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Abstract  

    Effective treaty monitoring requires that nuclear monitoring data be safe from tampering.  Tamper-indicating seals and standard encryption/data authentication techniques, however, do not provide sufficient security, especially against electronic and physical attacks.  This paper presents an alternative approach for encrypting monitoring data called the “One-Time Pad of Digits Substitutions” (OPODS).  It is a combination of the unbreakable one-time key pad, and the traditional substitution cipher.  OPODS provides unbreakable security prior to an adversary trespassing inside nuclear monitoring hardware (even if the trespassing goes undetected), and good security after.

Introduction

    International nuclear safeguards (”treaty monitoring”) is a highly unconventional type of security application.
  Unlike ordinary security applications such as domestic nuclear safeguards, the adversary in international safeguards (i.e., the “host” or nation-state being monitored) owns the assets and facilities of interest.  This adversary will—for reasons of safety, security, counter-intelligence, reciprocity, nationalism, and geopolitics—often insist on a full, detailed understanding of the monitoring strategies, hardware, and security techniques being employed by the inspectors.  With conventional security applications, in contrast, we don’t ordinarily brief the adversary.  Other attributes of international nuclear safeguards are also quite unique compared to domestic nuclear safeguards and other more routine kinds of security applications.2
    Reliable treaty verification particularly requires that the inspectors can trust the veracity of the monitoring or surveillance data gathered in or near a nuclear facility by the monitoring hardware, which is typically unattended once running.  Such hardware can include, for example, seismometers, radiological measuring instruments, video or photographic surveillance systems, access control devices, vehicle counters, and intrusion detectors.  But how can such data be secured, especially when the adversary in international nuclear safeguards has full access to technical details of the monitoring hardware, plus national- or world-class resources and technical expertise that can potentially be exploited for cheating?

    Traditionally, tamper-indicating seals
,
,
 are used to detect the opening of, or tampering with, hardware, electronics and instrumentation racks, while standard data encryption/authentication techniques are used to secure recorded or transmitted data.  Unfortunately, as will be discussed below, these approaches are not fully reliable for international nuclear safeguards.

    This paper presents a new technique (involving a combination of two previously unconnected old techniques) for guaranteeing data authenticity that we call “OPODS” for “One-Time Pad of Digit Substitutions”.  OPODS is a simple, fast, and highly secure technique for securing recorded or transmitted data.
  It is computationally practical for low-cost microprocessors.  OPODS has no proprietary, licensing, or export control issues associated with its use (unlike many other modern encryption techniques), and it is well suited for use in international nuclear safeguards, in addition to certain other kinds of data logging applications where security is critical, yet where the adversary may understand details of the monitoring hardware, and be able to gain surreptitious physical access to it.  An example would be a Global Positioning System (GPS) location data logger.

What’s Wrong with Seals?

    We in the Vulnerability Assessment Team at Los Alamos National Laboratory have extensively studied hundreds of different tamper-indicating seals over the past 15 years.  We have shown how all the seals we have studied can be defeated quickly, using only low-tech tools, supplies, and methods that are available to almost anyone3,
,
,
 (To “defeat” a seal means to remove it, then after stealing or tampering with the container contents, resealing using the original seal or a counterfeit, all without being detected.)  We have not yet seen a seal, including passive and electronic seals used for nuclear safeguards, that requires a sophisticated adversary or attack to defeat it.

    There are practical countermeasures for most of the seal defeats we have demonstrated.  These typically require the seal user to modify how she installs and inspects seals.  There also needs to be extensive hands-on training for seal installers and inspectors so that they understand the vulnerabilities for the specific seals they are using, and know how to look for the most likely attack scenarios.  Unfortunately, all of this involves more time, money, and effort than most security programs are willing to invest, even for domestic or international nuclear safeguards.

    Fortunately, better seals are also possible.3,
  Conventional seals can be modified to make attacks more difficult.  An even more effective approach is to use a fundamentally novel approach to tamper detection, what we call “anti-evidence” seals.3,11  Conventional seals can often detect tampering just fine, but must store this information in or on the seal until such time as the seal can be inspected.  But an adversary can too easily hide or erase this “alarm condition”, or replace the seal with a fresh counterfeit.

   With anti-evidence seals, we instead store information in or on the seal at the time it is installed that indicates that tampering has not yet occurred.  If tampering is detected, this secret “anti-evidence”—typically a byte or two—gets instantly erased.
  The absence of the anti-evidence at the time of seal inspection indicates that tampering has occurred.  With this anti-evidence approach, an adversary cannot hide or erase the “alarm condition”;  counterfeiting the seal hardware gains him nothing if he does not know the anti-evidence data to store in or on the seal.
  

