid kernels provide a natural solution;
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by efficiently applying small, cascaded filtering kernels, these meth-
ods can achieve large footprints at low computational costs [Vogels
et al. 2018].
Although pyramidal kernel prediction holds immense poten-

tial, predicting parameters for such filters with neural networks is
challenging. We identify some shortcomings of scale-composition,
which limit its overall performance. We propose a novel pyrami-
dal filter that avoids these issues by introducing jointly learnable
downsampling and upsampling stages. Our downsampler learns to
partition radiance between layers of our filtering pyramid, provid-
ing each layer with inputs matching their ideal noise characteristics.
In conjunction, our upsampler learns to reconstruct edges and high-
frequency details lost during downsampling, accurately aligning
each layer for recombination. By their combined effect, each layer
of our pyramid filter learns to denoise image structures of corre-
sponding sizes, which can be recombined by simply summing up
the upsampled output of each layer. Our filter is inherently energy-
preserving and numerically stable. Furthermore, we take special care
to use robust activation functions to predict our filtering parameters.
We also present considerable improvements to previous Monte

Carlo denoising pipelines by applying prominent ideas from related
fields. By adapting backpropagation through time [Hochreiter and
Schmidhuber 1997] from recurrent neural networks, we train on
64-frame-long sequences instead of 8, simultaneously increasing
the patch size to 256 pixels compared to 128 in previous works. By
motion compensation of our training patches, we train our filter
to better utilize temporal coherency. We adapt architectures from
image restoration [Zamir et al. 2022] and large kernel convolution
[Liu et al. 2022a] methods to scale our weight predictor network to
30 million parameters, further improving denoising performance at
interactive to offline rates.
To summarise our contributions:
• We propose a pyramidal filter with learnable partitioning
and upsampling stages. Through Fourier analysis, we explore
how our filter resolves previous shortcomings and provides
further advantages.

• We adopt training techniques previously used for recurrent
networks and image restoration networks proposing small
and large weight predictor networks to drive our method. We
demonstrate state-of-the-art performance in multiple timing
categories.

• Our implementation and dataset are available under the MIT
license on our project website.1

2 RELATED WORK

Algorithms for denoising Monte Carlo renderings have actively
been developed in recent years, with numerous solutions successful
at different performance budgets. We group methods into three
categories: real-time denoisers processing 1-4 samples within 30
milliseconds, interactive denoisers processing 4-8 samples in a per-
formance budget between 30 and 100 milliseconds, and offline de-
noisers process over 8 samples in over 100 milliseconds. We focus
on recent works relevant to our work; for a wider overview, we refer
the reader to excellent surveys by Huo and Yoon [2021] on deep
1https://github.com/balintio/nppd

learning-based methods and by Zwicker et al. [2015] on classical
methods.
Non-machine-learning-driven filters [Koskela et al. 2019; Ko-

zlowski and Cheblokov 2021; Nvidia 2022a; Schied et al. 2017; Zhdan
2021] are still commonly used for high framerate real-time applica-
tions. However, optimised kernel-predicting filters [Fan et al. 2021;
Meng et al. 2020; Thomas et al. 2022] take prominence when the bud-
get allows for inference using a lightweight neural network. Most
notably, Thomas et al. [2022] jointly solve denoising and supersam-
pling using a U-Net [Ronneberger et al. 2015] inspired multiscale
filter.
Neural kernel-predicting filters dominate interactive denoising

methods, with two general approaches emerging: pyramidal fil-
ters and generalised bilateral filters [Tomasi and Manduchi 1998].
Our work focuses on pyramidal filtering, with a detailed discus-
sion of its background in Section 3. As an alternative, some recent
works generalise bilateral filters and combine them with learning
components, building effective neural edge-preserving smoothing
filters. Meng et al. [2020] use a lightweight convolutional network
to guide a bilateral grid filter. Işık et al. [2021] further generalise
bilateral filtering, calculating the range kernel for eight-dimensional
per-pixel affinity features. Their approach avoids the issues with
pyramid methods but is computationally more expensive due to
higher memory bandwidth requirements and less cache-friendly
memory access patterns. In addition, orthogonal extensions such as
path-based filtering [Cho et al. 2021; Lin et al. 2021], compositional
filtering [Zhang et al. 2021], and self-supervised post-correction
denoising [Back et al. 2022] have been proposed.
Recent offline filters abandon kernel prediction for directly pre-

dicting the output image and instead focus on improving the under-
lying network architecture. The proposed ideas include transformer
blocks [Lu et al. 2020; Yu et al. 2021], deformable convolution [Wei
et al. 2021], conditioned feature modulation [Fu et al. 2021; Xu et al.
2019], dual-residual connections [Lu et al. 2021] and generative-
adversarial training [Lu et al. 2021, 2020; Xu et al. 2019; Yu et al.
2021]. Zheng et al. [2021] apply ensembles of such denoisers to
mitigate the artefacts produced by each individual denoiser. These
methods offer much larger receptive fields than those of kernel-
predicting architectures. However, we argue that denoising is still
a substantially easier task when done in the parameter space of
predicted linear denoising kernels; we show that our multiscale
filter does not incur the same limitations in terms of kernel size and
scales when driven by powerful networks, outperforming direct
predicting architectures.