    We believe anti-evidence seals can provide much more reliable tamper detection than conventional seals.  In our experience, however, there is relatively little serious interest in any quarter in better tamper-indicating seals, including for nuclear safeguards applications (domestic or international).  Moreover, it is unlikely that anti-evidence seals, even if they prove superior to conventional seals, can provide absolute guarantees about detecting tampering.  Seals should continue to be used, but they are not a panacea for assuring that monitoring data are free from tampering.

What’s Wrong with Conventional Encryption/Data Authentication?

    Conventional encryption and data authentication techniques are also inadequate for guaranteeing the veracity of monitoring for international nuclear safeguards.  Encryption is typically employed when someone wishes to transmit data between two physically secure locations
 such that anyone intercepting the encrypted data cannot understand what it means.  The original secret data (or message) is commonly called the “plaintext”, while the encrypted data (or message) is called the “ciphertext”.  For most encryption applications (but not international nuclear safeguards), the bad guys are assumed to know the ciphertext, but not the plaintext (or the secret encryption key(s)).     

    There are 4 main problems with using standard encryption methods for securing treaty monitoring data.  First, modern encryption techniques are only “computationally secure”, not absolutely secure.
,
,
  This means that experts think that breaking the cipher by analyzing only the ciphertext (a so-called “ciphertext only attack”) should require enormous mathematical and computational resources. (”Breaking” a cipher essentially means figuring out the secret key, and thus the plaintext.)  The problem in international nuclear safeguards is that the nuclear adversary typically will have substantial resources, including world-class mathematicians, cryptoanalysts, and computers.  Moreover, we know that historically ciphers that were once thought to be computationally secure have been broken as new cryptoanalytic techniques, computation power, and expertise became available.
  

    A second serious problem with standard encryption is that it provides no significant security if the adversary can gain access to the sending or receiving location.  This allows him to obtain the secret key(s) used for encryption or to access the plaintext, and thereby replace the real data with his own fake data.  In theory, if trespassing into monitoring hardware could be reliably detected and the encryption key(s) erased quickly enough, the adversary would have a somewhat more difficult challenge in faking the monitoring data.  Seals and current tamper detection methods, however, are not up to the challenge, as discussed above.  And the time to thoroughly erase modern cipher keys can be relatively long on microprocessors because the minimum recommended key size for high security applications is 2048 bits = 256 bytes.
,
  

    A third problem with conventional encryption is that even if the secret key(s) get fully erased before an adversary can retrieve them, the adversary in international nuclear safeguards will typically know the plaintext, the ciphertext, and the cipher being used.
  He will know the plaintext because it is his facility where the monitoring measurements are made and he will understand what is occurring in his own facility.  He will also be able to get the ciphertext, i.e., the stored logged data, and (if necessary) the encryption algorithm by trespassing into the electronics or otherwise hacking the microprocessor.  In fact, he may automatically know the cipher because the inspectors will probably be required to disclose what cipher is being used for reasons of transparency, and because the inspected nation may insist on being provided with the software source code.
   Now a cipher is much easier to break (i.e., figure out the secret key) when the adversary knows the plaintext, the ciphertext, and the cipher
—a situation that is atypical for conventional encryption applications.

    The fourth problem with modern ciphers is that they are very computationally intensive and difficult to implement on a microprocessor,
 making them less than practical for small, cost-effective, transparent field monitoring equipment. 

    Instead of encrypting monitoring data, it is possible to try to authenticate them using a hash algorithm.
  A hash is a fixed-length number that is a compressed representation of the original data, computed (using the hash algorithm) from the original data in a one-way manner.  If the hash associated with a set of data is found to be incorrect, that means the original data has been tampered with.  

    There are two main types of hash algorithms.  Neither type is very conducive to transparency.  One kind relies on complexity and secrecy to compute the hash in a manner that is supposedly difficult for the adversary to guess.  Another kind does not try to be so clever, but merely computes a hash in an obvious way, then encrypts the hash using encryption and a secret key.  The security of the first type of hash is difficult to characterize, but generally cannot be guaranteed, including because it requires keeping a long-term secret.  Moreover, it is difficult to fully erase a complicated hash algorithm quickly and reliably enough to keep it from falling into the adversary’s hands should tampering with monitoring equipment be detected—even if the host nation allows secret algorithms.  Plus, once figured out, the security of this type of hash is usually gone forever.  The second type of hash algorithm has all the problems of encryption discussed above, plus the security of hashes has recently been called into question.

The One-Time Key Pad

    There is only one cipher that can be proven mathematically to be unbreakable for all time:  the One-Time Key Pad.18,
  This cipher, also known as the one-time pad (OTP) or Vernam cipher, was invented around 1917.  In addition to being unbreakable, the OTP has the advantages that it has no proprietary, licensing, or export control issues (unlike many modern ciphers), and is simple and very fast—basically just a lookup table—which is ideal for implementing on a low-cost microprocessor.
    

    The idea with the OTP is to use a totally random key that is as long as the plaintext.  This key can be used only once, then must be discarded.
  Though Soviet spies used the one-time keypad extensively in the 20th century,
 it has not been considered practical for many applications because of the large storage requirements for the key.  With the ever decreasing cost and size of digital storage media, however, this disadvantage is becoming much less important.  This is discussed below.

    The OTP is typically used to encrypt letters, but here we demonstrate its use for encrypting numeric values, which are more relevant for monitoring data.  Assume that we wish to encrypt the digits “1663”, and that the first 4 random digits in our one-time pad or random digits are “3907”.  Thus:

                            
plaintext:
1
6
6
3


                             
     OTP:
3
9
0
7        …

Adding the plaintext and OTP numeric values, we get


        plaintext + OTP sum:
4
15
6
10

For sum values in excess of 9, we “wrap around” by subtracting 10, i.e., we compute
 the modulus 10 to obtain,


                    sum mod 10:
4
5
6
0

    The encrypted message (ciphertext) is thus “4560”.  To decrypt the message, we reverse the process by subtracting the OTP values using modulus 10. 

    Note that the OTP cipher alone is not sufficient for securing safeguards monitoring data for two reasons.  First, it is difficult for a microprocessor to rapidly erase a large one-time pad (or the ciphertext) once physical or electronic intrusion is detected.  Secondly, even if the one-time pad gets erased, the adversary can reconstruct it because he knows the plaintext and can read the stored ciphertext.  Reconstructing the OTP allows him to replace the true monitoring data with fake data that will appear authentic to the nuclear inspectors.

Substitution Cipher

    Even simpler than the one-time pad is the substitution cipher
, which is thousands of years old, and thus also has no proprietary, licensing, or export control issues.  This cipher, however, can be easily broken, even by amateurs.  As the name suggests, a substitution cipher involves substituting each plaintext character with another predetermined ciphertext character.  For example, assume that the substitution cipher is given by the following one-to-one correspondence between each plaintext decimal digit in the top row with the digit directly below it in the bottom row:

	plaintext digit
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	mapping
	2
	9
	8
	3
	7
	1
	0
	6
	5
	4


    The (secret) bottom list of digits in random order (with none repeating) specifies the substitution cipher, and is known as the key or “mapping” because it specifies how the plaintext digits “map” to ciphertext digits.  For example, in the above cipher, 1 maps to 9, 6 maps to 0, 3 maps to 3, etc.  Thus, plaintext “1663” (for example) encrypts to ciphertext “9003“.  To decrypt, the mapping (key) is used in reverse.

    In a traditional substitution cipher, the mapping is unchanged, no matter how long the message.  A given plaintext digit will always encrypt to the same ciphertext digit, regardless of where the digit appears in the plaintext.  This is what makes the security of a substitution cipher so poor, in contrast to the OTP where the (additive) key is always changing.
  Like the OTP, the conventional substitution cipher is useless on its own for protecting monitoring data—especially when the adversary can break into the monitoring hardware without being reliably detected. 

One-Time Pad of Digit Substitutions (OPODS)

    OPODS is an encryption method that is the union of a one-time pad and a substitution cipher.  It can be thought of as a substitution cipher where the random mappings (or “key”) change for every character or digit to be encrypted.  The encryption step is done in the same way as the substitution cipher; the only difference is the mapping changes after every plaintext digit is encrypted, and each mapping is immediately erased after it is used.  Another way to think of OPODS is as a one-time pad of substitution mappings, each mapping being discarded after it is used just once to encrypt one character or digit.