3 PYRAMIDAL DENOISING

Pyramid hierarchical kernels allow for an efficient, cascaded appli-
cation of small denoising kernels [Hasselgren et al. 2020; Munkberg
and Hasselgren 2020; Vogels et al. 2018] while achieving the foot-
print of large, computationally expensive kernels [Bako et al. 2017].
In this section, we describe the background of previous filter archi-
tectures and the shortcomings of their neural adaptations. These
limitations serve as the core motivation for our filter design, which
we describe in Section 4.

2
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We use various symbols to denote radiance processed at differ-
ent pipeline stages. Supplementary, Table 1 and Figure 4 offer an
overview to ensure clarity for our readers.

3.1 Low-pass filtering and downsampling

Pyramidal filters first need to generate a decimated low-pass pyra-
mid [Burt andAdelson 1987] serving as input for per-layer denoising.
Although the original formulation uses Gaussian filters, learning-
based methods favour box filters or average pooling. Introducing
our notation, we can formulate this operation in a closed form:

�̄�𝑙𝑥𝑦𝑡 =
2𝑙 (𝑥+1)−1∑︁
𝑢=2𝑙𝑥

2𝑙 (𝑦+1)−1∑︁
𝑣=2𝑙 𝑦

1
22𝑙 · �̄�𝑢𝑣𝑡 , (1)

where �̄�𝑢𝑣𝑡 denotes the radiance of pixel (𝑢, 𝑣) averaged over sam-
ples rendered for frame 𝑡 (and temporally accumulated for recent
frames, Equation 10), and �̄�𝑙𝑥𝑦𝑡 denotes the radiance of the coarse
pixel (𝑥,𝑦) of the 𝑙-th layer of the low-pass pyramid, where 𝑙 = 0
stands for the full-resolution and 𝑙 = 𝑁 the coarsest layer. We use
zero-based indexing for pixel coordinates in our notation. We use
a non-recursive pyramid formulation for reasons that will become
clear in Section 4.1.

3.2 Denoising kernels

Next, pyramidal filters suppress noise in each layer of the pyramid
by applying neurally predicted kernels 𝐾𝑙

𝑢𝑣𝑥𝑦𝑡 , which are unique
for each pixel (𝑥,𝑦) and cover its neighbourhood (𝑢, 𝑣):

�̂�𝑙𝑥𝑦𝑡 =
∑︁
𝑢𝑣

�̄�𝑙𝑢𝑣𝑡 · 𝜎𝑥𝑦 (𝐾𝑙
𝑢𝑣𝑥𝑦𝑡 ), (2)

where �̂�𝑙𝑥𝑦𝑡 denotes the layered denoised radiance and 𝜎𝑥𝑦 denotes
softmax normalisation of the kernels along (𝑥,𝑦). Equation 2 corre-
sponds to a kernel-splatting operation [Gharbi et al. 2019; Munkberg
and Hasselgren 2020] as 𝑥 and 𝑦 index the denoised layers. Con-
versely, swapping 𝑥𝑦 and 𝑢𝑣 , essentially transposing the operation,
would denote a kernel-gathering operation, which is also commonly
used by previous work [Hasselgren et al. 2020; Vogels et al. 2018].

3.3 Upsampling and composition

After applying the predicted denoising kernels separately at each
scale, pyramidal filters need to upscale the coarse layers and com-
pose an output image. Unfortunately, each layer of the denoised
low-pass pyramid contains some residual low-frequency noise that
falls below the receptive field of the small denoising kernels. Thus,
denoising filters must solve a challenging task; fusing the clean
frequency bands from each layer.
Two approaches have been proposed in previous works. First,

Delbracio et al. [2014] convert the low-pass pyramid to a Laplacian
pyramid by subtracting subsequent layers to isolate the clean fre-
quency bands (shown in brackets in Equation 3). The sum of these
bands then gives a clean, full-resolution output. We formulate this
operation recursively, where �̃�𝑁𝑥𝑦𝑡 = �̂�𝑁𝑥𝑦𝑡 starts with the coarsest
layer, yielding the full-resolution output as �̃�0

𝑥𝑦𝑡 , by applying the
following equation:

�̃�𝑙𝑥𝑦𝑡 =
[
�̂�𝑙𝑥𝑦𝑡 − U(D(�̂�𝑙𝑥𝑦𝑡 ))