    Consider the following example where we again wish to encrypt the (plaintext) data “1663”.  To do this we use the first mapping shown below to substitute “2” for the first digit (“1”) in the plaintext;  “2” thus becomes our first ciphertext digit. To find the substitution for the second digit we move on to the next random mapping after erasing the first.  We see below that this means that “6” in the plaintext gets replaced by “8”. This process is continued until the plaintext is all encrypted.  

Mapping for first plaintext digit:

	plaintext digit
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	mapping
	9
	2
	4
	1
	7
	3
	6
	5
	0
	8


So, for example, “1” ( “2”

Mapping for second plaintext digit:

	plaintext digit
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	mapping
	2
	4
	0
	1
	5
	7
	8
	6
	9
	3


So, for example, “6” ( “8”

Mapping for third plaintext digit:

	plaintext digit
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	mapping
	9
	2
	1
	7
	5
	3
	0
	6
	8
	4


So, for example, “6” ( “0”

Mapping for fourth plaintext digit:

	plaintext digit
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	mapping
	1
	2
	6
	7
	0
	8
	5
	9
	3
	4


So, for example, “3” ( “7”

These mappings thereby give us the ciphertext “2807”.  

    This OPODS method is just as strong (unbreakable) as the conventional one-time pad (OTP) for ciphertext only attacks.  However, unlike the conventional OTP, if the OPODS ciphertext and plaintext are both known, it is still not possible for an adversary to reconstruct used, erased mappings even if unlimited amounts of plaintext and ciphertext are available.  This is because the only information that can be confidently inferred is the value of just one of the 10 digits in each previously used mapping.  Since the adversary wants to encrypt a different set of plaintext digits than were actually encrypted, he is stuck.
  With no clues as to what the used mappings were, he has only a 1 in 9 chance
 of guessing the correct ciphertext digit corresponding to each plaintext digit he wants to fake.

    Now nuclear safeguards monitoring data will typically involve quantitative sensor readings recorded by a microprocessor.  It thus makes more sense to use hexadecimal (“hex” or base 16) digits, rather than base 10 decimal digits for the plaintext, ciphertext, and OPODS mappings.
  With the use of the hex digits, each OPODS mapping consists of 16 hexes, in random order, with no hex digit repeated in a given mapping.  

    Each of our OPODS hex mappings will therefore be a random permutation of the set of hex digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}.  There are over 20 trillion (16!) possible distinct mappings.  By coincidence, one mapping can be identical to another, but only if it is unpredictably replicated.

OPODS Data Security

    Now with OPODS, even if an adversary’s trespassing goes undetected, he will not be able to fake data prior to his break-in (assuming the mappings are truly erased irreversibly as they are used).  There is no need for any erasure of data in order to protect the veracity of previously recorded monitoring data. 

    But what about faking future data?  Unless all of the unused mappings can be erased instantly when trespassing is detected—and as discussed above, this cannot be guaranteed—then the OPODS mappings will be available to the adversary to fake future data.

    The way we can deal with this problem is to have the microprocessor pick each mapping as it is needed from a cache of unused mappings in a manner known only to the inspectors.  This can most easily be done using a pseudo-random number generator (PRNG), a simple iterative equation that deterministically and iteratively generates a new pseudo-random number from the previously generated number. The new pseudo-random number points to which mapping should be used next.  The PRNG is initialized with a secret key (“seed”) known only to the inspectors, though the PRNG algorithm itself need not be secret. One common form for a PRNG is a linear congruent generator which produces the pseudo-random sequence of integers {I0, I1, I2, …} in the range [0, M-1] via the formula  In+1 = (A In + C) mod M, where the integer coefficients A, C, and M must be carefully chosen, and I0 is the seed.

    Figure 1 shows how this picking process might most effectively be implemented.  The PRNG picks a mapping from a cache of (for example) 100 OPODS mappings. As each mapping is used, it is replace by the next available mapping from a larger cache of mappings.  The PRNG generates a 2-byte number, 0-65535.  The modulus 100 of this value points to which of the 100 mappings in the smaller cache to use next.  If trespassing is detected, erasing the current 2-byte value of the PRNG leaves the trespasser with no clue as to the order in which future mappings would have been chosen, even though he will probably know the PRNG algorithm and maybe the current mapping.
  

    The security of post-trespassing monitoring data, however, is not as high as pre-trespassing data, because for the former, we must detect the trespassing, plus know for sure that the PRNG’s current 2-byte value has been irretrievably erased.  Fortunately, however, such an erasure can typically be accomplished in 2 microseconds or less in a modest microprocessor.
,
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Figure 1  -  A schematic of the OPODS algorithm.  In step 1, a pseudo-random number generator (PRNG) picks one of the random mappings from a cache containing 100 random mappings.  In step 2, this mapping is moved to the location where it will be used as the current mapping for OPODS encryption of one hex digit.  The moved mapping is immediately replaced in the cache of 100 by the next available mapping in the main cache (step 3).  This mapping, in turn, gets immediately and irreversibly erased from the main cache (step 4).  In step 5, the current mapping is used to change one hex digit of the plaintext (1 in this example) into one hex digit of ciphertext (E).  Finally, the current mapping is erased (step 6).  By the end of step 6, useful information about the current mapping is permanently lost to an adversary.  If trespassing is detected, the current iterative value of the PRNG (typically 2 bytes in length) is immediately erased, leaving an adversary with no clues as to which of the 100 mappings in the cache of 100 was intended to be used next.  For even better odds (for the good guys), more than 100 mappings can be stored in the smaller cache. 

    Note that erasing just 2-bytes with OPODS is much faster than erasing the 256-byte (or longer) key for a conventional high-security cipher.
  This may have important security implications.
   Moreover, with a standard cipher, erasing the key does not prevent the cipher from being broken—especially in international nuclear safeguards where the adversary most likely knows the plaintext, the ciphertext, and the cipher being used.  Full erasure of the current 2-byte PRNG value, in contrast, leaves the adversary with no hope of reliably faking future data, no matter how sophisticated his cryptoanalytic capabilities.
  

OPODS Storage Requirements

    With 16 non-repeating hex digits in each OPODS mapping, there are a total of 16! = 2.1 x 1013 possible mappings.  This corresponds to a minimum of 44.3 bits needed to represent any possible mapping.

    As a practical matter, however, the simplest and fastest approach is to store each mapping directly as 16 hexes = 64 bits.  The advantage is that the mapping is just a lookup table that requires no computation or decompression of the mapping by the microprocessor in the field.

    A slightly more efficient way to store the mappings, but that requires only modest extra computation by the microprocessor, is to store each mapping as 15 hexes instead of 16.  The final hex does not need to be specified because it is the only hex digit not yet appearing in the mapping.  This approach requires only 15 hexes = 60 bits per mapping.

    Many other algorithms are possible for representing mappings that require less storage, but more computation.  For example, after the first 8 hex digits in a mapping are specified, only 3 bits are needed to specify the next hex digit from the list of the 23=8 remaining hex digits not yet chosen.  After 12 hex digits are chosen, only 2 bits are needed, and after 14 are chosen, only 1 bit is needed.  With this approach, 49 bytes are needed to fully specify a mapping.  The disadvantage to this “Remaining Digits Algorithm” is that more microprocessor computation time is required to decompress each mapping as it is needed. 

    Another potential algorithm, called the “High-Low Algorithm”, specifies each hex digit in the mapping by up to four bits.  These bits indicate whether the hex digit in question is in the lower half of the ordered list of unchosen hex digits, or the upper half.  The half that the hex digit does not belong to is then removed, and the question is asked again of the remaining
ordered list of unchosen hexes.  This is repeated up to four times until the hex digit is fully specified.  As the mapping gets longer, the ordered list of unchosen hex digits gets shorter, and fewer than 4 bits are required to specify each hex digit.  This algorithm requires, on average, 46.4 bits per mapping.  See Table I.

Table I  -  Storage and decompression requirements for various algorithms for storing OPODS mappings.




  bytes of mapping




  bits per
storage needed per
decompression


Algorithm
mapping
 byte of plaintext
     complexity
	List 16 Hex Digits
	64
	16
	none

	List 15 Hex Digits
	60
	15
	minimal

	Remaining Digits
	49
	12.2
	moderate

	High-Low
	46.4*
	11.6*
	high

	Theoretical Minimum Storage
	44.3
	11.1
	very high


________

* on average

    Even with the least efficient storage algorithm (the “List 16 Hex Digits” Algorithm), OPODS does not require an impractical amount of storage.  Each GigaByte (GB) of plaintext would need only 16 GB of OPODS mappings, and that storage gets freed up for other uses as each mapping gets used.  Currently, the retail cost of 16 GB of storage is only about $5 for magnetic hard disk storage and $220 for flash memory.  Not only are these prices lower for storage devices purchased in volume, but the cost of storage continues to drop precipitously over time as shown in figure 2.