]
+ U

(
�̃�𝑙+1
𝑥𝑦𝑡

)
, (3)

Denoised Layers

Input Output

l =
 0

l =
 1

l =
 2

Laplacian Pyramid
Level

Alpha Blending
Weights

Fig. 2. Scale-composition as proposed by Vogels et al. [2018]. The denoised

layers contain residual low-frequency noise. Converting the representa-

tion to a Laplacian pyramid by subtracting subsequent layers cancels this

residual noise. However, small mismatches between the denoised layers

cause overshoots and ringing artefacts in the Laplacian pyramid. The pre-

dicted blending weights control composition to reduce these artefacts (lower

weights give more conservative composition). Zero-Day © 2023MikeWinkel-

mann

where U and D are shorthands for the two-by-two upsampling and
downsampling operators.
Delbracio et al. [2014] proposed this formulation of scale-com-

position for a classical method, applying their ray histogram fusion
filter to all layers. Matching the response of the filters applied to each
layer is critical for Laplacian pyramids, as inconsistencies between
the layers where the filters’ response overlaps can cause ringing and
over-blurring artefacts. Such consistency is difficult to guarantee
between neurally predicted kernels; thus, Vogels et al. [2018], when
adapting scale-composition for neural kernel prediction, proposed a
neurally predicted per-pixel blending weight, 𝛼𝑙𝑥𝑦𝑡 , that can control
composition in specific regions to reduce artefacts:

�̃�𝑙𝑥𝑦𝑡 = �̂�𝑙𝑥𝑦𝑡 − 𝛼𝑙𝑥𝑦𝑡U(D(�̂�𝑙𝑥𝑦𝑡 )) + 𝛼𝑙𝑥𝑦𝑡U
(
�̃�𝑙+1
𝑥𝑦𝑡

)
. (4)

While they show this workaround to be reasonably effective, it illus-
trates a fundamental incompatibility between Laplacian pyramidal
denoising and neural kernel prediction. Figure 2 shows the Laplacian
pyramid layers and blending weights for an example scene.
Recently, Munkberg and Hasselgren [2020] proposed upscaling

layers to full-resolution and taking their weighted sum by neu-
rally predicted weights. While these weights can cancel the residual
noise without resorting to Laplacian pyramids, learning the residual
noise’s characteristics still poses a challenging task for the weight
predictor network. In the following section, we present our pyrami-
dal filter design that prevents the creation of such residual noise in
the first place.

3
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4 PARTITIONING PYRAMIDS

An overview of our pyramidal denoising is shown in Figure 4 as
a grey-colored inset. While its three-stage structure is similar to
existing solutions (Section 3), we propose the following innovations.

By letting our downsampler partition the input pixel radiance in
a learnable manner, our weight predictor network learns to provide
denoising kernels with radiance better suited for their receptive
field. This way, compositing becomes as simple as summing up each
layer. Our upsampler applies neurally predicted splatting kernels
instead of bilinear upsampling, enhancing coarse layers with edge-
preserving capabilities, which are utilised thanks to our neural
partitioning stage, enhancing the reconstructed detail in noisy areas.
In this section, we introduce our partitioning downsampler and

our splatting upsampler, explaining the unique properties of each
and how they work in tandem to improve denoising performance.

4.1 Partitioning downsampler

Previousworksweigh their pyramidal layers after denoising through
learnable composition [Hasselgren et al. 2020; Munkberg and Has-
selgren 2020; Vogels et al. 2018]. We aim to simplify this weighting
task by bringing it to the front of our denoising filter. We use the
per-layer weights to partition the radiance of each pixel before
downsampling and denoising. Compared to learnable composition,
our partitioning task is more straightforward as it is independent
of the following denoising kernels and is not prone to ringing and
blurring artefacts.

The softmax function is widely used as the final activation layer
of neural networks to partition probability spaces as it provides
a smooth mapping from a vector with arbitrary components to a
vector whose components fall on the interval (0, 1) and which sum
up to one [Goodfellow et al. 2016; Sutton and Barto 2018]. Similarly,
we can multiply the resulting weights with a signal to partition said
signal; Munkberg and Hasselgren [2020] used softmax normalised
weights to partition sample radiances between depth-wise layers for
denoising defocus and motion blur, albeit without improvements
beyond two layers. Nevertheless, we use a similar operation and do
not observe such limitations in our application.