    Another storage issue for microprocessors is the amount of random access memory (RAM) available.  Most conventional ciphers that one might try to implement on a microprocessor require 50 to 2300 or more bytes of RAM, yet standard low-cost 8-bit microprocessors typically have either 128 or 256 bytes.25  The OPODS scheme shown in figure 1 would actually require only 2 bytes of RAM for the current PRNG iterative value.

    A third storage issue is the amount of programming space required.  Many modern encryption schemes don’t fit on current commercial microprocessors.25   With OPODS, in contrast, the encryption algorithm is basically just a lookup table.  It requires only a few dozen BASIC programming lines, and only a few hundred machine instructions—the exact amount depending on the OPODS mapping decompression scheme chosen and the complexity of the PRNG being used.

OPODS Speed

     We have implemented OPODS encryption on a Microchip PIC16F819 microprocessor
 ($4.00 quantity of 1) along with two 24FC515 (512K bit) memory chips ($4.68 each in quantity of 1).  The software was written using the PICBASIC compiler.49
    With this system, the computation time required to encrypt 1 byte of plaintext is about 160 clock cycles, independent of the oscillator speed:  4, 8, or 20 MHz.  (Thus it takes 8 microseconds per byte using a 20 MHz oscillator.)  A more efficient algorithm, and the use of assembly language programming instead of the BASIC compiler, would undoubtedly increase encryption speed.  By way of comparison, the highly optimized Twofish encryption algorithm requires 1820 clock cycles per byte on an 8-bit microprocessor, but offers relatively low levels of security and at most a 32-byte key.
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Figure 2  -  The decreasing retail cost over time of 1 GB of

storage for magnetic hard disks and flash memory.

Generating OPODS Mappings

    Random OPODS mappings can best be generated from a one time pad (OTP) of random hex digits which have themselves been generated non-deterministically using hardware (discussed in the next section).  Generating the OTP from a deterministic PRNG method (such as found on most computers) does not result in true random digits and is not recommended because an adversary may be able to predict its behavior, especially if large numbers of OPODS mappings are stored in the monitoring hardware.
  PRNG security is weak because computer PRNGs are well studied, plus there are only a small number of other widely used PRNGs.
  Indeed, there are known instances of people predicting PRNG values, thus “breaking” the PRNG.

    The problem with using a OTP of random hex digits to generate OPODS mappings is that each OTP digit is equally likely, yet every OPODS mapping must be made up of 16 random hex digits with each digit appearing exactly once.  One possible algorithm for building an OPODS mapping from a one time pad involves simply appending the next random hex digit in the pad to the mapping if that hex digit does not yet appear in the mapping, and discarding the hex digit and skipping to the next random OTP hex digit in the pad if it does.  This method is straightforward and produces very random OPODS mappings if the original OTP hex digits are random, but wastes an average of 60.644% ± 0.023% of the OTP in order to avoid duplicate digits in a mapping.  Because of this, we call the algorithm the “Waste Algorithm”.  An example is shown in figure 3.    

[image: image3.png]list of random hexes 2>

5/0[4]9[9[3[6[C[7[9[1[A[D[6[9][5[E[2][0[0[8[B[F[6[9[F[6[A[6]O0]...

[5][0]4]9]

|
0]

[A]

[8[BIF[6[9[F]

[ [ET2]

[1[A]D]

[3[8]c[7]

mapping 2 >

mapping 1




Figure 3  -  An example of the “Waste Algorithm” for generating random OPODS mappings (bottom row) from a hardware-generated one time pad of random hex digits (top row).  Any time one of the hex digits in the OTP already appears in the mapping we are building, we skip it.  In this example, we only use the first 9 for mapping 1, but ignore the digit 9 the second, third, and fourth time it appears (which is why the duplicate 9s are shown crossed out).  Once a mapping has its full complement of 16 non-replicated hex digits, we start building the next mapping.  In this example, the completed mapping 1 = {504936C71ADE28BF}, whereas mapping 2 begins {69FA0…}.

    Another method for generating OPODS mappings from a OTP of random hex digits is called the “Not Yet Used Algorithm”.  See table II for an example.  As we build up an OPODS mapping, we keep track of which hex digits do not yet appear in the mapping.  When we start a new mapping this “unused list” is pseudo-randomly scrambled using the computer’s PRNG.  Each hex digit in the OTP is then used to select which hex digit in the “unused list” will be appended to the mapping.  Once the mapping is complete with 16 non-repeating hex digits, we start again on the next mapping with a freshly scrambled “unused list”.  This algorithm wastes none of our OTP, but is somewhat less secure in that it still relies on the computer’s PRNG.

    Random OPODS mappings can also be created by letting the OTP values shuffle the hex digits {0123456789ABCDEF} in a random fashion using, for example, the Fisher-Yates Shuffling Algorithm.
  

    Another approach is called the “Reseeding Algorithm”.  It uses the hardware-generated OTP random hex values to intermittently re-seed a computer’s internal PRNG or other PRNG.  The values generated by the PRNG are then used to build each random mapping. This algorithm is fast and makes highly efficient use of the OTP.  It is not, however, maximally random because its behavior is dominated by a PRNG.  Other algorithms for generating OPODS mappings apart from the ones considered here are also possible.

    Regardless of the algorithm, the computation time for generating OPODS mappings can be relatively modest on a desktop computer.
  Using an Apple 2GHZ Intel Core Duo Mac computer, with programs written in REALbasic,
 the time to generate 2 million OPODS mappings from an existing OTP—enough to encrypt 1 MegaByte of plaintext—is 3.7, 1.1, and 3.1 minutes, respectively, for the “Waste Algorithm”, “Not Yet Used Algorithm”, and Fisher-Yates Shuffling (16 shuffles per mapping).  A faster computer, plus more optimized algorithms and computer code would substantially decrease these times.

Table II  -  An example of the “Not Yet Used” algorithm for generating a random OPODS mapping from a one time pad of random hex digits.  In step 1, we just make the first hex digit in the new mapping equal to the next available random digit in the OTP (C in this case).  In step 2, the next random hex digit from the OTP is 1.  This is used to point to the hex digit in position 1 in the (pseudo-randomly scrambled) “unused list”, which is B in this example, so B gets appended to the mapping.  In step 3, the hex digit in the “unused list” at position 0 is E.  In step 4, the F position is position 15, but there are only 13 hex digits in the “unused list”, so we wrap around to position 2, i.e., the hex digit 1.  This process continues until the 16th step, where the sole remaining hex digit in the “unused” list (3 in this example) is automatically appended to the mapping.
  To build the next mapping, we create a new pseudo-randomly scrambled “unused list” and new random hex digits from the OTP.

           random hex



mapping under

step
from OTP   
scrambled “unused list”
construction
1
C
EB46C1572A0D39F8

C

2
1
EB461572A0D39F8

CB

3
0
E461572A0D39F8

CBE

4
F
461572A0D39F8

CBE1

5
0
46572A0D39F8

CBE14

6
A
6572A0D39F8

CBE148

7
4
6572A0D39F

CBE148A

8
2
65720D39F

CBE148A7

9
B
6520D39F

CBE148A70

10
1
652D39F

CBE148A705

11
6
62D39F

CBE148A7056

12
0
2D39F

CBE148A70562

13
7
D39F

CBE148A70562F

14
3
D39

CBE148A70562FD

15
5
39

CBE148A70562FD9

16
-
3

CBE148A70562FD93


 Generating True Random Digits

    The unpredictability of OPODS mappings depends critically on the unpredictability of the OTP random digits from which they are built.  Quantum effects probably produce the greatest randomness.
  Fortunately, truly (or at least highly) random sequences can be generated a number of different ways with relatively low cost hardware.  They include measuring:  radioactive decay from either background radiation or a radioactive source
;  electronic noise (thermal or Johnson noise, avalanche noise, other amplifier noise, and electron quantum tunneling)
;  photons passing through a 50-50 beamsplitter
;  noise in a shuttered video camera;  microphone noise
;  the light from a lava lamp
;  radio-frequency noise (from de-tuned radios)65;  computer hard disk noise
;  ping-pong balls such as in machines used by lotteries
; and the unpredictability of the timing in how a human uses a computer keyboard or mouse.
  Table III summarizes some of these methods.
    We have used 5 of the 8 methods listed in Table III for generating random numbers, but find the easiest to be the use of photodetectors to monitor plasma discharge disks and spheres (see figure 4) that are sold as consumer novelty lamps.  Up to 4 different photodetectors can be used to generate separate, uncorrelated random sequences per lamp.  This novel technique is safe, simple, and inexpensive, and can generate random numbers at moderately high rates.  It is also quite immune from calibration and threshold drift problems, and from tampering at a distance.  Sequences of digits generated in this way have consistently passed all the tests for randomness we have applied to them.