First, we predict partitioning weights𝑤𝑙
𝑢𝑣𝑡 , all at full-resolution,

which we then softmax normalise along pyramid layers. Then, we
partition the radiance across the layers and downsample by average
pooling the resulting partitions to produce the multiscale images
ready for denoising. We formulate our operation by adding the
highlighted part to Equation 1:

�̄�𝑙𝑥𝑦𝑡 =
2𝑙 (𝑥+1)−1∑︁
𝑢=2𝑙𝑥

2𝑙 (𝑦+1)−1∑︁
𝑣=2𝑙 𝑦

1
22𝑙 · 𝜎𝑙 (𝑤𝑙

𝑢𝑣𝑡 ) · �̄�𝑢𝑣𝑡 (5)

where 𝜎𝑙 denotes softmax normalisation along layers. The leftmost
side of Figure 6 shows the predicted partition weights for a demon-
stration scene and the resulting radiance partitions. Intuitively, the
partitions separate image features based on scale and noise char-
acteristics, directing smaller or less noisy features to finer layers.
Denoising each feature at the finest layer with the minimum re-
quired kernel size is beneficial as it frees up coarser layers for larger,

*+1

Fig. 3. We splat each coarse pixel (blue) to its four-by-four neighbourhood

of one-layer finer-resolution pixels (red) according to predicted kernels 𝜅 ,

unique to each coarse pixel.

noisier features. We show partitions for further test images in Sup-
plementary, Fig. 3.

Once radiance is partitioned, we apply the learned kernels𝐾𝑙
𝑢𝑣𝑥𝑦𝑡

to the radiance �̄�𝑙𝑥𝑦𝑡 in the denoising kernel stage, as described in
Section 3.2 and shown in Figure 4 (grey-colored area). Specifically,
we perform a 5 × 5 kernel-splatting operation (Equation 2) as pro-
posed by Gharbi et al. [2019] and Munkberg and Hasselgren [2020].

4.2 Splatting upsampler

If the coarse layers of the pyramid are naively upsampled, for exam-
ple, using bicubic interpolation, their utility is much limited — they
cannot convey information beyond the Nyquist frequency of the
given layer. Previous works [Hasselgren et al. 2020; Munkberg and
Hasselgren 2020; Vogels et al. 2018] address this problem by using
learnable composition (Equation 4), as discussed in Section 3.3. Here,
we propose learnable upsampling kernels, which can better preserve
edges, are not prone to ringing and blurring, and are convenient to
predict using neural networks.

Our upsampling and compositing is performed in a coarse-to-fine
order. A finer layer is the sum of the corresponding denoised layer
and an upsampled coarser layer:

�̃�4
𝑥𝑦𝑡 = �̂�4

𝑥𝑦𝑡 , (6)

�̃�𝑙𝑥𝑦𝑡 = �̂�𝑙𝑥𝑦𝑡 +
∑︁
𝑢𝑣

4 �̃�𝑙+1
𝑢𝑣𝑡 𝜎𝑥𝑦 (𝜅𝑙+1

𝑢𝑣𝑥𝑦𝑡 ) for 𝑙 = 3, 2, 1, 0. (7)

where𝜅𝑙+1
𝑢𝑣𝑥𝑦𝑡 is a 4×4 learned upsampling kernel, �̂� are the denoised

layers, and �̃� are the composed and layers. 𝜎𝑥𝑦 denotes softmax
normalization performed. Our filter uses 5 layers, making 𝑙 = 4 our
coarsest layer. We ablate this choice in Section 6.3. The result of the
operation is �̃�0. Figure 3 shows the geometry of our kernel applica-
tion step. The prediction of the kernel 𝜅𝑙+1

𝑢𝑣𝑥𝑦𝑡 will be explained in
Section 5.1.
Making the upsampling kernels learnable allows our method

to adopt edge-preserving strategies. These strategies are crucial
considering ourmethod’s effective footprint; at the lowest resolution
layer, one pixel corresponds to 16 × 16 full-resolution pixels, and
after applying the 5 × 5 denoising kernels and successive 4 × 4
upsampling kernels, our method reaches an effective footprint of
110 × 110 pixels. The edge-preserving properties of our filter let
it mitigate low-frequency noise and transport radiance over large
distances. Figure 5 and rightmost column of Figure 6 demonstrate
the edge-preserving capabilities of our upsampler.

4
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5 IMPLEMENTATION

Our work mainly focuses on the filtering stage, so we adapt most
of our overall pipeline from previous methods [Hasselgren et al.
2020; Işık et al. 2021]. However, we note some changes regarding
linear radiance and temporal processing. We propose two weight
predictor networks to drive our filter; first, we build a 15 million
parameter convolutional network (OursSmall), similar to previous
work [Işık et al. 2021; Munkberg and Hasselgren 2020], that we
optimise to run in real-time using TensorRT 2 and XLA [Sabne 2020].
Second, we build a 30 million parameter network (OursLarge) from
ConvNext [Liu et al. 2022a] blocks in the Restormer [Zamir et al.
2022] configuration, optimised for interactive to offline performance.
In the following section, we provide an overview of our pipeline,
with Supplementary, Sec. A including all the details of our weight
predictor networks and feature engineering.