Table III  -  Attributes of various means for physically generating random numbers in hardware.  All of these, except for the lava lamp and some electronic noise techniques, are wholly or partially quantum mechanical in nature.
 

                 technique
typical generation rate (bytes/min)
typical cost

	keyboard & mouse
	2 - 100
	$0

	lava lamp
	101 - 106
	$100-$600

	background radioactive decay
	5 - 10
	$300

	source radioactive decay 
	20 – 6,000
	$350-$800

	plasma disk/sphere

	200 - 1000
	$100

	radio noise
	103 – 104
	$500

	photons & beamsplitter
	106 - 108
	$2000

	electronic noise
	2x104 – 2x108
	$300-$3500


Installing the OPODS Mappings

    The OPODS mappings must be installed or delivered to the monitoring hardware by the inspectors in a manner that does not compromise its security.  One way to do this is to have the random mappings stored on a flash memory thumb drive which is copied into the monitoring hardware in the field by the inspectors in person when they first start it up.  The thumb drive must then be fully erased, or else kept in the possession of the inspectors.  If the host (inspected) nation is concerned about what information may be being passed into the hardware, a “choose or keep” scheme
 can be employed wherein the inspectors lay out 3 or 5 thumb drives (each with different OPODS random mappings) and the host nation picks the one to be installed, plus gets to keep one to reverse engineer.  The latter will not be used for monitoring, but can instead be checked by the host to be sure it contains only random mappings, not microprocessor code or non-random data.

    Now an inexpensive 4 GB flash memory thumb drive can store up to 364 million OPODS mappings, enough to encrypt 182 MB of plaintext data.
  If one 2-byte (0-65535) measurement is made and recorded each second, this is enough OPODS mappings for almost 3 years of monitoring!
[image: image4.jpg]



Figure 4  -  A consumer 2-dimensional Lumina Disk, left, and a 3-dimensional Buddha Spherical Lamp, right, of questionable taste.  These are sold to consumers as retail novelties and decoration for approximately $19 and $25, respectively.  The plasma discharge “fingers” that each device generates fluctuate unpredictably in time and space.  Up to 4 different photosensors, if sufficiently spaced, can measure the light levels at different points on each device without any significant correlation or anti-correlation in their measurements.

Conclusion
    Something better is needed to secure nuclear monitoring data given the current unreliability of tamper-indicating seals, and the less than guaranteed security offered by conventional encryption methods—especially when, as is common for treaty monitoring, the adversary knows the plaintext, the ciphertext, and the cipher algorithm.  OPODS is an attractive alternative.  Unlike conventional encryption or data authentication methods, OPODS-encrypted monitoring data recorded (or transmitted) prior to trespassing is fully secure—not just “computationally secure”—even if the monitoring hardware fails to detect the trespassing and nothing gets erased.  Post-trespassing data is safe if the trespassing can be detected and a mere 2-bytes quickly erased.

    OPODS has other advantages as well.  It is very fast and computationally simple—basically just an erasable lookup table.  As such, it should be relatively immune from adversarial “side channel” attacks such as timing or power analysis methods
 and from chosen-plaintext attacks.
  OPODS does not tie up large amounts of RAM, code space, or microprocessor computation time, and is quite practical for implementing on low-cost 8-bit microprocessors.  Unlike many modern ciphers, OPODS has no proprietary, export control, or licensing issues.  Moreover, its cryptographic security is not compromised (unlike many conventional ciphers) if the same plaintext message is encrypted more than once.

    The disadvantages of OPODS include the requirements to have 11-16 bytes of mapping data per byte of plaintext to be encrypted (though this storage space is freed up for other uses as ciphertext is generated).  OPODS also requires large amounts of non-deterministic, hardware-generated random numbers, and installation of the OPODS mapping data into the monitoring hardware in a manner that keeps them secret.  And unlike public-private key ciphers, OPODS is not conducive to 3rd party authentication.

    We’ve implemented OPODS on both a desktop computer and a low-cost 8-bit microprocessor, and found it easy to develop and use.
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�  In our view, 3rd party authentication of international safeguards data is of marginal value, anyway.  A 3rd party that is dubious of safeguards findings will not be (nor should they be) convinced of truthfulness based only on the apparent integrity of stored or transmitted data.  The possibility that monitoring hardware has been tampered with or has malfunctioned, or that the measurements have simply been misinterpreted, will always be concerns that are extremely difficult to assuage—especially in the minds of parties who do not want to admit to the possibility of treaty breakout.





2
3