5.1 Pipeline

Figure 4 presents major components of our denosing pipeline. Its
input is per-sample linear radiance 𝑳 and a vector 𝒓 including base
colour, normal in camera coordinates, and depth. We find that addi-
tional features degrade test-time performance. First, following Işık
et al. [2021] and Munkberg and Hasselgren [2020] we use a small
fully-connected network, 𝑔𝜃 , to encode per-sample data and then
we average encodings for each pixel:

𝒆𝑥𝑦𝑡 =
1
𝑆

𝑆∑︁
𝑠=1

𝑔𝜃 (𝒓𝑥𝑦𝑠𝑡 ), (8)

where 𝑠 denotes the sample index, and 𝑆 stands for the total number
of samples per pixel. Similarly, we average the sample radiance
values 𝑳𝑥𝑦𝑠𝑡 for each pixel in the current frame 𝑡 :

𝑳𝑥𝑦𝑡 =
1
𝑆

𝑆∑︁
𝑠=1

𝑳𝑥𝑦𝑠𝑡 . (9)

We compute all features at the primary ray intersection. Con-
sequently, samples visible through specular reflections and trans-
missions do not contribute to these features making their image
more difficult to denoise. Robustly handling such cases is an active,
orthogonal area of research that we touch on in Section 7.

We compute the accumulated radiance �̄� and embeddings 𝒆 over
time (refer to Figure 4). Neural temporal blending weights 𝜆𝑥𝑦𝑡
control such accumulation:

�̄�𝑥𝑦𝑡 = (1 − 𝜆𝑥𝑦𝑡 )𝑳𝑥𝑦𝑡 + 𝜆𝑥𝑦𝑡 W𝑡 �̄�𝑥𝑦,𝑡−1, (10)
𝒆𝑥𝑦𝑡 = (1 − 𝜆𝑥𝑦𝑡 )𝒆𝑥𝑦𝑡 + 𝜆𝑥𝑦𝑡 W𝑡 𝒆𝑥𝑦,𝑡−1, (11)

where W𝑡 is the warping operator, which warps and bilinearly in-
terpolates frame 𝑡 − 1 to frame 𝑡 using backwards motion vectors
calculated at the centre of each pixel in frame 𝑡 . We restrict 𝜆𝑥𝑦𝑡 to
the range (0, 1) using sigmoid mapping.

Next, we predict parameters for our denoising filter using aweight
predictor network 𝑓𝜃 (refer to Figure 4). As input, we provide the ra-
diance and embeddings from the current frame, and the accumulated

2https://developer.nvidia.com/tensorrt

radiance and embeddings warped from the previous frame:

𝜆𝑥𝑦𝑡 ,𝑤
𝑙
𝑥𝑦𝑡 , 𝐾

𝑙
𝑢𝑣𝑥𝑦𝑡 , 𝜅

𝑙
𝑢𝑣𝑥𝑦𝑡 ,𝑇𝑢𝑣𝑥𝑦𝑡 , 𝜇𝑥𝑦𝑡 =

𝑓𝜃 (𝑳𝑥𝑦𝑡 , 𝒆𝑥𝑦𝑡 , W𝑡 �̄�𝑥𝑦,𝑡−1, W𝑡 𝒆𝑥𝑦,𝑡−1). (12)

Then we apply our denoising filter as described in Equations 5,
2, and 7. Finally, we apply a secondary temporal loop to improve
temporal stability:

𝑶𝑥𝑦𝑡 = (1 − 𝜇𝑥𝑦𝑡 )�̃�0
𝑥𝑦𝑡 + 𝜇𝑥𝑦𝑡

∑︁
𝑢𝑣

(W𝑡𝑶𝑡−1)𝑢𝑣 · 𝜎𝑥𝑦 (𝑇𝑢𝑣𝑥𝑦𝑡 ), (13)

where 𝜇𝑥𝑦𝑡 is a secondary set of blending weights, similar to 𝜆𝑥𝑦𝑡 ,
and 𝑇𝑢𝑣𝑥𝑦𝑡 is a 5 × 5 temporal kernel, applied similarly to 𝐾0

𝑢𝑣𝑥𝑦𝑡 .
We adopt this mechanism from NTASD [Hasselgren et al. 2020],
as we find it is necessary to achieve good temporal stability; every
denoising filter we tested (see Section 6) produced intense flickering
without this secondary temporal loop.

5.2 Training procedure

Spatiotemporal processing Many video super-resolution meth-
ods rely on recurrent convolutional neural networks as their weight
predictors [Liu et al. 2022b]. Inspired by their success, we adopt
one of their key components; we use Backpropagation Through
Time (BPTT) [Hochreiter and Schmidhuber 1997], taking staggered
training iterations over every two consecutive frames. Denoising
does not offer delayed rewards; our objective is to output the high-
est possible quality frame in every iteration. Therefore, the greedy
two-iteration BPTT is well suited for training the temporal element
of our denoiser.
Previous methods [Hasselgren et al. 2020; Işık et al. 2021] pro-

cess entire sequences in each training iteration. Backpropagating
through such iterations is extremely memory-consuming, limiting
these approaches to 8 frame sequences of 128 × 128 patches. In
contrast, we train our model on 64 frame sequences of 256 × 256
patches, exposing our model to substantially more spatiotemporal
information.
Dataset Inspired by Hypersim [Roberts et al. 2021], we leverage
Evermotion’s Archinteriors and Archexteriors collections to build
our production-quality training dataset that exceeds the quality and
diversity of datasets used in previous works. Refer to the supple-
mentary Supplementary, Sec. B for more details on our training
dataset.
Loss function Our loss function employs perceptual compo-
nent as proposed by Thomas et al. [2022], complemented with
SMAPE following Munkberg and Hasselgren [2020]. Both compo-
nents contribute also to the temporal loss that additionally involves
the warped previous frame, as we detail in the supplementary Sup-
plementary, Sec. C.
Training We implement our pipeline in Tensorflow 2 [Abadi et al.
2016]. We use the Adam [Kingma and Ba 2014] optimiser with a
batch size of 8. We begin training at a learning rate of 10−4 and
exponentially decay the learning rate, halving it every 11 epochs.
We train on the full 256 × 256 patches included in our dataset,
augmented with flips and rotations. Training typically converges
after 50 epochs, taking 2-3 days on a single NVIDIA A40 GPU for
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Fig. 4. Processing diagram for our denoiser. Sample radiance and geometric/material features are encoded and averaged over each pixel. The per-pixel radiance

and features for the current frame are then combined with those of the previous frame (after motion compensation, Eqs. 10 and 11). The kernels of the

per-pixel denoising filters and other parameters are predicted by the weight predictor network (Eq. 12). To apply denoising kernels, the radiance is partitioned

into a 5-layer pyramid (4.1), then convolved with the kernels (Eq. 2), and finally the layers are combined using adaptive splatting upsampler (4.2). For better

temporal stability, the final radiance values are filtered using predicted temporal kernels (Eq. 13).

our small weight predictor, and 4-5 days on 4 A40s for our large
weight predictor.

6 EVALUATION

In this section, we compare our pipeline performance to state-of-the-
art techniques and run several ablations of our pyramidal denoising.
Our test scenes include Kitchen, Dining-room, Bedroom [Bitterli

2016], Bistro [Nvidia 2017], and Zero-Day [Winkelmann 2019] (all
excluded from the training dataset). As our method and some com-
pared methods rely on temporal information, we allow a 16-frame
warm-up phase at the start of each sequence.We tonemap the output
frames based on the ACES guidelines [Hill 2022] to match profes-
sional animations. We use the Falcor [Kallweit et al. 2022] renderer
to render our input samples and 6144 samples per pixel for reference
frames. We compute our reference frames as the median of three
uncorrelated 2048 spp estimates to suppress fireflies.

6.1 Baseline comparisons

We compare our full pipeline to state-of-the-art denoisers.We render
our training dataset using Falcor. We compare against AFGSA [Yu
et al. 2021], Intel Open Image Denoise (OIDN) [Intel 2022] version
1.4.3, and Nvidia OptiX AI-accelerated Denoiser (ONND) [Nvidia
2022b] version 7.6, with temporal [Hasselgren et al. 2020] and kernel-
based [Bako et al. 2017] extensions enabled. OIDN and AFGSA are
high-quality offline denoisers with inference times on the order over
500milliseconds, while ONND is an optimised interactive denoiser
taking roughly 100milliseconds. We average our per-sample albedo,
normal and depth data as each competitor requires per-pixel inputs.
We retrain AFGSA and OIDN and use the pre-trained, proprietary
ONND included in OptiX. While version 5 of ONNDwas retrainable,
it was based on early work by Chaitanya et al. [2017], surpassed by
more recent works [Bako et al. 2017; Xu et al. 2019; Yu et al. 2021],
and is unsupported on recent GPUs.

In our comparison, we consider commonly used image quality
metrics such as per-pixel PSNR, structure-oriented SSIM and MS-
SSIM [Wang et al. 2003], perception-informed FovVideoVDP 3 [Man-
tiuk et al. 2021], Flip [Andersson et al. 2020], and tPSNR [Banitalebi-
Dehkordi et al. 2016]. Commonly used PSNR and SSIM measure
error per pixel or in a small sliding window. Meanwhile, MS-SSIM
and FovVideoVDP apply filter banks, capturing distortions over
large areas. Moreover, FovVideoVDP is a video quality metric that
captures temporal distortions, including popping and flickering
artefacts perceivable by human observers.

Table 1 presents the obtained results where theOursLargeweight
predictor (refer to Section 5) consistently outperforms all compet-
ing solutions for all considered metrics. This observation holds for
all numbers of input samples per pixel. OursSmall takes 32milli-
seconds to denoise a full HD frame (1920×1080), which is three times
faster than ONND; OursLarge similar as OIDN requires around
500milliseconds, while AFGSA 5.5 seconds.

Figure 7 shows a visual comparison of denoising performance for
selected frames. We refer the reader to our supplementary material
for full-resolution images and videos of our animated sequences.

Table 1. Comparison of the baselinemethods. Denoising quality is measured

using a number of well-established full-reference metrics. We denote in bold

the best quality score and with a gray background the second-best score for

a given number of samples per pixel (spp). ↑/↓ indicate that higher/lower
scores are better.

AFGSA OIDN OursLarge ONND OursSmall
method 8spp 32spp 8spp 32spp 8spp 32spp 2spp 4spp 2spp 4spp
PSNR↑ 29.33 31.58 29.22 30.90 30.99 32.41 25.39 26.51 28.54 29.70
SSIM↑ 0.877 0.905 0.884 0.900 0.904 0.919 0.813 0.836 0.878 0.892
MS-SSIM↑ 0.960 0.974 0.963 0.973 0.976 0.980 0.920 0.940 0.960 0.969
FoVVDP↑ 7.867 8.156 7.878 7.986 8.456 8.505 7.153 7.554 7.806 8.146
FliP↓ 0.102 0.078 0.113 0.094 0.085 0.076 0.144 0.126 0.109 0.095
tPSNR↑ 27.00 29.16 27.10 28.60 29.01 30.49 23.87 24.80 26.55 27.58

3FovVideoVDP v1.1.3, 37.84 ppd, 200 nit peak, 0.5979 nit black, non-foveated
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Table 2. Pyramidal filter ablations. The interpretation of columns follows

Figure 5. Refer to the figure caption for more details.

method OursSmall w/o Upsampler 4 layers 3 layers
PSNR↑ 29.70 29.47 29.47 29.23
SSIM↑ 0.892 0.890 0.891 0.888
MS-SSIM↑ 0.969 0.967 0.968 0.965
FoVVDP↑ 8.146 8.089 8.098 8.006
FliP↓ 0.095 0.101 0.101 0.107
tPSNR↑ 27.58 27.53 27.59 27.47

Table 3. Replacements of our denoising filter.We evaluate alternatives to our

proposed denoising filter: weighted sum [Munkberg and Hasselgren 2020],

scale-composition [Vogels et al. 2018], and affinity kernels [Işık et al. 2021].

We leave the rest of our Small and Large pipelines, driven by OursSmall

and OursLarge respectively, unchanged. The best and second-best scores

are marked separately for the Small and Large weight predictors.

Ours Weighted sum Scale-comp. Affinity
method Small Large Small Large Small Large Small Large
PSNR↑ 29.70 29.98 29.33 29.37 29.40 29.63 29.72 29.03
SSIM↑ 0.892 0.895 0.889 0.891 0.888 0.894 0.889 0.883
MS-SSIM↑ 0.969 0.971 0.967 0.968 0.967 0.969 0.967 0.966
FoVVDP↑ 8.146 8.213 8.075 8.092 8.099 8.130 8.092 8.095
FliP↓ 0.095 0.094 0.103 0.105 0.103 0.105 0.096 0.098
tPSNR↑ 27.58 28.00 27.42 27.68 27.47 27.98 27.65 26.98

6.2 Choice of denoising filter

We compare our denoising filter against several filters proposed in
previous works. We swap our denoising filter in our pipeline with
implementations of other filters, keeping the rest of our pipeline the
same for a fair comparison. We test each filter 4 spp inputs using the
OursSmall weight predictor and the OursLarge weight predictor
to analyse each filter’s scalability. Table 3 shows several metrics
averaged for our test scenes.
Although metrics mostly show small differences, our denoising

filter scales well with respect to weight predictor size. As only
our filter shows the best overall performance with both weight
predictors, it is a reliable choice for general Monte Carlo noise
filtering.

6.3 Pyramidal filter ablations

To analyse each component’s role, we perform ablation studies. We
use the OursSmall weight predictor network with 4 spp inputs.
We test our denoising filter with 3 and 4 layers instead of 5, we
substitute our learnable upsampling stage with bilinear upsampling.
Table 2 shows several metrics averaged for our test scenes, and
Figure 5 shows side-by-side qualitative comparisons.

Our learnable partitioning downsampler is a crucial component of
our denoising filter. The learnable upsampling stage, while having a
small impact on metrics, improves the denoising of low frequencies
and enhances sharp details. Dropping to 3 or 4 layers also has little
effect on metrics but limits the low-frequency denoising capabilities
of our filter. The computational cost savings in these cases are
negligible; therefore, we favour our full scheme.

ReferenceOur Small w/o Upsampler 4 layers 3 layers Noisy

Fig. 5. Pyramidal filter ablations. TheOursSmallweight predictor is consid-

ered and the role of: (1) learnable upsampling (Section 4.2) that is replaced

by a simple bilinear upsampling (the column “w/o Upsampler”) and (2)

the number of filter layers as shown in Figure 6 (3rd and 4th columns) are

considered. Our complete filter uses 5 layers. The last two columns show

the reference image and the noisy input. Bistro © 2023 Amazon Lumberyard,

Kitchen © 2023 Jay-Artist, Bedroom © 2023 SlykDrako

Important visual consequences of dropping learnable upsampling
can be observed in the 1st and 2nd row of Figure 5, where bilinear
upsampling leads to ringing and overshoot artifacts. In general,
reconstructed edges are more blurry in the second column. Reducing
the number of layers might lead to excessive washing out of noisy
low-contrast patterns and residual low-frequency noise as can be
seen in the 3rd and 4th row. The 5th layer is rarely utilised but does
occasionally help resolve artefacts as reflected by metrics.

7 LIMITATIONS AND FUTURE WORK

Our filter is affected by over-blurring and synthetic structural arte-
facts common to neural networks. When our filter cannot recon-
struct a clean, detailed image of the available samples, it inevitably
has to tradeoff between these artefacts. While perceptual loss func-
tions can somewhat control the learned strategy, our network occa-
sionally produces dissatisfactory results.
Relying on primary ray intersections diminishes our denoiser’s

performance in scenes with specular objects. However, path-based
denoising [Cho et al. 2021; Lin et al. 2021] and temporally reliable
motion vectors [Thomas et al. 2022] are orthogonal research areas
with good potential to resolve these issues.

Finally, we do not consider motion blur, depth of field, or other
distributed effects—however, the depth-wise layer decomposition
proposed by Munkberg and Hasselgren [2020] is orthogonal to our
work and could potentially alleviate this limitation.

8 CONCLUSION

In this work, we proposed a novel pyramidal filter that, combined
with a lightweight network, achieves close to real-time performance
while offering denoising quality comparable to previous offline
solutions. Combining the same pyramidal filter with a large network,
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we obtain substantial improvements over previous work. Visually
comparing our denoised frames reveals better reproduction of high-
frequency details and a significant reduction of low-frequency noise
and artefacts.

Some of the improvements can be attributed to our training strate-
gies that adapt backpropagation through time, handling longer
frame sequences and larger patch sizes. Nevertheless, embedding
previously considered state-of-the-art filters into our training pipe-
lines and network architectures still diminishes performance.
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Fig. 6. Fourier analysis of our filter. The plots show the power spectra of the entire image at consecutive processing stages. The blue line represents the signal

and the orange line represents noise (calculated by subtracting the reference image). The range of values on both axes is identical in all the plots. Note that

the rightmost column does not show �̃�𝑙 , but each layer upsampled separately. The predicted partitions contain insignificant low-frequency noise below

the denoising kernel’s effective band in each layer ➀, a mix of useful radiance and noise in the effective band ➁, and primarily white noise in the higher

frequencies ➂, later removed by downsampling ➃. The noise filtering stage reduces the noise in the effective band ➄, and the upsampling stage reconstructs

the small amount of useful high-frequency radiance lost during downsampling ➅. Zero-Day © 2023 Mike Winkelmann
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Fig. 7. Our denoiser compared to state-of-the-art methods on four scenes: Bistro1, Bistro3, Kitchen, and Zero-Day. Our method was able to remove noise

effectively, as seen in the pink inset of the Bistro1 scene. Other methods (ONND and OIDN) retained some of high and low-frequency noise. Additionally,

our method was able to preserve the contrast of the tree in the blue inset of the Bistro1 scene. In the Bistro3 scene, our method was able to preserve high

frequencies of caustics (as seen in the pink inset) and provided better appearance of thin objects, without leading to extensive blurring (as in the case of

ONND) or aliasing and partial disappearing of the cutlery (as in the case of OIDN). In the Kitchen scene, our method was able to preserve geometrical details

of the window frame while other methods failed in this task. Additionally, the lampshade denoised by AFGSA was highly contaminated by artifacts and OIDN

changed its color. In the Zero-Day scene, all methods struggled with retrieving reflections in glossy surfaces (as seen in the pink inset). Our method produced

a smooth surface, which was plausible and pleasing for the eye, while AFGSA and OIDN introduced low-frequency noise. The blue insets also shows that our

method preserves more details in the reflections than other methods. Bistro © 2023 Amazon Lumberyard, Kitchen © 2023 Jay-Artist, Zero-Day © 2023 Mike

Winkelmann
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